216
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Accurate Clinical Detection of Vitamin D by Mass Spectrometry: A Review

, , , , , , & show all

References

  • Tang, J. C. Y.; Nicholls, H.; Piec, I.; Washbourne, C. J.; Dutton, J. J.; Jackson, S.; Greeves, J.; Fraser, W. D. Reference Intervals for Serum 24,25-Dihydroxyvitamin D and the Ratio with 25-Hydroxyvitamin D Established Using a Newly Developed LC–MS/MS Method. J. Nutr. Biochem. 2017, 46, 21–29. DOI:10.1016/j.jnutbio.2017.04.005.
  • Socas-Rodríguez, B.; Pilařová, V.; Sandahl, M.; Holm, C.; Turner, C. Simultaneous Determination of Vitamin D and Its Hydroxylated and Esterified Metabolites by Ultrahigh-Performance Supercritical Fluid Chromatography–Tandem Mass Spectrometry. Anal. Chem. 2022, 94, 3065–3073. DOI:10.1021/acs.analchem.1c04016.
  • Papoutsis, K.; Grasso, S.; Menon, A.; Brunton, N. P.; Lyng, J. G.; Jacquier, J.-C.; Bhuyan, D. J. Recovery of Ergosterol and Vitamin D2 from Mushroom waste - Potential Valorization by Food and Pharmaceutical Industries. Trends Food Sci. Technol. 2020, 99, 351–366. DOI:10.1016/j.tifs.2020.03.005.
  • Crawford, B. A.; Labio, E. D.; Strasser, S. I.; McCaughan, G. W. Vitamin D Replacement for Cirrhosis-Related Bone Disease. Nat. Clin. Pract. Gastroenterol. Hepatol. 2006, 3, 689–699. DOI:10.1038/ncpgasthep0637.
  • Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. DOI:10.1152/physrev.00014.2015.
  • Máčová, L.; Bičíková, M. Vitamin D: Current Challenges between the Laboratory and Clinical Practice. Nutrients 2021, 13, 1758. DOI:10.3390/nu13061758.
  • Holick, M. F.; Chen, T. C. Vitamin D Deficiency: A Worldwide Problem with Health consequences1. Am. J. Clin. Nutr. 2008, 87, 1080S–1086S. DOI:10.1093/ajcn/87.4.1080S.
  • Bouillon, R. Comparative Analysis of Nutritional Guidelines for Vitamin D. Nat. Rev. Endocrinol. 2017, 13, 466–479. DOI:10.1038/nrendo.2017.31.
  • de Boer, I. H.; Kestenbaum, B.; Shoben, A. B.; Michos, E. D.; Sarnak, M. J.; Siscovick, D. S. 25-hydroxyvitamin D Levels Inversely Associate with Risk for Developing Coronary Artery Calcification. J. Am. Soc. Nephrol. 2009, 20, 1805–1812. DOI:10.1681/asn.2008111157.
  • Oh, J.; Weng, S.; Felton, S. K.; Bhandare, S.; Riek, A.; Butler, B.; Proctor, B. M.; Petty, M.; Chen, Z.; Schechtman, K. B.; et al. 1,25(OH)2 Vitamin d Inhibits Foam Cell Formation and Suppresses Macrophage Cholesterol Uptake in Patients with Type 2 Diabetes Mellitus. Circulation 2009, 120, 687–698. DOI:10.1161/circulationaha.109.856070.
  • Geng, C.; Shaikh, A. S.; Han, W.; Chen, D.; Guo, Y.; Jiang, P. Vitamin D and Depression: Mechanisms, Determination and Application. Asia Pac. J. Clin. Nutr. 2019, 28, 689–694. DOI:10.6133/apjcn.201912_28(4).0003.
  • Sommer, I.; Griebler, U.; Kien, C.; Auer, S.; Klerings, I.; Hammer, R.; Holzer, P.; Gartlehner, G. Vitamin D Deficiency as a Risk Factor for Dementia: A Systematic Review and Meta-Analysis. BMC Geriatr. 2017, 17, 16. DOI:10.1186/s12877-016-0405-0.
  • Mathieu, C.; Gysemans, C.; Giulietti, A.; Bouillon, R. Vitamin D and Diabetes. Diabetologia 2005, 48, 1247–1257. DOI:10.1007/s00125-005-1802-7.
  • Migliaccio, S.; Di Nisio, A.; Magno, S.; Romano, F.; Barrea, L.; Colao, A. M.; Muscogiuri, G.; Savastano, S. Vitamin D Deficiency: A Potential Risk Factor for Cancer in Obesity? Int. J. Obes. (Lond.) 2022, 46, 707–717. DOI:10.1038/s41366-021-01045-4.
  • Garland, C. F.; Gorham, E. D.; Mohr, S. B.; Garland, F. C. Vitamin D for Cancer Prevention: Global Perspective. Ann. Epidemiol. 2009, 19, 468–483. DOI:10.1016/j.annepidem.2009.03.021.
