256
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in Electrochemical Biosensors for the Detection of Common Oral Diseases

, , , , &

References

  • Bernabe, E.; Marcenes, W.; Hernandez, C. R.; Bailey, J.; Abreu, L. G.; Alipour, V.; Amini, S.; Arabloo, J.; Arefi, Z.; Arora, A.; et al. Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study. J. Dent. Res. 2020, 99, 362–373. DOI:10.1177/0022034520908533.
  • Lamont, R. J.; Koo, H.; Hajishengallis, G. The Oral Microbiota: Dynamic Communities and Host Interactions. Nat. Rev. Microbiol. 2018, 16, 745–759. DOI:10.1038/s41579-018-0089-x.
  • Simón-Soro, A.; Mira, A. Solving the Etiology of Dental Caries. Trends Microbiol. 2015, 23, 76–82. DOI:10.1016/j.tim.2014.10.010.
  • Bartold, P. M.; Van Dyke, T. E. An Appraisal of the Role of Specific Bacteria in the Initial Pathogenesis of Periodontitis. J. Clin. Periodontol. 2019, 46, 6–11. DOI:10.1111/jcpe.13046.
  • Baker, J. L.; Welch, J. L. M.; Kauffman, K. M.; McLean, J. S.; He, X. The Oral Microbiome: Diversity, Biogeography and Human Health. Nat. Rev. Microbiol. 2023, 22, 89–104. DOI:10.1038/s41579-023-00963-6.
  • Ho, P.-S.; Wang, W.-C.; Huang, Y.-T.; Yang, Y.-H. Finding an Oral Potentially Malignant Disorder in Screening Program is Related to Early Diagnosis of Oral Cavity Cancer – Experience from Real World Evidence. Oral Oncol. 2019, 89, 107–114. DOI:10.1016/j.oraloncology.2018.12.007.
  • Fang, X.; Hua, F.; Chen, Z.; Zhang, L. Caries Risk Assessment-Related Knowledge, Attitude, and Behaviors among Chinese Dentists: A Cross-Sectional Survey. Clin. Oral Investig. 2023, 27, 1079–1087. DOI:10.1007/s00784-022-04694-5.
  • Modin, C.; Rinon, C. D.; Faham, A.; Gustafsson, A.; Yucel-Lindberg, T.; Jansson, L. Periodontitis in Young Individuals: Important Factors for Disease Progression. J. Clin. Periodontol. 2023, 51, 74–85. DOI:10.1111/jcpe.13884.
  • López-Ruiz, M.; Navas, F.; Fernández-García, P.; Martínez-Erro, S.; Fuentes, M. V.; Giráldez, I.; Ceballos, L.; Ferrer-Luque, C. M. ª.; Ruiz-Linares, M.; Morales, V.; et al. L-Arginine-Containing Mesoporous Silica Nanoparticles Embedded in Dental Adhesive (Arg@MSN@DAdh) for Targeting Cariogenic Bacteria. J. Nanobiotechnology 2022, 20, 502. DOI:10.1186/s12951-022-01714-0.
  • Zhu, B.; Macleod, L. C.; Newsome, E.; Liu, J.; Xu, P. Aggregatibacter actinomycetemcomitans Mediates Protection of Porphyromonas gingivalis from Streptococcus sanguinis Hydrogen Peroxide Production in Multi-Species Biofilms. Sci. Rep. 2019, 9, 4944. DOI:10.1038/s41598-019-41467-9.
  • Lochman, J.; Zapletalova, M.; Poskerova, H.; Holla, L. I.; Linhartova, P. B. Rapid Multiplex Real-Time PCR Method for the Detection and Quantification of Selected Cariogenic and Periodontal Bacteria. Diagnostics 2020, 10, 8. DOI:10.3390/diagnostics10010008.
  • Morikawa, T.; Shibahara, T.; Takano, M.; Iwamoto, M.; Takaki, T.; Kasahara, K.; Nomura, T.; Takano, N.; Katakura, A. Countermeasure and Opportunistic Screening Systems for Oral Cancer. Oral Oncol. 2021, 112, 105047. DOI:10.1016/j.oraloncology.2020.105047.
  • Walsh, T.; Macey, R.; Kerr, A. R.; Lingen, M. W.; Ogden, G. R.; Warnakulasuriya, S. Diagnostic Tests for Oral Cancer and Potentially Malignant Disorders in Patients Presenting with Clinically Evident Lesions. Cochrane Database Syst. Rev. 2021, 7, CD010276. DOI:10.1002/14651858.CD010276.pub3.
  • Zamani, M.; Furst, A. L. Electricity, Chemistry and Biomarkers: An Elegant and Simple Package the Potential of Electrochemical Biosensors for Developing Novel Point-of-Care Diagnostics. EMBO Rep. 2022, 23, e55096. DOI:10.15252/embr.202255096.
  • Shu, J.; Tang, D. Recent Advances in Photoelectrochemical Sensing: From Engineered Photoactive Materials to Sensing Devices and Detection Modes. Anal. Chem. 2020, 92, 363–377. DOI:10.1021/acs.analchem.9b04199.
  • Shu, J.; Tang, D. Current Advances in Quantum-Dots-Based Photoelectrochemical Immunoassays. Chem. Asian J. 2017, 12, 2780–2789. DOI:10.1002/asia.201701229.
  • Eissa, S.; Tlili, C.; Mounir, B. A.; Kanoun, O. Editorial: Nanomaterials-Based Electrochemical Biosensors. Front. Bioeng. Biotechnol. 2022, 10, 1091592. DOI:10.3389/fbioe.2022.1091592.
  • Falk, M.; Psotta, C.; Cirovic, S.; Shleev, S. Non-Invasive Electrochemical Biosensors Operating in Human Physiological Fluids. Sensors 2020, 20, 6352. DOI:10.3390/s20216352.
  • Song, M.; Bai, H.; Zhang, P.; Zhou, X.; Ying, B. Promising Applications of Human-Derived Saliva Biomarker Testing in Clinical Diagnostics. Int. J. Oral Sci. 2023, 15, 2. DOI:10.1038/s41368-022-00209-w.
  • Dong, T.; Pires, N. M. M.; Yang, Z.; Jiang, Z. Advances in Electrochemical Biosensors Based on Nanomaterials for Protein Biomarker Detection in Saliva. Adv. Sci. 2022, 10, e2205429. DOI:10.1002/advs.202205429.
  • Sun, H.; Kong, J.; Zhang, X. Application of Peptide Nucleic Acid in Electrochemical Nucleic Acid Biosensors. Biopolymers 2021, 112, e23464. DOI:10.1002/bip.23464.
  • Dutta, G.; Jallow, A. A.; Paul, D.; Moschou, D. Label-Free Electrochemical Detection of S. mutans Exploiting Commercially Fabricated Printed Circuit Board Sensing Electrodes. Micromachines 2019, 10, 575. DOI:10.3390/mi10090575.
  • Park, S.; Park, K.; Na, H. S.; Chung, J.; Yang, H. Washing- and Separation-Free Electrochemical Detection of Porphyromonas gingivalis in Saliva for Initial Diagnosis of Periodontitis. Anal. Chem. 2021, 93, 5644–5650. DOI:10.1021/acs.analchem.1c00572.
  • Arias-Bujanda, N.; Regueira-Iglesias, A.; Balsa-Castro, C.; Nibali, L.; Donos, N.; Tomas, I. Accuracy of Single Molecular Biomarkers in Gingival Crevicular Fluid for the Diagnosis of Periodontitis: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2019, 46, 1166–1182. DOI:10.1111/jcpe.13188.
  • Kaushal, J. B.; Raut, P.; Kumar, S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. Biosensors 2023, 13, 976. DOI:10.3390/bios13110976.
