43
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Suitability and Applications of Total-Reflection X-Ray Fluorescence Spectrometry for Analytical Characterization of Nuclear Materials

&

References

  • Setty, D. S.; Kapoor, K.; Saibaba, N. Nuclear Fuel Cycle-Developments and Challenges in Fuel Fabrication Technology in India. Prog. Nucl. Energy 2017, 101, 100–117. DOI: 10.1016/j.pnucene.2017.03.005.
  • Kanrar, B.; Sanyal, K.; Sarkar, A.; Pai, R. V. An X-Ray Fluorescence and Machine Learning Based Methodology for the Direct Non-Destructive Compositional Analysis of (Th 1− x U x) O 2 Fuel Pellets. J. Anal. At. Spectrom. 2023, 38, 1841–1850. DOI: 10.1039/D3JA00158J.
  • Kanrar, B.; Sanyal, K. Assessment of Matrix Tolerance for the Direct Trace Elemental Analysis in Uranium by X-Ray Fluorescence Technique Using Micro Focussed Beam. Spectrochim. Acta, Part B 2022, 190, 106389. DOI: 10.1016/j.sab.2022.106389.
  • Kanrar, B.; Sanyal, K.; Pai, R. V. A Green Analytical Approach for the Direct Non-Destructive Compositional Analysis of (Th, U) O 2 Fuel Pellets by the X-Ray Fluorescence Technique Using Single Universal Calibration. J. Anal. At. Spectrom. 2022, 37, 741–749. DOI: 10.1039/D2JA00005A.
  • Sanyal, K.; Kanrar, B.; Suresh, S. S.; Dhara, S. A Highly Precise Micro-Analytical XRF Method for Compositional Characterization of Fast Breeder Reactor Fuels. J. Anal. At. Spectrom. 2022, 37, 130–138. DOI: 10.1039/D1JA00306B.
  • Sanyal, K.; Dhara, S. A Simple Microanalytical Method for Trace Elemental Determination in Plutonium Samples Using Energy Dispersive X-Ray Fluorescence. Spectrochim. Acta, Part B 2020, 169, 105897. DOI: 10.1016/j.sab.2020.105897.
  • Scapin, M.; Salvador, V.; Cotrim, M.; Pires, M.; Sato, I. Uncertainty Measurement Evaluation of WDXRF and EDXRF Techniques for the Si and U Total Determination in U 3 Si 2 Nuclear Fuel. J. Radioanal. Nucl. Chem. 2011, 287, 807–811. DOI: 10.1007/s10967-010-0897-6.
  • Klockenkämper, R.; Von Bohlen, A. Total-Reflection X-Ray Fluorescence Analysis and Related Methods; John Wiley & Sons: Hoboken, New Jersey, 2014.
  • Dhara, S. Analytical characterization of technologically important materials using TXRF and EDXRF, Ph.D. Thesis, Homi Bhabha National Institute, Mumbai, 2012. http://www.hbni.ac.in/phdthesis/chem/CHEM01200604029.pdf.
  • Kunimura, S.; Kawai, J. Portable Total Reflection X-Ray Fluorescence Spectrometer for Nanogram Cr Detection Limit. Anal. Chem. 2007, 79, 2593–2595. DOI: 10.1021/ac062279t.
  • Kunimura, S.; Ohmori, H. A Portable Total Reflection X-Ray Fluorescence Spectrometer with a Diamond-like Carbon Coated X-Ray Reflector. Analyst 2012, 137, 312–314. DOI: 10.1039/c1an15389g.
  • Maltsev, A. S.; Ivanov, A. V.; Pashkova, G. V.; Marfin, A. E.; Bishaev, Y. A. New Prospects to the Multi-Elemental Analysis of Single Microcrystal of Apatite by Total-Reflection X-Ray Fluorescence Spectrometry. Spectrochim. Acta, Part B 2021, 184, 106281. DOI: 10.1016/j.sab.2021.106281.
  • Szlachta, M.; Neitola, R.; Peräniemi, S.; Vepsäläinen, J. Effective Separation of Uranium from Mine Process Effluents Using Chitosan as a Recyclable Natural Adsorbent. Sep. Purif. Technol. 2020, 253, 117493. DOI: 10.1016/j.seppur.2020.117493.