  • Andersen, L. B.; Jørgensen, J. S.; Jensen, T. K.; Dalgård, C.; Barington, T.; Nielsen, J.; Beck-Nielsen, S. S.; Husby, S.; Abrahamsen, B.; Lamont, R. F.; Christesen, H. T. Vitamin D Insufficiency is Associated with Increased Risk of First-Trimester Miscarriage in the Odense Child Cohort. Am. J. Clin. Nutr. 2015, 102, 633–638. DOI:10.3945/ajcn.114.103655.
  • Stene, L. C.; Joner, G. Use of Cod Liver Oil during the First Year of Life is Associated with Lower Risk of Childhood-Onset Type 1 Diabetes: A Large, Population-Based, Case-Control Study. Am. J. Clin. Nutr. 2003, 78, 1128–1134. DOI:10.1093/ajcn/78.6.1128.
  • Uriu-Adams, J. Y.; Obican, S. G.; Keen, C. L. Vitamin D and Maternal and Child Health: Overview and Implications for Dietary Requirements. Birth Defects Res. C Embryo Today 2013, 99, 24–44. DOI:10.1002/bdrc.21031.
  • Whitehouse, A. J.; Holt, B. J.; Serralha, M.; Holt, P. G.; Kusel, M. M.; Hart, P. H. Maternal Serum Vitamin D Levels during Pregnancy and Offspring Neurocognitive Development. Pediatrics 2012, 129, 485–493. DOI:10.1542/peds.2011-2644.
  • Liao, X. P.; Zhang, Z. L.; Zhang, H. H.; Zhu, H. M.; Zhou, J. L.; Huang, Q. R.; Wang, Z. X.; W, L.; Liu, Z. H. Application Guideline for Vitamin D and Bone Health in Adult Chinese (2014 Standard Edition) Vitamin D Working Group of Osteoporosis Committee of China Gerontological Society. Chn. J. Osteoporos. 2014, 20, 1011–1030. DOI:10.3969/j.issn.1006-7108.2014.09.002.
  • Galior, K.; Grebe, S.; Singh, R. Development of Vitamin D Toxicity from Overcorrection of Vitamin D Deficiency: A Review of Case Reports. Nutrients 2018, 10, 953. DOI:10.3390/nu10080953.
  • Hathcock, J. N.; Shao, A.; Vieth, R.; Heaney, R. Risk Assessment for Vitamin D. Am. J. Clin. Nutr. 2007, 85, 6–18. DOI:10.1093/ajcn/85.1.6.
  • Naik, M.; Kamath U, S.; Uppangala, S.; Adiga, S. K.; Patil, A. Vitamin D Metabolites and Analytical Challenges. Anal. Methods 2023, 15, 399–410. DOI:10.1039/D2AY01692C.
  • Kenderdine, T.; Fabris, D. The Multifaceted Roles of Mass Spectrometric Analysis in Nucleic Acids Drug Discovery and Development. Mass Spectrom. Rev. 2023, 42, 1332–1357. DOI:10.1002/mas.21766.
  • Højskov, C. S.; Heickendorff, L.; Møller, H. J. High-Throughput Liquid-Liquid Extraction and LCMSMS Assay for Determination of Circulating 25(OH) Vitamin D3 and D2 in the Routine Clinical Laboratory. Clin. Chim. Acta 2010, 411, 114–116. DOI:10.1016/j.cca.2009.10.010.
  • van den Ouweland, J. M.; Vogeser, M.; Bächer, S. Vitamin D and Metabolites Measurement by Tandem Mass Spectrometry. Rev. Endocr. Metab. Disord. 2013, 14, 159–184. DOI:10.1007/s11154-013-9241-0.
  • Zelzer, S.; Meinitzer, A.; Enko, D.; Simstich, S.; Le Goff, C.; Cavalier, E.; Herrmann, M.; Goessler, W. Simultaneous Determination of 24,25- and 25,26-Dihydroxyvitamin D3 in Serum Samples with Liquid-Chromatography Mass spectrometry – A Useful Tool for the Assessment of Vitamin D Metabolism. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1158, 122394. DOI:10.1016/j.jchromb.2020.122394.
  • Herrmann, M.; Farrell, C. L.; Pusceddu, I.; Fabregat-Cabello, N.; Cavalier, E. Assessment of Vitamin D Status - a Changing Landscape. Clin. Chem. Lab Med. 2017, 55, 3–26. DOI:10.1515/cclm-2016-0264.
  • Sai, A. J.; Walters, R. W.; Fang, X.; Gallagher, J. C. Relationship between Vitamin D, Parathyroid Hormone, and Bone Health. J. Clin. Endocrinol. Metab. 2011, 96, E436–46. DOI:10.1210/jc.2010-1886.
  • van Ballegooijen, A. J.; Robinson-Cohen, C.; Katz, R.; Criqui, M.; Budoff, M.; Li, D.; Siscovick, D.; Hoofnagle, A.; Shea, S. J.; Burke, G.; et al. Vitamin D Metabolites and Bone Mineral Density: The Multi-Ethnic Study of Atherosclerosis. Bone 2015, 78, 186–193. DOI:10.1016/j.bone.2015.05.008.