  • Zeng, R.; Qiu, M.; Wan, Q.; Huang, Z.; Liu, X.; Tang, D.; Knopp, D. Smartphone-Based Electrochemical Immunoassay for Point-of-Care Detection of SARS-CoV-2 Protein. Anal. Chem. 2022, 94, 15155–15161. DOI:10.1021/acs.analchem.2c0360615155Anal.
  • Lv, S.; Zhang, K.; Zhu, L.; Tang, D.; Niessner, R.; Knopp, D. H2-Based Electrochemical Biosensor with Pd Nanowires@ZIF-67 Molecular Sieve Bilayered Sensing Interface for Immunoassay. Anal. Chem. 2019, 91, 12055–12062. DOI:10.1021/acs.analchem.9b03177.
  • Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A. K.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. DOI:10.3390/bios11090336.
  • Desmet, C.; Marquette, C. A.; Blum, L. J.; Doumèche, B. Paper Electrodes for Bioelectrochemistry: Biosensors and Biofuel Cells. Biosens. Bioelectron. 2016, 76, 145–163. DOI:10.1016/j.bios.2015.06.052.
  • Yamanaka, K.; Vestergaard, M. d C.; Tamiya, E. Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application. Sensors 2016, 16, 1761. DOI:10.3390/s16101761.
  • Torrinha, Á.; Amorim, C. G.; Montenegro, M. C. B. S. M.; Araújo, A. N. Biosensing Based on Pencil Graphite Electrodes. Talanta 2018, 190, 235–247. DOI:10.1016/j.talanta.2018.07.086.
  • Lu, L.; Zeng, R.; Lin, Q.; Huang, X.; Tang, D. Cation Exchange Reaction-Mediated Photothermal and Polarity-Switchable Photoelectrochemical Dual-Readout Biosensor. Anal. Chem. 2023, 95, 16335–16342. DOI:10.1021/acs.analchem.3c03573.
  • Gao, Y.; Yu, Z.; Huang, L.; Zeng, Y.; Liu, X.; Tang, D. Photoinduced Electron Transfer Modulated Photoelectric Signal: Toward an Organic Small Molecule-Based Photoelectrochemical Platform for Formaldehyde Detection. Anal. Chem. 2023, 95, 9130–9137. DOI:10.1021/acs.analchem.3c01690.
  • Smutok, O.; Katz, E. Biosensors: Electrochemical Devices-General Concepts and Performance. Biosensors 2023, 13, 44. DOI:10.3390/bios13010044.
  • Wang, S.; Liu, Y.; Zhu, A.; Tian, Y. In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices. Anal. Chem. 2023, 95, 388–406. DOI:10.1021/acs.analchem.2c04541.
  • Wasilewski, T.; Kamysz, W.; Gębicki, J. Bioelectronic Tongue: Current Status and Perspectives. Biosens. Bioelectron. 2020, 150, 111923. DOI:10.1016/j.bios.2019.111923.
  • Yang, X.; Li, M.; Ji, X.; Chang, J.; Deng, Z.; Meng, G. Recognition Algorithms in E-Nose: A Review. IEEE Sens. J. 2023, 23, 20460–20472. DOI:10.1109/JSEN.2023.3302868.
  • Ozer, T.; Henry, C. S. Review-Recent Advances in Sensor Arrays for the Simultaneous Electrochemical Detection of Multiple Analytes. J. Electrochem. Soc. 2021, 168, 057507. DOI:10.1149/1945-7111/abfc9f.
  • Wu, T.; Alharbi, A.; Kiani, R.; Shahrjerdi, D. Quantitative Principles for Precise Engineering of Sensitivity in Graphene Electrochemical Sensors. Adv. Mater. 2019, 31, e1805752. DOI:10.1002/adma.201805752.
  • Jha, S. K.; Yadava, R. D. S.; Hayashi, K.; Patel, N. Recognition and Sensing of Organic Compounds Using Analytical Methods, Chemical Sensors, and Pattern Recognition Approaches. Chemom. Intell. Lab. Syst. 2019, 185, 18–31. DOI:10.1016/j.chemolab.2018.12.008.
  • Li, Z.; Jiang, Y.; Tang, S.; Zou, H.; Wang, W.; Qi, G.; Zhang, H.; Jin, K.; Wang, Y.; Chen, H.; et al. 2D Nanomaterial Sensing Array Using Machine Learning for Differential Profiling of Pathogenic Microbial Taxonomic Identification. Mikrochim. Acta 2022, 189, 273. DOI:10.1007/s00604-022-05368-5.
  • Kim, C.; Lee, K. K.; Kang, M. S.; Shin, D.-M.; Oh, J.-W.; Lee, C.-S.; Han, D.-W. Artificial Olfactory Sensor Technology That Mimics the Olfactory Mechanism: A Comprehensive Review. Biomater. Res. 2022, 26, 40. DOI:10.1186/s40824-022-00287-1.
  • Banga, I.; Paul, A.; Churcher, N. K. M.; Kumar, R. M.; Muthukumar, S.; Prasad, S. Passive Breathomics for Ultrasensitive Characterization of Acute and Chronic Respiratory Diseases Using Electrochemical Transduction Mechanism. TRAC Trends Anal. Chem. 2024, 170, 117455. DOI:10.1016/j.trac.2023.117455.
  • Liu, T.; Guan, H.; Wang, T.; Liang, X.; Liu, F.; Liu, F.; Zhang, C.; Lu, G. Mixed Potential Type Acetone Sensor Based on GDC Used for Breath Analysis. Sens. Actuators B Chem. 2021, 326, 128846. DOI:10.1016/j.snb.2020.128846.
  • Lv, S.; Fan, J.; Liu, F.; Zhang, Y.; Jiang, L.; Ouyang, S.; Zhang, C.; Wang, C.; Sun, P.; Wang, L. YSZ-Based Mixed Potential Type Acetone Gas Sensor Attached with CuSb2O6 Sensing Electrode for Ketosis Diagnosis. Sens. Actuators B Chem. 2022, 370, 132408. DOI:10.1016/j.snb.2022.132408.
  • Huang, L.; Cai, G.; Zeng, R.; Yu, Z.; Tang, D. Contactless Photoelectrochemical Biosensor Based on the Ultraviolet-Assisted Gas Sensing Interface of Three-Dimensional SnS2 Nanosheets: From Mechanism Reveal to Practical Application. Anal. Chem. 2022, 94, 9487–9495. DOI:10.1021/acs.analchem.2c02010.
  • Kim, E. R.; Joe, C.; Mitchell, R. J.; Gu, M. B. Biosensors for Healthcare: Current and Future Perspectives. Trends Biotechnol. 2023, 41, 374–395. DOI:10.1016/j.tibtech.2022.12.005.
  • Zeng, R.; Gong, H.; Li, Y.; Li, Y.; Lin, W.; Tang, D.; Knopp, D. CRISPR-Cas12a-Derived Photoelectrochemical Biosensor for Point-of-Care Diagnosis of Nucleic Acid. Anal. Chem. 2022, 94, 7442–7448. DOI:10.1021/acs.analchem.2c01373.
  • Gao, Y.; Zeng, Y.; Liu, X.; Tang, D. Liposome-Mediated in Situ Formation of Type-I Heterojunction for Amplified Photoelectrochemical Immunoassay. Anal. Chem. 2022, 94, 4859–4865. DOI:10.1021/acs.analchem.2c00283.
  • Joe, C.; Lee, B. H.; Kim, S. H.; Ko, Y.; Gu, M. B. Aptamer Duo-Based Portable Electrochemical Biosensors for Early Diagnosis of Periodontal Disease. Biosens. Bioelectron. 2022, 199, 113884. DOI:10.1016/j.bios.2021.113884.