  • Nurhaini, F. F.; Lestiani, D. D.; Syahfitri, W. Y. N.; Kusmartini, I.; Sari, D. K.; Kurniawati, S.; Santoso, M. Determination of Nutrient and Toxic Elements in Food Reference Materials by Suspension Preparation and TXRF Analysis. IFRJ. 2023, 30, 463–471. DOI: 10.47836/ifrj.30.2.16.
  • Matsuyama, T.; Izumoto, Y.; Ishii, K.; Sakai, Y.; Yoshii, H. Development of Methods to Evaluate Several Levels of Uranium Concentrations in Drainage Water Using Total Reflection x-Ray Fluorescence Technique. Front. Chem. 2019, 7, 152. DOI: 10.3389/fchem.2019.00152.
  • Wobrauschek, P.; Prost, J.; Ingerle, D.; Kregsamer, P.; Misra, N. L.; Streli, C. A Novel Vacuum Spectrometer for Total Reflection x-Ray Fluorescence Analysis with Two Exchangeable Low Power x-Ray Sources for the Analysis of Low, Medium, and High Z Elements in Sequence. Rev. Sci. Instrum. 2015, 86, 083105. DOI: 10.1063/1.4928499.
  • Sanyal, K.; Kanrar, B.; Dhara, S.; Misra, N. L.; Wobrauschek, P.; Streli, C. Results from a New Low Z-High Z TXRF Spectrometer. In: Advances in X-Ray Analysis: JCPDS-International Centre for Diffraction Data 2016, 2015; pp 125–143.
  • Terzano, R.; Denecke, M. A.; Falkenberg, G.; Miller, B.; Paterson, D.; Janssens, K. Recent Advances in Analysis of Trace Elements in Environmental Samples by X-Ray Based Techniques (IUPAC Technical Report). Pure Appl. Chem. 2019, 91, 1029–1063. DOI: 10.1515/pac-2018-0605.
  • Marguí, E.; Queralt, I.; Andrey, D.; Perring, L. Analytical Potential of Total Reflection X-Ray Fluorescence (TXRF) Instrumentation for Simple Determination of Major and Trace Elements in Milk Powder Samples. Food Chem. 2022, 383, 132590. DOI: 10.1016/j.foodchem.2022.132590.
  • Varga, I.; Rierpl, E.; Tusai, A. Comparison of Slurry Preparation and Microwave Digestion of Freshwater Algae for Multi-Element Analysis by Total Reflection X-Ray Fluorescence Spectrometry. J. Anal. At. Spectrom. 1999, 14, 881–883. DOI: 10.1039/a809028i.
  • Schmeling, M. Total Reflection X-Ray Fluorescence. Phys. Sci. Rev. 2019, 4, 20170161. DOI: 10.1515/psr-2017-0161.
  • Pahlke, S.; Fabry, L.; Kotz, L.; Mantler, C.; Ehmann, T. Determination of Ultra Trace Contaminants on Silicon Wafer Surfaces Using Total-Reflection X-Ray Fluorescence TXRF ‘State-of-the-Art’. Spectrochim. Acta, Part B 2001, 56, 2261–2274. DOI: 10.1016/S0584-8547(01)00312-3.
  • Klockenkämper, R.; von Bohlen, A. Survey of Sampling Techniques for Solids Suitable for Microanalysis by Total-Reflection X-Ray Fluorescence Spectrometry. J. Anal. At. Spectrom 1999, 14, 571–576. DOI: 10.1039/A807693F.
  • Esaka, F.; Esaka, K. T.; Magara, M.; Sakurai, S.; Usuda, S.; Watanabe, K. Single Particle Transfer for Quantitative Analysis with Total-Reflection X-Ray Fluorescence Spectrometry. Nucl. Instrum. Methods Phys. Res, Sect. B 2006, 251, 218–222. DOI: 10.1016/j.nimb.2006.05.030.
  • Kämper, S. B.; Bohlen, A.; Klockenkämper, R.; Quentmeier, A.; Klockow, D. Microanalysis of Solid Samples by Laser Ablation and Total Reflection X-Ray Fluorescence. J. Anal. At. Spectrom 1996, 11, 537–541. DOI: 10.1039/JA9961100537.