  • Calcium, D. The National Academies Collection: Reports Funded by National Institutes of Health. In Dietary Reference Intakes for Calcium and Vitamin D, Ross, A. C.; Taylor, C. L.; Yaktine, A. L.; Del Valle, H. B., Eds. National Academies Press: Washington (DC), 2011.
  • Holick, M. F.; Binkley, N. C.; Bischoff-Ferrari, H. A.; Gordon, C. M.; Hanley, D. A.; Heaney, R. P.; Murad, M. H.; Weaver, C. M, Endocrine Society. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. DOI:10.1210/jc.2011-0385.
  • SACN vitamin D and health report. https://www.gov.uk/government/publications/sacn-vitamin-d-and-health-report.
  • Paxton, G. A.; Teale, G. R.; Nowson, C. A.; Mason, R. S.; McGrath, J. J.; Thompson, M. J.; Siafarikas, A.; Rodda, C. P.; Munns, C. F. Vitamin D and Health in Pregnancy, Infants, Children and Adolescents in Australia and New Zealand: A Position Statement. Med. J. Aust. 2013, 198, 142–143. DOI:10.5694/mja11.11592.
  • Recommendations Abstracted from the American Geriatrics Society Consensus Statement on vitamin D for Prevention of Falls and Their Consequences. J. Am. Geriatr. Soc. 2014, 62, 147–152. DOI:10.1111/jgs.12631.
  • Pérez-López, F. R.; Brincat, M.; Erel, C. T.; Tremollieres, F.; Gambacciani, M.; Lambrinoudaki, I.; Moen, M. H.; Schenck-Gustafsson, K.; Vujovic, S.; Rozenberg, S.; Rees, M. EMAS Position Statement: Vitamin D and Postmenopausal Health. Maturitas 2012, 71, 83–88. DOI:10.1016/j.maturitas.2011.11.002.
  • Hanley, D. A.; Cranney, A.; Jones, G.; Whiting, S. J.; Leslie, W. D.; Cole, D. E.; Atkinson, S. A.; Josse, R. G.; Feldman, S.; Kline, G. A.; Rosen, C. Vitamin D in Adult Health and Disease: A Review and Guideline Statement from Osteoporosis Canada. CMAJ 2010, 182, E610–8. DOI:10.1503/cmaj.080663.
  • Pludowski, P.; Holick, M. F.; Grant, W. B.; Konstantynowicz, J.; Mascarenhas, M. R.; Haq, A.; Povoroznyuk, V.; Balatska, N.; Barbosa, A. P.; Karonova, T.; et al. Vitamin D Supplementation Guidelines. J. Steroid Biochem. Mol. Biol. 2018, 175, 125–135. DOI:10.1016/j.jsbmb.2017.01.021.
  • Tirabassi, G.; Salvio, G.; Altieri, B.; Ronchi, C. L.; Della Casa, S.; Pontecorvi, A.; Balercia, G. Adrenal Disorders: Is There Any Role for Vitamin D? Rev. Endocr. Metab. Disord. 2017, 18, 355–362. DOI:10.1007/s11154-016-9391-y.
  • Muscogiuri, G.; Altieri, B.; de Angelis, C.; Palomba, S.; Pivonello, R.; Colao, A.; Orio, F. Shedding New Light on Female Fertility: The Role of Vitamin D. Rev. Endocr. Metab. Disord. 2017, 18, 273–283. DOI:10.1007/s11154-017-9407-2.
  • Saponaro, F.; Saba, A.; Zucchi, R. An Update on Vitamin D Metabolism. Int. J. Mol. Sci. 2020, 21, 6573. DOI:10.3390/ijms21186573.
  • van de Peppel, J.; van Leeuwen, J. P. Vitamin D and Gene Networks in Human Osteoblasts. Front Physiol 2014, 5, 137. DOI:10.3389/fphys.2014.00137.
  • Holick, M. F. Vitamin D: Evolutionary, Physiological and Health Perspectives. Curr. Drug Targets 2011, 12, 4–18. DOI:10.2174/138945011793591635.
  • Colotta, F.; Jansson, B.; Bonelli, F. Modulation of Inflammatory and Immune Responses by Vitamin D. J. Autoimmun. 2017, 85, 78–97. DOI:10.1016/j.jaut.2017.07.007.
  • Chapuy, M. C.; Chapuy, P.; Meunier, P. J. Calcium and Vitamin D Supplements: Effects on Calcium Metabolism in Elderly People. Am. J. Clin. Nutr. 1987, 46, 324–328. DOI:10.1093/ajcn/46.2.324.
  • Barger-Lux, M. J.; Heaney, R. P.; Dowell, S.; Chen, T. C.; Holick, M. F. Vitamin D and Its Major Metabolites: Serum Levels after Graded Oral Dosing in Healthy Men. Osteoporos Int. 1998, 8, 222–230. DOI:10.1007/s001980050058.