  • Pakchin, P. S.; Ghanbari, H.; Saber, R.; Omidi, Y. Electrochemical Immunosensor Based on Chitosan-Gold Nanoparticle/Carbon Nanotube as a Platform and Lactate Oxidase as a Label for Detection of CA125 Oncomarker. Biosens. Bioelectron. 2018, 122, 68–74. DOI:10.1016/j.bios.2018.09.016.
  • Bellagambi, F. G.; Lomonaco, T.; Salvo, P.; Vivaldi, F.; Hangouet, M.; Ghimenti, S.; Biagini, D.; Di Francesco, F.; Fuoco, R.; Errachid, A. Saliva Sampling: Methods and Devices. An Overview. TRAC Trends Anal. Chem. 2020, 124, 115781. DOI:10.1016/j.trac.2019.115781.
  • Bang, E.; Oh, S.; Ju, U.; Chang, H. E.; Hong, J.-S.; Baek, H.-J.; Kim, K.-S.; Lee, H.-J.; Park, K. U. Factors Influencing Oral Microbiome Analysis: From Saliva Sampling Methods to Next-Generation Sequencing Platforms. Sci. Rep. 2023, 13, 10086. DOI:10.1038/s41598-023-37246-2.
  • Satoh-Kuriwada, S.; Shoji, N.; Miyake, H.; Watanabe, C.; Sasano, T. Effects and Mechanisms of Tastants on the Gustatory-Salivary Reflex in Human Minor Salivary Glands. Biomed. Res. Int. 2018, 2018, 3847075. DOI:10.1155/2018/3847075.
  • Nguyen, M.; Dinis, M.; Lux, R.; Shi, W.; Tran, N. C. Correlation between Streptococcus mutans Levels in Dental Plaque and Saliva of Children. J. Oral Sci. 2022, 64, 290–293. DOI:10.2334/josnusd.22-0177.
  • Liu, J-f.; Hsu, C.-L.; Chen, L.-R. Correlation between Salivary Mutans Streptococci, Lactobacilli and the Severity of Early Childhood Caries. J. Dent. Sci. 2019, 14, 389–394. DOI:10.1016/j.jds.2019.06.003.
  • Borghi, G. N.; Rodrigues, L. P.; Lopes, L. M.; Parisotto, T. M.; Steiner-Oliveira, C.; Nobre-dos-Santos, M. Relationship among Alpha Amylase and Carbonic Anhydrase VI in Saliva, Visible Biofilm, and Early Childhood Caries: A Longitudinal Study. Int. J. Paediatr. Dent. 2017, 27, 174–182. DOI:10.1111/ipd.12249.
  • Ahmad, P.; Hussain, A.; Carrasco-Labra, A.; Siqueira, W. L. Salivary Proteins as Dental Caries Biomarkers: A Systematic Review. Caries Res. 2022, 56, 385–398. DOI:10.1159/000526942.
  • Nascimento, M. M.; Alvarez, A. J.; Huang, X.; Hanway, S.; Perry, S.; Luce, A.; Richards, V. P.; Burne, R. A. Arginine Metabolism in Supragingival Oral Biofilms as a Potential Predictor of Caries Risk. JDR Clin. Trans. Res. 2019, 4, 262–270. DOI:10.1177/2380084419834234.
  • Wang, K.; Wang, Y.; Wang, X.; Ren, Q.; Han, S.; Ding, L.; Li, Z.; Zhou, X.; Li, W.; Zhang, L. Comparative Salivary Proteomics Analysis of Children with and without Dental Caries Using the iTRAQ/MRM Approach. J. Transl. Med. 2018, 16, 11. DOI:10.1186/s12967-018-1388-8.
  • Biria, M.; Sattari, M.; Iranparvar, P.; Eftekhar, L. Relationship between the Salivary Concentrations of Proteinase-3 and Interleukin-8 and Severe Early Childhood Caries. Dent. Med. Probl. 2023, 60, 577–582. DOI:10.17219/dmp/132517.
  • Wang, K.; Zhou, X.; Li, W.; Zhang, L. Human Salivary Proteins and Their Peptidomimetics: Values of Function, Early Diagnosis, and Therapeutic Potential in Combating Dental Caries. Arch. Oral Biol. 2019, 99, 31–42. DOI:10.1016/j.archoralbio.2018.12.009.
  • Hemadi, A. S.; Huang, R.; Zhou, Y.; Zou, J. Salivary Proteins and Microbiota as Biomarkers for Early Childhood Caries Risk Assessment. Int. J. Oral Sci. 2017, 9, e1. DOI:10.1038/ijos.2017.35.
  • Kuramochi, E.; Iizuka, J.; Mukai, Y. Influences of Bicarbonate on Processes of Enamel Subsurface Remineralization and Demineralization: Assessment Using micro-Raman Spectroscopy and Transverse Microradiography. Eur. J. Oral Sci. 2016, 124, 554–558. DOI:10.1111/eos.12301.
  • Kumar, P. S. Microbial Dysbiosis: The Root Cause of Periodontal Disease. J. Periodontol. 2021, 92, 1079–1087. DOI:10.1002/jper.21-0245.
  • Luchian, I.; Goriuc, A.; Sandu, D.; Covasa, M. The Role of Matrix Metalloproteinases (MMP-8, MMP-9, MMP-13) in Periodontal and Peri-Implant Pathological Processes. Int. J. Mol. Sci. 2022, 23, 1806. DOI:10.3390/ijms23031806.
  • Kim, H.-D.; Karna, S.; Shin, Y.; Vu, H.; Cho, H.-J.; Kim, S. S100A8 and S100A9 in Saliva, Blood and Gingival Crevicular Fluid for Screening Established Periodontitis: A Cross-Sectional Study. BMC Oral Health 2021, 21, 388. DOI:10.1186/s12903-021-01749-z.
  • Rocha Resende Hartenbach, F. A.; Velasquez, E.; Nogueira, F. C. S.; Domont, G. B.; Ferreira, E.; Vieira Colombo, A. P. Proteomic Analysis of Whole Saliva in Chronic Periodontitis. J. Proteomics 2020, 213, 103602. DOI:10.1016/j.jprot.2019.103602.
  • Melguizo-Rodríguez, L.; Costela-Ruiz, V. J.; Manzano-Moreno, F. J.; Ruiz, C.; Illescas-Montes, R. Salivary Biomarkers and Their Application in the Diagnosis and Monitoring of the Most Common Oral Pathologies. Int. J. Mol. Sci. 2020, 21, 5173. DOI:10.3390/ijms21145173.
  • Branco-de-Almeida, L. S.; Cruz-Almeida, Y.; Gonzalez-Marrero, Y.; Kudsi, R.; de Oliveira, I. C. V.; Dolia, B.; Huang, H.; Aukhil, I.; Harrison, P.; Shaddox, L. M. Treatment of Localized Aggressive Periodontitis Alters Local Host Immunoinflammatory Profiles: A Long-Term Evaluation. J. Clin. Periodontol. 2021, 48, 237–248. DOI:10.1111/jcpe.13404.
  • Asa’ad, F.; Garaicoa-Pazmiño, C.; Dahlin, C.; Larsson, L. Expression of MicroRNAs in Periodontal and Peri-Implant Diseases: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2020, 21, 4147. DOI:10.3390/ijms21114147.
  • Chakraborty, D.; Mukherjee, A.; Ethiraj, K. R. Gold Nanorod-Based Multiplex Bioanalytical Assay for the Detection of CYFRA 21-1 and CA-125: Towards Oral Cancer Diagnostics. Anal. Methods 2022, 14, 3614–3622. DOI:10.1039/d2ay01216b.
  • Ishikawa, S.; Sugimoto, M.; Kitabatake, K.; Sugano, A.; Nakamura, M.; Kaneko, M.; Ota, S.; Hiwatari, K.; Enomoto, A.; Soga, T.; et al. Identification of Salivary Metabolomic Biomarkers for Oral Cancer Screening. Sci. Rep. 2016, 6, 31520. DOI:10.1038/srep31520.