  • Yamagami, M.; Ikeshita, A.; Onizuka, Y.; Kojima, S.; Yamada, T. Development of Vapor Phase Decomposition-Total-Reflection X-Ray Fluorescence Spectrometer. Spectrochim. Acta, Part B 2003, 58, 2079–2084. DOI: 10.1016/S0584-8547(03)00227-1.
  • Klockenkämper, R.; Von Bohlen, A. Elemental Analysis of Environmental Samples by Total Reflection X‐Ray Fluorescence: A Review. X-Ray Spectrom. 1996, 25, 156–162. DOI: 10.1002/(SICI)1097-4539(199607)25:4<156::AID-XRS154>3.0.CO;2-3.
  • Cherkashina, T. Y.; Panteeva, S.; Pashkova, G. V. Applicability of Direct Total Reflection X-Ray Fluorescence Spectrometry for Multielement Analysis of Geological and Environmental Objects. Spectrochim. Acta, Part B 2014, 99, 59–66. DOI: 10.1016/j.sab.2014.05.013.
  • Dhara, S.; Misra, N. L. Elemental Characterization of Nuclear Materials Using Total Reflection X-Ray Fluorescence Spectrometry. TrAC, Trends Anal. Chem. 2019, 116, 31–43. DOI: 10.1016/j.trac.2019.04.017.
  • Sinha, R. K.; Kakodkar, A. Design and Development of the AHWR—the Indian Thorium Fuelled Innovative Nuclear Reactor. Nucl. Eng. Des. 2006, 236, 683–700. DOI: 10.1016/j.nucengdes.2005.09.026.
  • Raj, B.; Kamath, H. S.; Natarajan, R.; Vasudeva Rao, P. R. A Perspective on Fast Reactor Fuel Cycle in India. Prog. Nucl. Energy 2005, 47, 369–379. DOI: 10.1016/j.pnucene.2005.05.036.
  • Carmack, W. J.; Porter, D. L.; Chang, Y. I.; Hayes, S. L.; Meyer, M. K.; Burkes, D. E.; Lee, C. B.; Mizuno, T.; Delage, F.; Somers, J. Metallic Fuels for Advanced Reactors. J. Nucl. Mater. 2009, 392, 139–150. DOI: 10.1016/j.jnucmat.2009.03.007.
  • Ramaniah, M. V. Analytical Chemistry of Fast Reactor fuels-A Review. Pure and Appl. Chem. 1982, 54, 889–908. DOI: 10.1351/pac198254040889.
  • Nair, P. R.; Xavier, M.; Aggarwal, S. K. A Robust Biamperometric Titration Methodology for the Determination of Uranium by Ti (III) Reduction in the Presence of Plutonium. Radiochimica Acta 2009, 97, 419–422. DOI: 10.1524/ract.2009.1623.
  • Kamat, J. V.; Gamare, J. S.; Jayachandran, K.; Aggarwal, S. K. Biamperometric Methodology for Sequential Determination of Thorium and Uranium. J. Radioanal. Nucl. Chem. 2013, 295, 1431–1434. DOI: 10.1007/s10967-012-2283-z.
  • Jayachandran, K.; Gamare, J. S.; Nair, P. R.; Xavier, M.; Aggarwal, S. K. A Novel Biamperometric Methodology for Thorium Determination by EDTA Complexometric Titration. Radiochimica Acta 2012, 100, 311–314. DOI: 10.1524/ract.2012.1920.
  • Dhara, S.; Misra, N. L.; Mudher, K. D. S.; Aggarwal, S. K. Bulk Determination of Uranium and Thorium in Presence of Each Other by Total Reflection X-Ray Fluorescence Spectrometry. Spectrochim. Acta, Part B 2007, 62, 82–85. DOI: 10.1016/j.sab.2006.12.012.
  • Dhara, S.; Prabhat, P.; Misra, N. Direct Compositional Characterization of (U, Th) O2 Powders, Microspheres, and Pellets Using TXRF. Anal. Chem. 2015, 87, 10262–10267. DOI: 10.1021/acs.analchem.5b01824.
  • Pandey, A.; Dhara, S.; Khan, F. A.; Kelkar, A.; Yadav, R.; Kumar, P.; Sathe, D. B.; Bhatt, R. B.; Behere, P. G. Direct Determination of Uranium in Sintered Deeply Depleted Uranium Oxide Pellets by Wavelength Dispersive X-Ray Fluorescence Spectrometry. J. Radioanal. Nucl. Chem. 2020, 323, 275–281. DOI: 10.1007/s10967-019-06869-z.