  • Seamans, K. M.; Cashman, K. D. Existing and Potentially Novel Functional Markers of Vitamin D Status: A Systematic Review. Am. J. Clin. Nutr. 2009, 89, 1997s–2008s. DOI:10.3945/ajcn.2009.27230D.
  • de Boer, I. H.; Sachs, M. C.; Chonchol, M.; Himmelfarb, J.; Hoofnagle, A. N.; Ix, J. H.; Kremsdorf, R. A.; Lin, Y. S.; Mehrotra, R.; Robinson-Cohen, C.; et al. Estimated GFR and Circulating 24,25-Dihydroxyvitamin D3 Concentration: A Participant-Level Analysis of 5 Cohort Studies and Clinical Trials. Am. J. Kidney Dis. 2014, 64, 187–197. DOI:10.1053/j.ajkd.2014.02.015.
  • Alonso, N.; Zelzer, S.; Eibinger, G.; Herrmann, M. Vitamin D Metabolites: Analytical Challenges and Clinical Relevance. Calcif. Tissue Int. 2023, 112, 158–177. DOI:10.1007/s00223-022-00961-5.
  • Bosworth, C. R.; Levin, G.; Robinson-Cohen, C.; Hoofnagle, A. N.; Ruzinski, J.; Young, B.; Schwartz, S. M.; Himmelfarb, J.; Kestenbaum, B.; de Boer, I. H. The Serum 24,25-Dihydroxyvitamin D Concentration, a Marker of Vitamin D Catabolism, is Reduced in Chronic Kidney Disease. Kidney Int. 2012, 82, 693–700. DOI:10.1038/ki.2012.193.
  • Berg, A. H.; Powe, C. E.; Evans, M. K.; Wenger, J.; Ortiz, G.; Zonderman, A. B.; Suntharalingam, P.; Lucchesi, K.; Powe, N. R.; Karumanchi, S. A.; Thadhani, R. I. 24,25-Dihydroxyvitamin d3 and Vitamin D Status of Community-Dwelling Black and White Americans. Clin. Chem. 2015, 61, 877–884. DOI:10.1373/clinchem.2015.240051.
  • Martinaityte, I.; Kamycheva, E.; Didriksen, A.; Jakobsen, J.; Jorde, R. Vitamin D Stored in Fat Tissue during a 5-Year Intervention Affects Serum 25-Hydroxyvitamin D Levels the following Year. J. Clin. Endocrinol. Metab. 2017, 102, 3731–3738. DOI:10.1210/jc.2017-01187.
  • Didriksen, A.; Burild, A.; Jakobsen, J.; Fuskevåg, O. M.; Jorde, R. Vitamin D3 Increases in Abdominal Subcutaneous Fat Tissue after Supplementation with Vitamin D3. Eur. J. Endocrinol. 2015, 172, 235–241. DOI:10.1530/eje-14-0870.
  • Zgaga, L.; Laird, E.; Healy, M. 25-Hydroxyvitamin D Measurement in Human Hair: Results from a Proof-of-Concept Study. Nutrients 2019, 11, 423. DOI:10.3390/nu11020423.
  • Kamao, M.; Tsugawa, N.; Suhara, Y.; Wada, A.; Mori, T.; Murata, K.; Nishino, R.; Ukita, T.; Uenishi, K.; Tanaka, K.; Okano, T. Quantification of Fat-Soluble Vitamins in Human Breast Milk by Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 859, 192–200. DOI:10.1016/j.jchromb.2007.09.023.
  • Ogawa, S.; Ooki, S.; Shinoda, K.; Higashi, T. Analysis of Urinary Vitamin D3 Metabolites by Liquid Chromatography/Tandem Mass Spectrometry with ESI-Enhancing and Stable Isotope-Coded Derivatization. Anal. Bioanal. Chem. 2014, 406, 6647–6654. DOI:10.1007/s00216-014-8095-y.
  • Yu, Y.; Pan, Y.; Cao, Y.; Wu, J.; Lai, G. Identification and Structural Elucidation of Vitamin D3 Metabolites in Human Urine Using LC-MS-MS. Chroma 2009, 69, 103–109. DOI:10.1365/s10337-008-0901-2.
  • Kvaskoff, D.; Heath, A. K.; Simila, H. A.; Ko, P.; English, D. R.; Eyles, D. W. Minimizing Matrix Effects for the Accurate Quantification of 25-Hydroxyvitamin D Metabolites in Dried Blood Spots by LC-MS/MS. Clin. Chem. 2016, 62, 639–646. DOI:10.1373/clinchem.2015.251538.
  • Higashi, T.; Shibayama, Y.; Fuji, M.; Shimada, K. Liquid Chromatography-Tandem Mass Spectrometric Method for the Determination of Salivary 25-Hydroxyvitamin D3: A Noninvasive Tool for the Assessment of Vitamin D Status. Anal. Bioanal. Chem. 2008, 391, 229–238. DOI:10.1007/s00216-007-1780-3.