  • Piyarathne, N. S.; Weerasekera, M. M.; Fonseka, P. F. D.; Karunatilleke, A. H. T. S.; Liyanage, R. L. P. R.; Jayasinghe, R. D.; De Silva, K.; Yasawardene, S.; Gupta, E.; Jayasinghe, J. A. P.; Abu-Eid, R. Salivary Interleukin Levels in Oral Squamous Cell Carcinoma and Oral Epithelial Dysplasia: Findings from a Sri Lankan Study. Cancers 2023, 15, 1510. DOI:10.3390/cancers15051510.
  • Zheng, J.; Sun, L.; Yuan, W.; Xu, J.; Yu, X.; Wang, F.; Sun, L.; Zeng, Y. Clinical Value of Naa10p and CEA Levels in Saliva and Serum for Diagnosis of Oral Squamous Cell Carcinoma. J. Oral Pathol. Med. 2018, 47, 830–835. DOI:10.1111/jop.12767.
  • Kalló, G.; Bertalan, P. M.; Márton, I.; Kiss, C.; Csősz, É. Salivary Chemical Barrier Proteins in Oral Squamous Cell Carcinoma-Alterations in the Defense Mechanism of the Oral Cavity. Int. J. Mol. Sci. 2023, 24, 13657. DOI:10.3390/ijms241713657.
  • Kang, J.-W.; Eun, Y.-G.; Lee, Y.-C. Diagnostic Value of Salivary miRNA in Head and Neck Squamous Cell Cancer: Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2021, 22, 7026. DOI:10.3390/ijms22137026.
  • Lee, Y.-H.; Shin, S.-I.; Hong, J.-Y. Investigation of Volatile Sulfur Compound Level and Halitosis in Patients with Gingivitis and Periodontitis. Sci. Rep. 2023, 13, 13175–13175. DOI:10.1038/s41598-023-40391-3.
  • Choi, J. R.; Hu, J.; Tang, R.; Gong, Y.; Feng, S.; Ren, H.; Wen, T.; Li, X.; Wan Abas, W. A. B.; Pingguan-Murphy, B.; Xu, F. An Integrated Paper-Based Sample-to-Answer Biosensor for Nucleic Acid Testing at the Point of Care. Lab Chip 2016, 16, 611–621. DOI:10.1039/c5lc01388g.
  • Liu, D.; Zhou, L.; Huang, L.; Zuo, Z.; Ho, V.; Jin, L.; Lu, Y.; Chen, X.; Zhao, J.; Qian, D.; et al. Microfluidic Integrated Capacitive Biosensor for C-Reactive Protein Label-Free and Real-Time Detection. Analyst 2021, 146, 5380–5388. DOI:10.1039/d1an00464f.
  • Tehrani, F.; Teymourian, H.; Wuerstle, B.; Kavner, J.; Patel, R.; Furmidge, A.; Aghavali, R.; Hosseini-Toudeshki, H.; Brown, C.; Zhang, F.; et al. An Integrated Wearable Microneedle Array for the Continuous Monitoring of Multiple Biomarkers in Interstitial Fluid. Nat. Biomed. Eng. 2022, 6, 1214–1224. DOI:10.1038/s41551-022-00887-1.
  • Tseng, P.; Napier, B.; Garbarini, L.; Kaplan, D. L.; Omenetto, F. G. Functional, RF-Trilayer Sensors for Tooth-Mounted, Wireless Monitoring of the Oral Cavity and Food Consumption. Adv. Mater. 2018, 30, e1703257. DOI:10.1002/adma.201703257.
  • Arakawa, T.; Tomoto, K.; Nitta, H.; Toma, K.; Takeuchi, S.; Sekita, T.; Minakuchi, S.; Mitsubayashi, K. A Wearable Cellulose Acetate-Coated Mouthguard Biosensor for In Vivo Salivary Glucose Measurement. Anal. Chem. 2020, 92, 12201–12207. DOI:10.1021/acs.analchem.0c01201.
  • Min, J.; Sempionatto, J. R.; Teymourian, H.; Wang, J.; Gao, W. Wearable Electrochemical Biosensors in North America. Biosens. Bioelectron. 2021, 172, 112750. DOI:10.1016/j.bios.2020.112750.
  • Xu, J. J.; Miao, H. H.; Wang, J. X.; Pan, G. Q. Molecularly Imprinted Synthetic Antibodies: From Chemical Design to Biomedical Applications. Small 2020, 16, e1906644. DOI:10.1002/smll.201906644.
  • Guo, Z.; He, H.; Zhang, Y.; Rao, J.; Yang, T.; Li, T.; Wang, L.; Shi, M.; Wang, M.; Qiu, S.; et al. Heavy-Atom-Modulated Supramolecular Assembly Increases Antitumor Potency against Malignant Breast Tumors via Tunable Cooperativity. Adv. Mater. 2021, 33, e2004225. DOI:10.1002/adma.202004225.
  • Park, R.; Jeon, S.; Jeong, J.; Park, S.-Y.; Han, D.-W.; Hong, S. W. Recent Advances of Point-of-Care Devices Integrated with Molecularly Imprinted Polymers-Based Biosensors: From Biomolecule Sensing Design to Intraoral Fluid Testing. Biosensors 2022, 12, 136. DOI:10.3390/bios12030136.
  • Li, Y.; Luo, L.; Kong, Y.; Li, Y.; Wang, Q.; Wang, M.; Li, Y.; Davenport, A.; Li, B. Recent Advances in Molecularly Imprinted Polymer-Based Electrochemical Sensors. Biosens. Bioelectron. 2024, 249, 116018–116018. DOI:10.1016/j.bios.2024.116018.
  • Pilvenyte, G.; Ratautaite, V.; Boguzaite, R.; Ramanavicius, A.; Viter, R.; Ramanavicius, S. Molecularly Imprinted Polymers for the Determination of Cancer Biomarkers. Int. J. Mol. Sci. 2023, 24, 4105. DOI:10.3390/ijms24044105.
  • Pilvenyte, G.; Ratautaite, V.; Boguzaite, R.; Ramanavicius, S.; Chen, C.-F.; Viter, R.; Ramanavicius, A. Molecularly Imprinted Polymer-Based Electrochemical Sensors for the Diagnosis of Infectious Diseases. Biosensors 2023, 13. 620. DOI:10.3390/bios13060620.
  • Liustrovaite, V.; Pogorielov, M.; Boguzaite, R.; Ratautaite, V.; Ramanaviciene, A.; Pilvenyte, G.; Holubnycha, V.; Korniienko, V.; Diedkova, K.; Viter, R.; Ramanavicius, A. Towards Electrochemical Sensor Based on Molecularly Imprinted Polypyrrole for the Detection of Bacteria-Listeria monocytogenes. Polymers 2023, 15, 1597. DOI:10.3390/polym15071597.
  • Hasseb, A. A.; Ghani, N.; Shehab, O. R.; El Nashar, R. M. Application of Molecularly Imprinted Polymers for Electrochemical Detection of Some Important Biomedical Markers and Pathogens. Curr. Opin. Electrochem. 2022, 31, 100848. DOI:10.1016/j.coelec.2021.100848.
  • Li, Y.; Guan, C.; Liu, C.; Li, Z.; Han, G. Disease Diagnosis and Application Analysis of Molecularly Imprinted Polymers (MIPs) in Saliva Detection. Talanta 2024, 269, 125394. DOI:10.1016/j.talanta.2023.125394.
  • Kim, J.; Imani, S.; de Araujo, W. R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T. R. L. C.; Mercier, P. P.; Wang, J. Wearable Salivary Uric Acid Mouthguard Biosensor with Integrated Wireless Electronics. Biosens. Bioelectron. 2015, 74, 1061–1068. DOI:10.1016/j.bios.2015.07.039.