  • Dhara, S.; Sanyal, K.; Paul, S.; Misra, N. L. A Direct and Safe Method for Plutonium Determination Using Total Reflection X-Ray Fluorescence Spectrometry. J. Anal. At. Spectrom. 2019, 34, 366–374. DOI: 10.1039/C8JA00351C.
  • Sanyal, K. Some Studies for Trace Elemental Characterization of Technological and Environmental Samples Using TXRF. In: Fuel Chemistry Division; Mumbai: Homi Bhabha National Institute, 2018; p 216. DOI: http://hdl.handle.net/10603/308253.
  • Misra, N. L.; Mudher, K. D. S.; Adya, V. C.; Rajeswari, B.; Venugopal, V. Determination of Trace Elements in Uranium Oxide by Total Reflection X-Ray Fluorescence Spectrometry. Spectrochim. Acta, Part B 2005, 60, 834–840. DOI: 10.1016/j.sab.2005.05.023.
  • Dhara, S.; Misra, N. L.; Aggarwal, S. K. Determination of Sulphur in Uranium Matrix by Total Reflection X-Ray Fluorescence Spectrometry. Spectrochim. Acta, Part B 2008, 63, 1395–1398. DOI: 10.1016/j.sab.2008.10.033.
  • Kanrar, B.; Sanyal, K.; Misra, N. L. Trace Element Determinations in Uranium by Total Reflection X‐Ray Fluorescence Spectrometry Using Polychromatic X‐Ray Excitation. X-Ray Spectrom. 2017, 46, 277–282. DOI: 10.1002/xrs.2771.
  • Bukowiecki, N.; Lienemann, P.; Zwicky, C. N.; Furger, M.; Richard, A.; Falkenberg, G.; Rickers, K.; Grolimund, D.; Borca, C.; Hill, M.; et al. X-Ray Fluorescence Spectrometry for High Throughput Analysis of Atmospheric Aerosol Samples: The Benefits of Synchrotron X-Rays. Spectrochim. Acta, Part B 2008, 63, 929–938. DOI: 10.1016/j.sab.2008.05.006.
  • Simabuco, S. M.; Vázquez, C.; Boeykens, S.; Barroso, R. Total Reflection by Synchrotron Radiation: Trace Determination in Nuclear Materials. X‐Ray Spectrometry 2002, 31, 167–172. DOI: 10.1002/xrs.540.
  • Dhara, S.; Misra, N. L.; Thakur, U. K.; Shah, D.; Sawant, R. M.; Ramakumar, K. L.; Aggarwal, S. K. A Total Reflection X‐Ray Fluorescence Method for the Determination of Chlorine at Trace Levels in Nuclear Materials without Sample Dissolution. X‐Ray Spectrometry 2012, 41, 316–320. DOI: 10.1002/xrs.2400.
  • Misra, N. L.; Dhara, S.; Óvári, M.; Záray, G.; Aggarwal, S. K.; Varga, I. Determination of Low Atomic Number Elements at Trace Levels in Uranium Matrix Using Vacuum Chamber Total Reflection X-Ray Fluorescence. Spectrochim. Acta, Part B 2010, 65, 457–460. DOI: 10.1016/j.sab.2010.02.008.
  • Dhara, S.; Misra, N. L.; Aggarwal, S. K.; Ingerle, D.; Wobrauschek, P.; Streli, C. Determinations of Low Atomic Number Elements in Real Uranium Oxide Samples Using Vacuum Chamber Total Reflection x‐Ray Fluorescence. X-Ray Spectrom. 2014, 43, 108–111. DOI: 10.1002/xrs.2523.
  • Sanyal, K.; Dhara, S.; Misra, N. L. Improved Approach for the Determination of Low‐Z Elements in Uranium Samples Using a Vacuum Chamber TXRF Spectrometer. X‐Ray Spectrometry 2017, 46, 442–447. DOI: 10.1002/xrs.2793.
  • Taylor, D. M. Environmental Plutonium in Humans. Appl. Radiat. Isot. 1995, 46, 1245–1252. DOI: 10.1016/0969-8043(95)00167-c.