  • He, X.; Jiang, P.; Xue, Y.; Zhu, W.-Y.; Deng, Y.; Yan, M.; Li, H.-D.; Dang, R.-L.; Tang, M.-M. Simultaneous Analysis of 25OHD3 and 24,25(OH)2D3 Both in Human Serum and Cerebrospinal Fluid by LC-MS/MS. Anal. Methods 2016, 8, 2400–2407. DOI:10.1039/C5AY01526J.
  • Le, J.; Yuan, T.-F.; Zhang, Y.; Wang, S.-T.; Li, Y. New LC-MS/MS Method with Single-Step Pretreatment Analyzes Fat-Soluble Vitamins in Plasma and Amniotic Fluid. J. Lipid Res. 2018, 59, 1783–1790. DOI:10.1194/jlr.D087569.
  • Fraser, W. D.; Tang, J. C. Y.; Dutton, J. J.; Schoenmakers, I. Vitamin D Measurement, the Debates Continue, New Analytes Have Emerged, Developments Have Variable Outcomes. Calcif Tissue Int. 2020, 106, 3–13. DOI:10.1007/s00223-019-00620-2.
  • Yin, S.; Yang, Y.; Wu, L.; Li, Y.; Sun, C. Recent Advances in Sample Preparation and Analysis Methods for Vitamin D and Its Analogues in Different Matrices. Trends Analyt. Chem. 2019, 110, 204–220. DOI:10.1016/j.trac.2018.11.008.
  • Alexandridou, A.; Volmer, D. A. Sample Preparation Techniques for Extraction of Vitamin D Metabolites from Non-Conventional Biological Sample Matrices Prior to LC-MS/MS Analysis. Anal. Bioanal. Chem. 2022, 414, 4613–4632. DOI:10.1007/s00216-022-04097-1.
  • Zeng, S.; Chu, C.; Doebis, C.; von Baehr, V.; Hocher, B. Reference Values for Free 25-Hydroxy-Vitamin D Based on Established Total 25-Hydroxy-Vitamin D Reference Values. J. Steroid Biochem. Mol. Biol. 2021, 210, 105877. DOI:10.1016/j.jsbmb.2021.105877.
  • Stone, J. Chapter 3 - Sample Preparation Techniques for Mass Spectrometry in the Clinical Laboratory. In Mass Spectrometry for the Clinical Laboratory, Nair, H.; Clarke, W., Eds. Academic Press: San Diego, 2017; pp 37–62.
  • Keevil, B. G. Novel Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Methods for Measuring Steroids. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 663–674. DOI:10.1016/j.beem.2013.05.015.
  • Castro-Perez, J.; Prakash, C. Chapter 2 - Recent Advances in Mass Spectrometric and Other Analytical Techniques for the Identification of Drug Metabolites. In Identification and Quantification of Drugs, Metabolites, Drug Metabolizing Enzymes, and Transporters (2nd Ed.), Ma, S.; Chowdhury, S. K., Eds. Elsevier: Amsterdam, 2020; pp 39–71.
  • Polson, C.; Sarkar, P.; Incledon, B.; Raguvaran, V.; Grant, R. Optimization of Protein Precipitation Based upon Effectiveness of Protein Removal and Ionization Effect in Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003, 785, 263–275. DOI:10.1016/s1570-0232(02)00914-5.
  • French, D. Advances in Clinical Mass Spectrometry. Adv. Clin. Chem. 2017, 79, 153–198. DOI:10.1016/bs.acc.2016.09.003.
  • Shah, I.; Akhtar, M. K.; Hisaindee, S.; Rauf, M. A.; Sadig, M.; Ashraf, S. S. Clinical Diagnostic Tools for Vitamin D Assessment. J. Steroid Biochem. Mol. Biol. 2018, 180, 105–117. DOI:10.1016/j.jsbmb.2017.10.003.
  • Human Metabolome Database. https://hmdb.ca/metabolites/.
  • Hoofnagle, A. N.; Laha, T. J.; Donaldson, T. F. A Rubber Transfer Gasket to Improve the Throughput of Liquid-Liquid Extraction in 96-Well Plates: Application to Vitamin D Testing. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 1639–1642. DOI:10.1016/j.jchromb.2010.04.010.
  • Berk, Z. Chapter 11 - Extraction. In Food Process Engineering and Technology, Berk, Z., Ed. Academic Press: San Diego, 2009; pp 259–277.
  • Zhang, S. W.; Jian, W.; Sullivan, S.; Sankaran, B.; Edom, R. W.; Weng, N.; Sharkey, D. Development and Validation of an LC-MS/MS Based Method for Quantification of 25 Hydroxyvitamin D2 and 25 Hydroxyvitamin D3 in Human Serum and Plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 961, 62–70. DOI:10.1016/j.jchromb.2014.05.006.