  • Arakawa, T.; Kuroki, Y.; Nitta, H.; Chouhan, P.; Toma, K.; Sawada, S.-I.; Takeuchi, S.; Sekita, T.; Akiyoshi, K.; Minakuchi, S.; Mitsubayashi, K. Mouthguard Biosensor with Telemetry System for Monitoring of Saliva Glucose: A Novel Cavitas Sensor. Biosens. Bioelectron. 2016, 84, 106–111. DOI:10.1016/j.bios.2015.12.014.
  • Lee, Y.; Howe, C.; Mishra, S.; Lee, D. S.; Mahmood, M.; Piper, M.; Kim, Y.; Tieu, K.; Byun, H.-S.; Coffey, J. P.; et al. Wireless, Intraoral Hybrid Electronics for Real-Time Quantification of Sodium Intake toward Hypertension Management. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 5377–5382. DOI:10.1073/pnas.1719573115.
  • Umapathy, V. R.; Natarajan, P. M.; Swamikannu, B.; Moses, J.; Jones, S.; Chandran, M. P.; Anbumozhi, M. K. Emerging Biosensors for Oral Cancer Detection and Diagnosis–A Review Unravelling Their Role in past and Present Advancements in the Field of Early Diagnosis. Biosensors 2022, 12, 498. DOI:10.3390/bios12070498.
  • Wang, C.-F.; Sun, X.-Y.; Su, M.; Wang, Y.-P.; Lv, Y.-K. Electrochemical Biosensors Based on Antibody, Nucleic Acid and Enzyme Functionalized Graphene for the Detection of Disease-Related Biomolecules. Analyst 2020, 145, 1550–1562. DOI:10.1039/c9an02047k.
  • Kim, J.; Park, M. Recent Progress in Electrochemical Immunosensors. Biosensors 2021, 11, 360. DOI:10.3390/bios11100360.
  • Iglesias-Mayor, A.; Amor-Gutiérrez, O.; Costa-García, A.; de la Escosura-Muñiz, A. Nanoparticles as Emerging Labels in Electrochemical Immunosensors. Sensors 2019, 19, 5137. DOI:10.3390/s19235137.
  • Han, L.; Wang, D.; Yan, L.; Petrenko, V. A.; Liu, A. Specific Phages-Based Electrochemical Impedimetric Immunosensors for Label-Free and Ultrasensitive Detection of Dual Prostate-Specific Antigens. Sens. Actuators B Chem. 2019, 297, 126727. DOI:10.1016/j.snb.2019.126727.
  • Forssten, S. D.; Björklund, M.; Ouwehand, A. C. Streptococcus mutans, Caries and Simulation Models. Nutrients 2010, 2, 290–298. DOI:10.3390/nu2030290.
  • Xu, J.; Yu, X.; Xie, L.; Shao, M. Facile Incorporation of DNA-Templated Quantum Dots for Sensitive Electrochemical Detection of the Oral Cancer Biomarker Interleukin-8. Anal. Bioanal. Chem. 2020, 412, 2599–2606. DOI:10.1007/s00216-020-02487-x.
  • Torrente-Rodríguez, R. M.; Campuzano, S.; Ruiz-Valdepeñas Montiel, V.; Gamella, M.; Pingarrón, J. M. Electrochemical Bioplatforms for the Simultaneous Determination of Interleukin (IL)-8 mRNA and IL-8 Protein Oral Cancer Biomarkers in Raw Saliva. Biosens. Bioelectron. 2016, 77, 543–548. DOI:10.1016/j.bios.2015.10.016.
  • Chen, M.; Han, R.; Wang, W.; Li, Y.; Luo, X. Antifouling Aptasensor Based on Self-Assembled Loop-Closed Peptides with Enhanced Stability for CA125 Assay in Complex Biofluids. Anal. Chem. 2021, 93, 13555–13563. DOI:10.1021/acs.analchem.1c02552.
  • Kumar, S.; Gupta, N.; Malhotra, B. D. Ultrasensitive Biosensing Platform Based on Yttria Doped Zirconia-Reduced Graphene Oxide Nanocomposite for Detection of Salivary Oral Cancer Biomarker. Bioelectrochemistry 2021, 140, 107799. DOI:10.1016/j.bioelechem.2021.107799.
  • Liu, J.; Tang, Y.; Cheng, Y.; Huang, W.; Xiang, L. Electrochemical Biosensors Based on Saliva Electrolytes for Rapid Detection and Diagnosis. J. Mater. Chem. B 2022, 11, 33–54. DOI:10.1039/d2tb02031a.
  • El Harrad, L.; Bourais, I.; Mohammadi, H.; Amine, A. Recent Advances in Electrochemical Biosensors Based on Enzyme Inhibition for Clinical and Pharmaceutical Applications. Sensors 2018, 18, 164. DOI:10.3390/s18010164.
  • Schachinger, F.; Chang, H.; Scheiblbrandner, S.; Ludwig, R. Amperometric Biosensors Based on Direct Electron Transfer Enzymes. Molecules 2021, 26, 4525. DOI:10.3390/molecules26154525.
  • Sfragano, P. S.; Moro, G.; Polo, F.; Palchetti, I. The Role of Peptides in the Design of Electrochemical Biosensors for Clinical Diagnostics. Biosensors 2021, 11, 246. DOI:10.3390/bios11080246.
  • Ciaston, I.; Budziaszek, J.; Satala, D.; Potempa, B.; Fuchs, A.; Rapala-Kozik, M.; Mizgalska, D.; Dobosz, E.; Lamont, R. J.; Potempa, J.; Koziel, J. Proteolytic Activity-Independent Activation of the Immune Response by Gingipains from Porphyromonas gingivalis. mBio 2022, 13, e0378721. DOI:10.1128/mbio.03787-21.
  • Yue, K.; Yao, X. Prognostic Model Based on Telomere-Related Genes Predicts the Risk of Oral Squamous Cell Carcinoma. BMC Oral Health 2023, 23, 484. DOI:10.1186/s12903-023-03157-x.
  • Mori, K.; Sato, S.; Kodama, M.; Habu, M.; Takahashi, O.; Nishihara, T.; Tominaga, K.; Takenaka, S. Oral Cancer Diagnosis via a Ferrocenylnaphthalene Diimide-Based Electrochemical Telomerase Assay. Clin. Chem. 2013, 59, 289–295. DOI:10.1373/clinchem.2012.191569.
  • Hayakawa, M.; Sato, S.; Diala, I.; Kodama, M.; Tomoeda-Mori, K.; Haraguchi, K.; Tominaga, K.; Takenaka, S. Screening for Oral Cancer Using Electrochemical Telomerase Assay. Electroanalysis 2016, 28, 503–507. DOI:10.1002/elan.201500426.
  • Haraguchi, K.; Sato, S.; Habu, M.; Yada, N.; Hayakawa, M.; Takahashi, O.; Yoshioka, I.; Matsuo, K.; Tominaga, K.; Takenaka, S. Oral Cancer Screening Based on Methylation Frequency Detection in hTERT Gene Using Electrochemical Hybridization Assay via a Multi-Electrode Chip Coupled with Ferrocenylnaphthalene Diimide. Electroanalysis 2017, 29, 1596–1601. DOI:10.1002/elan.201700028.
  • Ramanavicius, S.; Ramanavicius, A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers 2020, 13, 49. DOI:10.3390/polym13010049.
  • German, N.; Ramanaviciene, A.; Ramanavicius, A. Dispersed Conducting Polymer Nanocomposites with Glucose Oxidase and Gold Nanoparticles for the Design of Enzymatic Glucose Biosensors. Polymers 2021, 13, 2173. DOI:10.3390/polym13132173.