  • Xu, N.; Gallimore, D.; Lujan, E. Garduno, K.; Walker, L.; Taylor, F.; Thompson, P.; Tandon, L. Plutonium oxalate precipitation for trace elemental determination in plutonium materials. J Radioanal. Nucl. Chem. 2016, 307, 1203–1213. DOI: 10.1007/s10967-015-4218-y.
  • Sanyal, K.; Dhara, S.; Misra, N. L. Direct Multielemental Trace Determinations in Plutonium Samples by Total Reflection X-Ray Fluorescence Spectrometry Using a Very Small Sample Amount. Anal. Chem. 2018, 90, 11070–11077. DOI: 10.1021/acs.analchem.8b02917.
  • Misra, N. L.; Dhara, S.; Adya, V. C.; Godbole, S. V.; Mudher, K. D. S.; Aggarwal, S. K. Trace Element Determination in Thorium Oxide Using Total Reflection X-Ray Fluorescence Spectrometry. Spectrochim. Acta, Part B 2008, 63, 81–85. DOI: 10.1016/j.sab.2007.11.021.
  • Picó, Y.; Fernández, M.; Ruiz, M. J.; Font, G. Current Trends in Solid-Phase-Based Extraction Techniques for the Determination of Pesticides in Food and Environment. J. Biochem. Biophys. Methods. 2007, 70, 117–131. DOI: 10.1016/j.jbbm.2006.10.010.
  • Rao, T. P.; Daniel, S.; Gladis, J. M. Tailored Materials for Preconcentration or Separation of Metals by Ion-Imprinted Polymers for Solid-Phase Extraction (IIP-SPE). TrAC, Trends Anal. Chem. 2004, 23, 28–35. DOI: 10.1016/S0165-9936(04)00106-2.
  • Żwir-Ferenc, A.; Biziuk, M. Solid Phase Extraction Technique–Trends, Opportunities and Applications. Polish J. Environ. Stud. 2006, 15, 677–690.
  • Saha, A.; Sanyal, K.; Rawat, N.; Deb, S. B.; Saxena, M. K.; Tomar, B. S. Selective Micellar Extraction of Ultratrace Levels of Uranium in Aqueous Samples by Task Specific Ionic Liquid Followed by Its Detection Employing Total Reflection X-Ray Fluorescence Spectrometry. Anal. Chem. 2017, 89, 10422–10430. DOI: 10.1021/acs.analchem.7b02427.
  • Sanyal, K.; Chappa, S.; Pathak, N.; Pandey, A. K.; Misra, N. L. Trace Element Determinations in Uranium by Total Reflection X-Ray Fluorescence Spectrometry Using a Newly Developed Polymer Resin for Major Matrix Separation. Spectrochim. Acta, Part B 2018, 150, 18–25. DOI: 10.1016/j.sab.2018.09.007.
  • Baron, D.; Hallstadius, L.; Kulacsy, K.; Largenton, R.; Noirot, J. Fuel Performance of Light Water Reactors (Uranium Oxide and MOX). In Comprehensive nuclear materials. Konings, R. J. M., and Stoller, R. E., Eds.; Elsevier: Oxford, 2020, 35–71.
  • Suman, S. Burst Criterion for Indian PHWR Fuel Cladding under Simulated Loss-of-Coolant Accident. Nuclear Engin. Technol. 2019, 51, 1525–1531. DOI: 10.1016/j.net.2019.04.004.
  • Tateishi, Y. Development of Long Life FBR Fuels with Particular Emphasis on Cladding Material Improvement and Fuel Fabrication. J. Nucl. Sci. Technol. 1989, 26, 132–136. DOI: 10.1080/18811248.1989.9734278.
  • Sanyal, K.; Dhara, S.; Sanjay Kumar, S.; Misra, N. L.; Mollick, P. K.; Rao, P. T.; Venugopalan, R.; Pai, R. V.; Kumar, N.; Mukerjee, S. K.; et al. Application of TXRF for Burn Leach Test of TRISO Coated UO 2 Particles. J. Radioanal. Nucl. Chem. 2014, 302, 1357–1361. DOI: 10.1007/s10967-014-3593-0.
  • Dulera, I. V.; Sinha, R. K. High Temperature Reactors. J. Nucl. Mater. 2008, 383, 183–188. DOI: 10.1016/j.jnucmat.2008.08.056.