  • Xie, W.; Chavez-Eng, C. M.; Fang, W.; Constanzer, M. L.; Matuszewski, B. K.; Mullett, W. M.; Pawliszyn, J. Quantitative Liquid Chromatographic and Tandem Mass Spectrometric Determination of Vitamin D3 in Human Serum with Derivatization: A Comparison of in-Tube LLE, 96-Well Plate LLE and in-Tip SPME. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1457–1466. DOI:10.1016/j.jchromb.2011.03.018.
  • Saini, R. K.; Keum, Y. S. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chem. 2018, 240, 90–103. DOI:10.1016/j.foodchem.2017.07.099.
  • Qi, F. F.; Tao, L. M.; Dai, Y. M.; Zhang, B. M.; Wang, X.; Yu, Y. Optimization and Application of High-Throughput Supported Liquid Extraction for Simultaneous Determination of Carotenoids and Fat-Soluble Vitamins in Serum. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1173, 122672. DOI:10.1016/j.jchromb.2021.122672.
  • Cheng, Z.; Jiang, H. Supported Liquid Extraction (SLE) in LC-MS Bioanalysis. In Sample Preparation in LC‐MS Bioanalysis; Wiley: Hoboken, NJ, 2019; pp 76–84. DOI:10.1002/9781119274315.ch6.
  • Kohira, T.; Kita, Y.; Tokuoka, S. M.; Shiba, M.; Satake, M.; Shimizu, T. Characterization of Supported Liquid Extraction as a Sample Pretreatment Method for Eicosanoids and Related Metabolites in Biological Fluids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1124, 298–307. DOI:10.1016/j.jchromb.2019.06.016.
  • Zakaria, R.; Allen, K. J.; Koplin, J. J.; Roche, P.; Greaves, R. F. Candidate Reference Method for Determination of Vitamin D from Dried Blood Spot Samples. Clin. Chem. Lab. Med. 2020, 58, 817–827. DOI:10.1515/cclm-2019-0397.
  • Turrell, G.; Thrimawithana, T.; Itsiopoulos, C.; Greaves, R. F.; Zakaria, R. Method Validation for a Greener Approach to the Quantification of 25-Hydroxy Vitamin D3 in Patient Serum Using Supported Liquid Extraction and Liquid Chromatography-Tandem Mass Spectrometry. Clin. Chem. Lab. Med. 2023, 61, e255–e258. DOI:10.1515/cclm-2023-0444.
  • Alshabrawy, A. K.; Bergamin, A.; Sharma, D. K.; Hickey, S. M.; Brooks, D. A.; O'Loughlin, P.; Wiese, M. D.; Anderson, P. H. LC-MS/MS Analysis of Vitamin D(3) Metabolites in Human Serum Using a Salting-out Based Liquid-Liquid Extraction and DAPTAD Derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1173, 122654. DOI:10.1016/j.jchromb.2021.122654.
  • Tang, Y. Q.; Weng, N. Salting-out Assisted Liquid-Liquid Extraction for Bioanalysis. Bioanalysis 2013, 5, 1583–1598. DOI:10.4155/bio.13.117.
  • Liu, G.; Zhou, N.; Zhang, M.; Li, S.; Tian, Q.; Chen, J.; Chen, B.; Wu, Y.; Yao, S. Hydrophobic Solvent Induced Phase Transition Extraction to Extract Drugs from Plasma for High Performance Liquid Chromatography-Mass Spectrometric Analysis. J. Chromatogr. A 2010, 1217, 243–249. DOI:10.1016/j.chroma.2009.11.037.
  • Anthemidis, A. N.; Ioannou, K. I. Recent Developments in Homogeneous and Dispersive Liquid-Liquid Extraction for Inorganic Elements Determination. A Review. Talanta 2009, 80, 413–421. DOI:10.1016/j.talanta.2009.09.005.
  • Sazali, N. H.; Alshishani, A.; Saad, B.; Chew, K. Y.; Chong, M. M.; Miskam, M. Salting-out Assisted Liquid-Liquid Extraction Coupled with High-Performance Liquid Chromatography for the Determination of Vitamin D3 in Milk Samples. R. Soc. Open Sci. 2019, 6, 190952. DOI:10.1098/rsos.190952.
  • Knox, S.; Harris, J.; Calton, L.; Wallace, A. M. A Simple Automated Solid-Phase Extraction Procedure for Measurement of 25-Hydroxyvitamin D3 and D2 by Liquid Chromatography-Tandem Mass Spectrometry. Ann. Clin. Biochem. 2009, 46, 226–230. DOI:10.1258/acb.2009.008206.
  • Bruce, S. J.; Rochat, B.; Béguin, A.; Pesse, B.; Guessous, I.; Boulat, O.; Henry, H. Analysis and Quantification of Vitamin D Metabolites in Serum by Ultra-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry and High-Resolution Mass Spectrometry–A Method Comparison and Validation. Rapid Commun. Mass Spectrom. 2013, 27, 200–206. DOI:10.1002/rcm.6439.