  • Ramanavicius, S.; Ramanavicius, A. Charge Transfer and Biocompatibility Aspects in Conducting Polymer-Based Enzymatic Biosensors and Biofuel Cells. Nanomaterials 2021, 11, 371. DOI:10.3390/nano11020371.
  • Hashem, A.; Hossain, M. A. M.; Marlinda, A. R.; Al Mamun, M.; Sagadevan, S.; Shahnavaz, Z.; Simarani, K.; Johan, M. R. Nucleic Acid-Based Electrochemical Biosensors for Rapid Clinical Diagnosis: Advances, Challenges, and Opportunities. Crit. Rev. Clin. Lab. Sci. 2022, 59, 156–177. DOI:10.1080/10408363.2021.1997898.
  • Xing, W.; Li, Q.; Han, C.; Sun, D.; Zhang, Z.; Fang, X.; Guo, Y.; Ge, F.; Ding, W.; Luo, Z.; Zhang, L. Customization of Aptamer to Develop CRISPR/Cas12a-Derived Ultrasensitive Biosensor. Talanta 2023, 256, 124312. DOI:10.1016/j.talanta.2023.124312.
  • Wu, M.; Chen, Z.; Xie, Q.; Xiao, B.; Zhou, G.; Chen, G.; Bian, Z. One-Step Quantification of Salivary Exosomes Based on Combined Aptamer Recognition and Quantum Dot Signal Amplification. Biosens. Bioelectron. 2021, 171, 112733. DOI:10.1016/j.bios.2020.112733.
  • Mullegama, S. V.; Alberti, M. O.; Au, C.; Li, Y.; Toy, T.; Tomasian, V.; Xian, R. R. Nucleic Acid Extraction from Human Biological Samples. Methods Mol. Biol. 2019, 1897, 359–383. DOI:10.1007/978-1-4939-8935-5_30.
  • Mo, F.; Chen, M.; Meng, H.; Wu, J.; Fu, Y. A DNA Rolling Motor for Photoelectrochemical Biosensing of Oral Cancer Overexpressed 1. Sens. Actuators B Chem. 2020, 309, 127824. DOI:10.1016/j.snb.2020.127824.
  • Kongpeth, J.; Jampasa, S.; Chaumpluk, P.; Chailapakul, O.; Vilaivan, T. Immobilization-Free Electrochemical DNA Detection with Anthraquinone-Labeled Pyrrolidinyl Peptide Nucleic Acid Probe. Talanta 2016, 146, 318–325. DOI:10.1016/j.talanta.2015.08.059.
  • Ruffin, S.; Hung, I. A.; Koniges, U. M.; Levicky, R. Electrostatic Cycling of Hybridization Using Nonionic DNA Mimics. ACS Sens. 2017, 2, 892–896. DOI:10.1021/acssensors.7b00100.
  • Saucedo, N. M.; Gao, Y.; Tung, P.; Mulchandani, A. Lectin- and Saccharide-Functionalized Nano-Chemiresistor Arrays for Detection and Identification of Pathogenic Bacteria Infection. Biosensors 2018, 8, 63. DOI:10.3390/bios8030063.
  • Li, Z.; Ju, R.; Sekine, S.; Zhang, D.; Zhuang, S.; Yamaguchi, Y. All-in-One Microfluidic Device for On-site Diagnosis of Pathogens Based on an Integrated Continuous Flow PCR and Electrophoresis Biochip. Lab Chip 2019, 19, 2663–2668. DOI:10.1039/c9lc00305c.
  • Park, R.; Jeon, S.; Lee, J. W.; Jeong, J.; Kwon, Y. W.; Kim, S. H.; Jang, J.; Han, D.-W.; Hong, S. W. Mobile Point-of-Care Device Using Molecularly Imprinted Polymer-Based Chemosensors Targeting Interleukin-1β Biomarker. Biosensors 2023, 13, 1013. DOI:10.3390/bios13121013.
  • Wang, K.; Sun, Y.; Xu, W.; Zhang, W.; Zhang, F.; Qi, Y.; Zhang, Y.; Zhou, Q.; Dong, B.; Li, C. Non-enzymatic Electrochemical Detection of H2O2 by Assembly of CuO Nanoparticles and Black Phosphorus Nanosheets for Early Diagnosis of Periodontitis. Sens. Actuators B Chem. 2022, 355, 131298. DOI:10.1016/j.snb.2021.131298.
  • Zhang, D.; Wang, Y.; Jin, X.; Xiao, Q.; Huang, S. A Label-Free and Ultrasensitive Electrochemical Biosensor for Oral Cancer Overexpressed 1 Gene via Exonuclease III-Assisted Target Recycling and Dual Enzyme-Assisted Signal Amplification Strategies. Analyst 2022, 147, 2412–2424. DOI:10.1039/d2an00367h.
  • Hu, Y.; Chang, Y.; Chai, Y.; Yuan, R. An Electrochemical Biosensor for Detection of DNA Species Related to Oral Cancer Based on a Particular Host-Guest Recognition-Assisted Strategy for Signal Tag In Situ. J. Electrochem. Soc. 2018, 165, B289–B295. DOI:10.1149/2.0851807jes.
  • Tan, Y.; Wei, X.; Zhao, M.; Qiu, B.; Guo, L.; Lin, Z.; Yang, H.-H. Ultraselective Homogeneous Electrochemical Biosensor for DNA Species Related to Oral Cancer Based on Nicking Endonuclease Assisted Target Recycling Amplification. Anal. Chem. 2015, 87, 9204–9208. DOI:10.1021/acs.analchem.5b01470.
  • Wang, Z.; Zhang, J.; Guo, Y.; Wu, X.; Yang, W.; Xu, L.; Chen, J.; Fu, F. A Novel Electrically Magnetic-Controllable Electrochemical Biosensor for the Ultra Sensitive and Specific Detection of Attomolar Level Oral Cancer-Related microRNA. Biosens. Bioelectron. 2013, 45, 108–113. DOI:10.1016/j.bios.2013.02.007.
  • Li, T.; Yang, M. Electrochemical Sensor Utilizing Ferrocene Loaded Porous Polyelectrolyte Nanoparticles as Label for the Detection of Protein Biomarker IL-6. Sens. Actuators B Chem. 2011, 158, 361–365. DOI:10.1016/j.snb.2011.06.035.
  • Kumar, L. S. S.; Wang, X.; Hagen, J.; Naik, R.; Papautsky, I.; Heikenfeld, J. Label Free Nano-Aptasensor for Interleukin-6 in Protein-Dilute Bio Fluids Such as Sweat. Anal. Methods 2016, 8, 3440–3444. DOI:10.1039/C6AY00331A.
  • Pachauri, N.; Lakshmi, G. B. V. S.; Sri, S.; Gupta, P. K.; Solanki, P. R. Silver Molybdate Nanoparticles Based Immunosensor for the Non-Invasive Detection of Interleukin-8 Biomarker. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 113, 110911. DOI:10.1016/j.msec.2020.110911.
  • Vetrivel, C.; Sivarasan, G.; Durairaj, K.; Ragavendran, C.; Kamaraj, C.; Karthika, S.; Lo, H.-M. MoS2-ZnO Nanocomposite Mediated Immunosensor for Non-invasive Electrochemical Detection of IL8 Oral Tumor Biomarker. Diagnostics 2023, 13, 1464. DOI:10.3390/diagnostics13081464.
  • Aydın, M.; Aydın, E. B.; Sezgintürk, M. K. A Highly Selective Electrochemical Immunosensor Based on Conductive Carbon Black and Star PGMA Polymer Composite Material for IL-8 Biomarker Detection in Human Serum and Saliva. Biosens. Bioelectron. 2018, 117, 720–728. DOI:10.1016/j.bios.2018.07.010.