  • Choudhuri, G.; Srivastava, D.; Gurumurthy, K. R.; Shah, B. K. Optimization of Stress Relief Heat Treatment of PHWR Pressure Tubes (Zr–2.5 Nb Alloy). J. Nucl. Mater. 2008, 383, 178–182. DOI: 10.1016/j.jnucmat.2008.08.058.
  • Northwood, D. O. The Development and Applications of Zirconium Alloys. Mater. Design 1985, 6, 58–70. DOI: 10.1016/0261-3069(85)90165-7.
  • Manjusha, R.; Reddy, M.; Shekhar, R.; Jaikumar, S. Determination of Major to Trace Level Elements in Zircaloys by Electrolyte Cathode Discharge Atomic Emission Spectrometry Using Formic Acid. J. Anal. At. Spectrom. 2013, 28, 1932–1939. DOI: 10.1039/c3ja50202c.
  • Sanyal, K.; Kanrar, B.; Dhara, S.; Sibilia, M.; Sengupta, A.; Karydas, A. G.; Mishra, N. L. Direct Non-Destructive Total Reflection X-Ray Fluorescence Elemental Determinations in Zirconium Alloy Samples. J. Synchrotron Radiat. 2020, 27, 1253–1261. DOI: 10.1107/S1600577520009364.
  • Hu, G.; Zhang, H.; Liu, Q. Review on Sensors to Measure Control Rod Position for Nuclear Reactor. Ann. Nucl. Energy 2020, 144, 107485. DOI: 10.1016/j.anucene.2020.107485.
  • Petti, D. A. Silver-Indium-Cadmium Control Rod Behavior in Severe Reactor Accidents. Nucl. Technol. 1989, 84, 128–151. DOI: 10.13182/NT89-A34183.
  • Gebhardt, O.; Gavillet, D. SIMS Imaging Analyses of in-Reactor Irradiated Boron Carbide Control Rod Samples. J. Nucl. Mater. 2000, 279, 368–371. DOI: 10.1016/S0022-3115(00)00003-9.
  • Spink, D. R.; Schemel, J. H. The Development of Rare-Earth Pyrohafnates for Power Reactor Control-Rod Materials. J. Nucl. Mater. 1973, 49, 1–9. DOI: 10.1016/0022-3115(73)90056-1.
  • Yuan, J.; Feng, S.; Cui, J.; Sun, S.; Yu, A.; Chang, Y. Direct Determination of Metallic Impurities in Nuclear-Grade Boron Carbide by Slurry Sampling Total Reflection X-Ray Fluorescence Spectrometry and ICP Atomic Emission Spectrometry Subsequent to Ultra-High-Pressure Sample Digestion. J. Iran. Chem. Soc. 2022, 19, 589–597. DOI: 10.1007/s13738-021-02332-7.
  • Klockenkämper, R.; von Bohlen, A. Determination of the Critical Thickness and the Sensitivity for Thin-Film Analysis by Total Reflection X-Ray Fluorescence Spectrometry. Spectrochim. Acta, Part B 1989, 44, 461–469. DOI: 10.1016/0584-8547(89)80051-5.
  • Keller, H. W.; Shallenberger, J. M.; Hollein, D. A.; Hott, A. C. Development of Hafnium and Comparison with Other Pressurized Water Reactor Control Rod Materials. Nucl. Technol. 1982, 59, 476–482. DOI: 10.13182/NT82-A33005.
  • Joshi, J. M.; Pandey, G.; Sanyal, K.; Govalkar, S.; Renjith, A. U.; Mishra, N. L.; Dhara, S. Compositional Characterization of Hafnium Recovered from Zirconium Purification Process Using Total Reflection X-Ray Fluorescence. Spectrochim. Acta, Part B 2021, 182, 106235. DOI: 10.1016/j.sab.2021.106235.
  • Bajaj, S. S.; Gore, A. R. The Indian PHWR. Nucl. Eng. Des. 2006, 236, 701–722. DOI: 10.1016/j.nucengdes.2005.09.028.
  • Ghosh, M.; Chavan, T. A.; Reddy, G. L. N.; Devi P.s, R.; Kumar, S.; Swain, K. K. Determination of Impurities in Graphite Using Proton Induced Gamma Ray Emission, Total Reflection X-Ray Fluorescence and Instrumental Neutron Activation Analysis. Anal. Chem. Lett. 2022, 12, 437–450. DOI: 10.1080/22297928.2022.2108722.