  • Luxwolda, M. F.; Kuipers, R. S.; Kema, I. P.; Dijck-Brouwer, D. A.; Muskiet, F. A. Traditionally Living Populations in East Africa Have a Mean Serum 25-Hydroxyvitamin D Concentration of 115 Nmol/l. Br. J. Nutr. 2012, 108, 1557–1561. DOI:10.1017/s0007114511007161.
  • Poole, C. F. New Trends in Solid-Phase Extraction. Trends Analyt. Chem. 2003, 22, 362–373. DOI:10.1016/S0165-9936(03)00605-8.
  • Ötles, S.; Kartal, C. Solid-Phase Extraction (SPE): Principles and Applications in Food Samples. Acta Sci. Pol. Technol. Aliment. 2016, 15, 5–15. DOI:10.17306/j.Afs.2016.1.1.
  • Shah, I.; James, R.; Barker, J.; Petroczi, A.; Naughton, D. P. Misleading Measures in Vitamin D Analysis: A Novel LC-MS/MS Assay to account for Epimers and Isobars. Nutr. J. 2011, 10, 46. DOI:10.1186/1475-2891-10-46.
  • Okabe, H.; Shimizu, C.; Yamamoto, M.; Kikuchi, R.; Minami, A.; Chen, Y. F.; Imai, H.; Mizuta, M.; Chen, Z.; Chiba, H.; Hui, S. P. Determination of Serum 25-Hydroxyvitamin D(3) by LC/MS/MS and Its Monthly Variation in Sapporo Indoor Workers. Anal. Sci. 2018, 34, 1043–1047. DOI:10.2116/analsci.18P193.
  • Strathmann, F. G.; Laha, T. J.; Hoofnagle, A. N. Quantification of 1α,25-Dihydroxy Vitamin D by Immunoextraction and Liquid Chromatography-Tandem Mass Spectrometry. Clin. Chem. 2011, 57, 1279–1285. DOI:10.1373/clinchem.2010.161174.
  • Li, T. J.; Chen, P. Y.; Nien, P. C.; Lin, C. Y.; Vittal, R.; Ling, T. R.; Ho, K. C. Preparation of a Novel Molecularly Imprinted Polymer by the Sol-Gel Process for Sensing Creatinine. Anal. Chim. Acta 2012, 711, 83–90. DOI:10.1016/j.aca.2011.10.031.
  • Pawliszyn, J. B. Extraction Techniques and Applications: Food and Beverage. 2012.
  • Nevanen, T. K.; Simolin, H.; Suortti, T.; Koivula, A.; Söderlund, H. Development of a High-Throughput Format for Solid-Phase Extraction of Enantiomers Using an Immunosorbent in 384-Well Plates. Anal. Chem. 2005, 77, 3038–3044. DOI:10.1021/ac040141+.
  • Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-Phase Extraction of Organic Compounds: A Critical Review (Part I). Trends Analyt. Chem. 2016, 80, 641–654. DOI:10.1016/j.trac.2015.08.015.
  • Ashley, J.; Shahbazi, M. A.; Kant, K.; Chidambara, V. A.; Wolff, A.; Bang, D. D.; Sun, Y. Molecularly Imprinted Polymers for Sample Preparation and Biosensing in Food Analysis: Progress and Perspectives. Biosens Bioelectron 2017, 91, 606–615. DOI:10.1016/j.bios.2017.01.018.
  • Alexandridou, A.; Schorr, P.; Volmer, D. A. Comparing Derivatization Reagents for Quantitative LC-MS/MS Analysis of a Variety of Vitamin D Metabolites. Anal. Bioanal. Chem. 2023, 415, 4689–4701. DOI:10.1007/s00216-023-04753-0.
  • van den Ouweland, J. M. W. Analysis of Vitamin D Metabolites by Liquid Chromatography-Tandem Mass Spectrometry. Trends Analyt. Chem. 2016, 84, 117–130. DOI:10.1016/j.trac.2016.02.005.
  • Alexandridou, A.; Schorr, P.; Stokes, C. S.; Volmer, D. A. Analysis of Vitamin D Metabolic Markers by Mass Spectrometry: Recent Progress regarding the "Gold Standard" Method and Integration into Clinical Practice. Mass Spectrom. Rev. 2023, 42, 1647–1687. DOI:10.1002/mas.21768.
  • Cookson, R. C.; Gilani, S. S. H.; Stevens, I. D. R. 4-Phenyl-1,2,4-Triazolin-3,5-Dione: A Powerful Dienophile. Tetrahedron Lett. 1962, 3, 615–618. DOI:10.1016/S0040-4039(00)70917-8.
  • Wilson, S. R.; Lu, Q.; Tulchinsky, M. L.; Wu, Y. Analysis of Vitamin D and Its Metabolites: Derivatization and Detection by Electrospray Ionization Mass Spectrometry. J. Chem. Soc., Chem. Commun. 1993, 664–665. DOI:10.1039/c39930000664.