  • Pachauri, N.; Dave, K.; Dinda, A.; Solanki, P. R. Cubic CeO2 Implanted Reduced Graphene Oxide-Based Highly Sensitive Biosensor for Non-invasive Oral Cancer Biomarker Detection. J. Mater. Chem. B 2018, 6, 3000–3012. DOI:10.1039/c8tb00653a.
  • Kumar, S.; Panwar, S.; Kumar, S.; Augustine, S.; Malhotra, B. D. Biofunctionalized Nanostructured Yttria Modified Non-invasive Impedometric Biosensor for Efficient Detection of Oral Cancer. Nanomaterials 2019, 9, 1190. DOI:10.3390/nano9091190.
  • Kumar, S.; Ashish; Kumar, S.; Augustine, S.; Yadav, S.; Yadav, B. K.; Chauhan, R. P.; Dewan, A. K.; Malhotra, B. D. Effect of Brownian Motion on Reduced Agglomeration of Nanostructured Metal Oxide towards Development of Efficient Cancer Biosensor. Biosens. Bioelectron. 2018, 102, 247–255. DOI:10.1016/j.bios.2017.11.004.
  • Kumar, S.; Kumar, S.; Tiwari, S.; Augustine, S.; Srivastava, S.; Yadav, B. K.; Malhotra, B. D. Highly Sensitive Protein Functionalized Nanostructured Hafnium Oxide Based Biosensing Platform for Non-invasive Oral Cancer Detection. Sens. Actuators B Chem. 2016, 235, 1–10. DOI:10.1016/j.snb.2016.05.047.
  • Verma, D.; Yadav, S. K.; Kalkal, A.; Pradhan, R.; Packirisamy, G. An Ultrasensitive Electrochemical Immunosensor Comprising Green Synthesized α-Fe2O3NPs_rGO Nanocomposite for Determination of Oral Cancer. IEEE Sens. Lett. 2023, 7, 1–4. DOI:10.1109/LSENS.2023.3330915.
  • Ding, S.; Das, S. R.; Brownlee, B. J.; Parate, K.; Davis, T. M.; Stromberg, L. R.; Chan, E. K. L.; Katz, J.; Iverson, B. D.; Claussen, J. C. CIP2A Immunosensor Comprised of Vertically-Aligned Carbon Nanotube Interdigitated Electrodes towards Point-of-Care Oral Cancer Screening. Biosens. Bioelectron. 2018, 117, 68–74. DOI:10.1016/j.bios.2018.04.016.
  • Vijayaraghavan, P.; Wang, Y.-Y.; Palanisamy, S.; Lee, L.-Y.; Chen, Y.-K.; Tzou, S.-C.; Yuan, S.-S. F.; Wang, Y.-M. Hierarchical Ensembles of FeCo Metal-Organic Frameworks Reinforced Nickel Foam as an Impedimetric Sensor for Detection of IL-1RA in Human Samples. Chem. Eng. J. 2023, 458, 141444. DOI:10.1016/j.cej.2023.141444.
  • Lucena, R. P. S.; Frías, I. A. M.; Lucena‐Silva, N.; Andrade, C. A. S.; Oliveira, M. D. L. Impedimetric Genosensor Based on Graphene Nanoribbons for Detection and Identification of Oncogenic Types of Human Papillomavirus. J. Chem. Tech. Biotech. 2021, 96, 1496–1503. DOI:10.1002/jctb.6726.
  • Zhang, F.; Sun, J.; Shi, F.; Han, Q.; Shi, Y.; Yang, L.; Wang, K.; Dong, B.; Wang, L.; Xu, L. Nanometric Surface-Selective Regulation of Au/In2O3 Nanofibers as an Exhaled H2S Chemiresistor for Periodontitis Diagnosis. ACS Sens. 2022, 7, 3530–3539. DOI:10.1021/acssensors.2c01926.
  • Liu, Y.; Qv, W.; Ma, Y.; Zhang, Y.; Ding, C.; Chu, M.; Chen, F. The Interplay between Oral Microbes and Immune Responses. Front. Microbiol. 2022, 13, 1009018. DOI:10.3389/fmicb.2022.1009018.
  • Acharya, C.; Sahingur, S. E.; Bajaj, J. S. Microbiota, Cirrhosis, and the Emerging Oral-Gut-Liver Axis. JCI Insight 2017, 2, e94416. DOI:10.1172/jci.insight.94416.
  • Zhang, M.; Whiteley, M.; Lewin, G. R. Polymicrobial Interactions of Oral Microbiota: A Historical Review and Current Perspective. mBio 2022, 13, e0023522. DOI:10.1128/mbio.00235-22.
  • Hoyos-Nogués, M.; Brosel-Oliu, S.; Abramova, N.; Muñoz, F.-X.; Bratov, A.; Mas-Moruno, C.; Gil, F.-J. Impedimetric Antimicrobial Peptide-Based Sensor for the Early Detection of Periodontopathogenic Bacteria. Biosens. Bioelectron. 2016, 86, 377–385. DOI:10.1016/j.bios.2016.06.066.
  • Deusenbery, C.; Wang, Y.; Shukla, A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect. Dis. 2021, 7, 695–720. DOI:10.1021/acsinfecdis.0c00890.
  • Lillehoj, P. B.; Kaplan, C. W.; He, J.; Shi, W.; Ho, C.-M. Rapid, Electrical Impedance Detection of Bacterial Pathogens Using Immobilized Antimicrobial Peptides. J. Lab. Autom. 2014, 19, 42–49. DOI:10.1177/2211068213495207.
  • Lee, H.-K.; Kim, S. J.; Kim, Y. H.; Ko, Y.; Ji, S.; Park, J.-C. Odontogenic Ameloblast-Associated Protein (ODAM) in Gingival Crevicular Fluid for Site-Specific Diagnostic Value of Periodontitis: A Pilot Study. BMC Oral Health 2018, 18, 148. DOI:10.1186/s12903-018-0609-0.
  • Arias-Bujanda, N.; Regueira-Iglesias, A.; Balsa-Castro, C.; Nibali, L.; Donos, N.; Tomas, I. Accuracy of Single Molecular Biomarkers in Saliva for the Diagnosis of Periodontitis: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2020, 47, 2–18. DOI:10.1111/jcpe.13202.
  • Arias-Bujanda, N.; Regueira-Iglesias, A.; Blanco-Pintos, T.; Alonso-Sampedro, M.; Relvas, M.; Gonzalez-Peteiro, M. M.; Balsa-Castro, C.; Tomas, I. Diagnostic Accuracy of IL1 Beta in Saliva: The Development of Predictive Models for Estimating the Probability of the Occurrence of Periodontitis in Non-smokers and Smokers. J. Clin. Periodontol. 2020, 47, 702–714. DOI:10.1111/jcpe.13285.
  • Luo, X.; Jiang, Y.; Chen, F.; Wei, Z.; Qiu, Y.; Xu, H.; Tian, G.; Gong, W.; Yuan, Y.; Feng, H.; et al. ORAOV1-B Promotes OSCC Metastasis via the NF-κB-TNFα Loop. J. Dent. Res. 2021, 100, 858–867. DOI:10.1177/0022034521996339.
  • Yete, S.; Saranath, D. MicroRNAs in Oral Cancer: Biomarkers with Clinical Potential. Oral Oncol. 2020, 110, 105002. DOI:10.1016/j.oraloncology.2020.105002.
  • Naqvi, A. R.; Slots, J. Human and Herpesvirus microRNAs in Periodontal Disease. Periodontol. 2000 2021, 87, 325–339. DOI:10.1111/prd.12404.