  • Dhara, S.; Sanjay Kumar, S.; Misra, N. L.; Aggarwal, S. K. TXRF Determination of Indium at Ultra Trace Levels in Heavy Water Samples Using in K α as Analytical Line and Continuum Excitation. J. Radioanal. Nucl. Chem. 2015, 306, 231–235. DOI: 10.1007/s10967-015-4180-8.
  • Grønvold, F. High-Temperature X-Ray Study of Uranium Oxides in the UO2― U3O8 Region. J. Inorg. Nucl. Chem. 1955, 1, 357–370. DOI: 10.1016/0022-1902(55)80046-2.
  • Ohmichi, T.; Fukushima, S.; Maeda, A.; Watanabe, H. On the Relation between Lattice Parameter and O/M Ratio for Uranium Dioxide-Trivalent Rare Earth Oxide Solid Solution. J. Nucl. Mater. 1981, 102, 40–46. DOI: 10.1016/0022-3115(81)90544-4.
  • Viswanathan, R. Fuel Clad Chemical Interactions in Fast Reactor MOX Fuels. J. Nucl. Mater. 2014, 444, 101–111. DOI: 10.1016/j.jnucmat.2013.09.044.
  • Matsumoto, T.; Arima, T.; Inagaki, Y.; Idemitsu, K.; Kato, M.; Uchida, T. Investigation of O/M Ratio Effect on Thermal Conductivity of Oxide Nuclear Fuels by Non-Equilibrium Molecular Dynamics Calculation. J. Nucl. Mater. 2013, 440, 580–585. DOI: 10.1016/j.jnucmat.2013.04.019.
  • Misra, N. L.; Lahiri, D.; Singh Mudher, K. D.; Olivi, L.; Sharma, S. M. XANES Study on Novel Mixed Valent A2U4O12 (a = K, Rb or Tl) Uranates. X‐Ray Spectrometry: An Int. J. 2008, 37, 215–218. DOI: 10.1002/xrs.1039.
  • Abe, Y.; Iizawa, Y.; Terada, Y.; Adachi, K.; Igarashi, Y.; Nakai, I. Detection of Uranium and Chemical State Analysis of Individual Radioactive Microparticles Emitted from the Fukushima Nuclear Accident Using Multiple Synchrotron Radiation X-Ray Analyses. Anal. Chem. 2014, 86, 8521–8525. DOI: 10.1021/ac501998d.
  • Sanyal, K.; Khooha, A.; Das, G.; Tiwari, M. K.; Misra, N. L. Direct Determination of Oxidation States of Uranium in Mixed-Valent Uranium Oxides Using Total Reflection X-Ray Fluorescence X-Ray Absorption near-Edge Spectroscopy. Anal. Chem. 2017, 89, 871–876. DOI: 10.1021/acs.analchem.6b03945.
  • Tiwari, M. K.; Gupta, P.; Sinha, A. K.; Kane, S. R.; Singh, A. K.; Garg, S. R.; Garg, C. K.; Lodha, G. S.; Deb, S. K. A Microfocus X-Ray Fluorescence Beamline at Indus-2 Synchrotron Radiation Facility. J. Synchrotron Radiat. 2013, 20, 386–389. DOI: 10.1107/S0909049513001337.
  • Dhara, S. Direct Assessment of the Variations in the Intensity Ratios of M and L X-Ray Lines of U in Various Compounds by Total Reflection X-Ray Fluorescence Spectrometry. Spectrochim. Acta, Part B 2023, 201, 106625. DOI: 10.1016/j.sab.2023.106625.
  • Dhara, S. The Role of Matrix in the Evaluation of Analytical Parameters for Trace Determinations Using TXRF Spectrometry. J. Anal. At. Spectrom. 2021, 36, 352–360. DOI: 10.1039/D0JA00426J.
  • Bès, R.; Ahopelto, T.; Honkanen, A.-P.; Huotari, S.; Leinders, G.; Pakarinen, J.; Kvashnina, K. Laboratory-Scale X-Ray Absorption Spectroscopy Approach for Actinide Research: Experiment at the Uranium L3-Edge. J. Nucl. Mater. 2018, 507, 50–53. DOI: 10.1016/j.jnucmat.2018.04.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.