  • Mehdipour, M.; Shahidi, M.; Manifar, S.; Jafari, S.; Abbas, F. M.; Barati, M.; Mortazavi, H.; Shirkhoda, M.; Farzanegan, A.; Rankohi, Z. E. Diagnostic and Prognostic Relevance of Salivary microRNA-21,-125a,-31 and-200a Levels in Patients with Oral Lichen Planus – A Short Report. Cell Oncol. 2018, 41, 329–334. DOI:10.1007/s13402-018-0372-x.
  • Senapati, S.; Slouka, Z.; Shah, S. S.; Behura, S. K.; Shi, Z.; Stack, M. S.; Severson, D. W.; Chang, H.-C. An Ion-Exchange Nanomembrane Sensor for Detection of Nucleic Acids Using a Surface Charge Inversion Phenomenon. Biosens. Bioelectron. 2014, 60, 92–100. DOI:10.1016/j.bios.2014.04.008.
  • Hasanzadeh, M.; Shadjou, N.; de la Guardia, M. Aptamer-Based Assay of Biomolecules: Recent Advances in Electro-Analytical Approach. TRAC Trends Anal. Chem. 2017, 89, 119–132. DOI:10.1016/j.trac.2017.02.003.
  • Goldoni, R.; Farronato, M.; Connelly, S. T.; Tartaglia, G. M.; Yeo, W.-H. Recent Advances in Graphene-Based Nanobiosensors for Salivary Biomarker Detection. Biosens. Bioelectron. 2021, 171, 112723. DOI:10.1016/j.bios.2020.112723.
  • Tiwari, S.; Gupta, P. K.; Bagbi, Y.; Sarkar, T.; Solanki, P. R. L-Cysteine Capped Lanthanum Hydroxide Nanostructures for Non-Invasive Detection of Oral Cancer Biomarker. Biosens. Bioelectron. 2017, 89, 1042–1052. DOI:10.1016/j.bios.2016.10.020.
  • Khijmatgar, S.; Yong, J.; Rübsamen, N.; Lorusso, F.; Rai, P.; Cenzato, N.; Gaffuri, F.; Del Fabbro, M.; Tartaglia, G. M. Salivary Biomarkers for Early Detection of Oral Squamous Cell Carcinoma (OSCC) and Head/Neck Squamous Cell Carcinoma (HNSCC): A Systematic Review and Network Meta-Analysis. JPN Dent. Sci. Rev. 2024, 60, 32–39. DOI:10.1016/j.jdsr.2023.10.003.
  • Hofmann, L.; Abou Kors, T.; Ezić, J.; Niesler, B.; Röth, R.; Ludwig, S.; Laban, S.; Schuler, P. J.; Hoffmann, T. K.; Brunner, C.; et al. Comparison of Plasma- and Saliva-Derived Exosomal miRNA Profiles Reveals Diagnostic Potential in Head and Neck Cancer. Front. Cell Dev. Biol. 2022, 10, 971596. DOI:10.3389/fcell.2022.971596.
  • Patel, A.; Patel, S.; Patel, P.; Mandlik, D.; Patel, K.; Tanavde, V. Salivary Exosomal miRNA-1307-5p Predicts Disease Aggressiveness and Poor Prognosis in Oral Squamous Cell Carcinoma Patients. Int. J. Mol. Sci. 2022, 23, 10639. DOI:10.3390/ijms231810639.
  • Yuan, S.-S. F.; Wang, Y.-M.; Chan, L.-P.; Hung, A. C.; Nguyen, H. D. H.; Chen, Y.-K.; Hu, S. C.-S.; Lo, S.; Wang, Y.-Y. IL-1RA Promotes Oral Squamous Cell Carcinoma Malignancy through Mitochondrial Metabolism-Mediated EGFR/JNK/SOX2 Pathway. J. Transl. Med. 2023, 21, 473. DOI:10.1186/s12967-023-04343-9.
  • Wang, X.; Wang, Y.; Ying, Y. Recent Advances in Sensing Applications of Metal Nanoparticle/Metaleorganic Framework Composites. TRAC Trends Anal. Chem. 2021, 143, 116395. DOI:10.1016/j.trac.2021.116395.
  • Ramanavicius, S.; Jagminas, A.; Ramanavicius, A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers 2021, 13, 974. DOI:10.3390/polym13060974.
  • Ramanavicius, S.; Ramanavicius, A. Development of Molecularly Imprinted Polymer Based Phase Boundaries for Sensors Design (Review). Adv. Colloid Interface Sci. 2022, 305, 102693. DOI:10.1016/j.cis.2022.102693.
  • Yete, S.; D'Souza, W.; Saranath, D. High-Risk Human Papillomavirus in Oral Cancer: Clinical Implications. Oncology 2018, 94, 133–141. DOI:10.1159/000485322.
  • Chaibun, T.; Thanasapburachot, P.; Chatchawal, P.; Yin, L. S.; Jiaranuchart, S.; Jearanaikoon, P.; Promptmas, C.; Buajeeb, W.; Lertanantawong, B. A Multianalyte Electrochemical Genosensor for the Detection of High-Risk HPV Genotypes in Oral and Cervical Cancers. Biosensors 2022, 12, 290. DOI:10.3390/bios12050290.
  • Monedeiro, F.; Monedeiro-Milanowski, M.; Zmysłowski, H.; De Martinis, B. S.; Buszewski, B. Evaluation of Salivary VOC Profile Composition Directed towards Oral Cancer and Oral Lesion Assessment. Clin. Oral Investig. 2021, 25, 4415–4430. DOI:10.1007/s00784-020-03754-y.
  • Mohamed, N.; van de Goor, R.; El-Sheikh, M.; Elrayah, O.; Osman, T.; Nginamau, E. S.; Johannessen, A. C.; Suleiman, A.; Costea, D. E.; Kross, K. W. Feasibility of a Portable Electronic Nose for Detection of Oral Squamous Cell Carcinoma in Sudan. Healthcare 2021, 9, 534. DOI:10.3390/healthcare9050534.
  • Sharma, A.; Kumar, R.; Varadwaj, P. Smelling the Disease: Diagnostic Potential of Breath Analysis. Mol. Diagn. Ther. 2023, 27, 321–347. DOI:10.1007/s40291-023-00640-7.
  • Ye, W.; Zhang, Y.; He, M.; Zhu, C.; Feng, X.-P. Relationship of Tongue Coating Microbiome on Volatile Sulfur Compounds in Healthy and Halitosis Adults. J. Breath Res. 2020, 14, 016005. DOI:10.1088/1752-7163/ab47b4.
  • Foo, L. H.; Balan, P.; Pang, L. M.; Laine, M. L.; Seneviratne, C. J. Role of the Oral Microbiome, Metabolic Pathways, and Novel Diagnostic Tools in Intra-Oral Halitosis: A Comprehensive Update. Crit. Rev. Microbiol. 2021, 47, 359–375. DOI:10.1080/1040841x.2021.1888867.
  • Wang, C.; Jiang, L.; Wang, J.; Liu, F.; You, R.; Lv, S.; Yang, Z.; He, J.; Liu, A.; Yan, X. Mixed Potential Type H2S Sensor Based on Stabilized Zirconia and a Co(2)SnO(4) Sensing Electrode for Halitosis Monitoring. Sens. Actuators B Chem. 2020, 321, 128587. DOI:10.1016/j.snb.2020.128587.
  • Lim, K.; Jo, Y.-M.; Kim, S.; Yoon, J.-W.; Jeong, S.-Y.; Kim, J.-S.; Choi, H. J.; Cho, Y.; Park, J.; Jeong, Y. W.; Lee, J.-H. Selective Dual Detection of Hydrogen Sulfide and Methyl Mercaptan Using CuO/CuFe2O4 Nanopattern Chemiresistors. Sens. Actuators B Chem. 2021, 348, 130665. DOI:10.1016/j.snb.2021.130665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.