  • Yeung, B.; Vouros, P.; Reddy, G. S. Characterization of Vitamin D3 Metabolites Using Continuous-Flow Fast Atom Bombardment Tandem Mass Spectrometry and High-Performance Liquid Chromatography. J. Chromatogr. 1993, 645, 115–123. DOI:10.1016/0021-9673(93)80625-i.
  • Hedman, C. J.; Wiebe, D. A.; Dey, S.; Plath, J.; Kemnitz, J. W.; Ziegler, T. E. Development of a Sensitive LC/MS/MS Method for Vitamin D Metabolites: 1,25 Dihydroxyvitamin D2&3 Measurement Using a Novel Derivatization Agent. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 953-954, 62–67. DOI:10.1016/j.jchromb.2014.01.045.
  • Ogawa, S.; Ooki, S.; Morohashi, M.; Yamagata, K.; Higashi, T. A Novel Cookson-Type Reagent for Enhancing Sensitivity and Specificity in Assessment of Infant Vitamin D Status Using Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 2453–2460. DOI:10.1002/rcm.6708.
  • Seki, M.; Sato, M.; Takiwaki, M.; Takahashi, K.; Kikutani, Y.; Satoh, M.; Nomura, F.; Kuroda, Y.; Fukuzawa, S. A Novel Caged Cookson-Type Reagent toward a Practical Vitamin D Derivatization Method for Mass Spectrometric Analyses. Rapid Commun. Mass Spectrom. 2020, 34, e8648. DOI:10.1002/rcm.8648.
  • Kim, J. H.; Woenker, T.; Adamec, J.; Regnier, F. E. Simple, Miniaturized Blood Plasma Extraction Method. Anal. Chem. 2013, 85, 11501–11508. DOI:10.1021/ac402735y.
  • Ogawa, S.; Kittaka, H.; Shinoda, K.; Ooki, S.; Nakata, A.; Higashi, T. Comparative Evaluation of New Cookson-Type Reagents for LC/ESI-MS/MS Assay of 25-Hydroxyvitamin D3 in Neonatal Blood Samples. Biomed. Chromatogr. 2016, 30, 938–945. DOI:10.1002/bmc.3633.
  • Wan, D.; Yang, J.; Barnych, B.; Hwang, S. H.; Lee, K. S. S.; Cui, Y.; Niu, J.; Watsky, M. A.; Hammock, B. D. A New Sensitive LC/MS/MS Analysis of Vitamin D Metabolites Using a Click Derivatization Reagent, 2-Nitrosopyridine. J. Lipid Res. 2017, 58, 798–808. DOI:10.1194/jlr.D073536.
  • Le, J.; Yuan, T. F.; Geng, J. Q.; Wang, S. T.; Li, Y.; Zhang, B. H. Acylation Derivatization Based LC-MS Analysis of 25-Hydroxyvitamin D from Finger-Prick Blood. J. Lipid Res. 2019, 60, 1058–1064. DOI:10.1194/jlr.D092197.
  • Liao, H.-Y.; Xiao, X.; Peng, R.; Le, J.; Wang, H.-B.; Wang, S.-T. Rapid Derivatization of Phenolic and Oxime Hydroxyl with Isonicotinoyl Chloride under Aqueous Conditions and Its Application in LC-MS/MS Profiling Multiclass Steroids. Anal. Chem. 2022, 94, 17980–17987. DOI:10.1021/acs.analchem.2c04151.
  • Wu, C.; Ifa, D. R.; Manicke, N. E.; Cooks, R. G. Rapid, Direct Analysis of Cholesterol by Charge Labeling in Reactive Desorption Electrospray Ionization. Anal. Chem. 2009, 81, 7618–7624. DOI:10.1021/ac901003u.
  • Noh, J.-Y.; Kim, M.-J.; Park, J.-M.; Yun, T. G.; Kang, M.-J.; Pyun, J.-C. Quantitative Analysis of Vitamin D Using m/MALDI-TOF Mass Spectrometry Based on a Parylene Matrix Chip. J. Anal. Sci. Technol. 2022, 13, 3. DOI:10.1186/s40543-021-00313-2.
  • Mielczarek, P.; Slowik, T.; Kotlinska, J. H.; Suder, P.; Bodzon-Kulakowska, A. The Study of Derivatization Prior MALDI MSI Analysis-Charge Tagging Based on the Cholesterol and Betaine Aldehyde. Molecules 2021, 26, 2737. DOI:10.3390/molecules26092737.
  • Alexandridou, A.; Volmer, D. A. 2-fluoro-1-Methylpyridinium p-Toluene Sulfonate: A New LC-MS/MS Derivatization Reagent for Vitamin D Metabolites. J. Lipid Res. 2023, 64, 100409. DOI:10.1016/j.jlr.2023.100409.
  • Bald, E. Analytical Utility of 2-Halopyridinium Salts: I. Paper Electrophoretic Characterization of Thiols as 2-Alkyl(Aryl)Thio-1-Methylpyridinium p-Toluenesulphonates. J. Chromatogr. A 1979, 174, 483–487. DOI:10.1016/S0021-9673(00)86029-X.
  • Quirke, J. M. E.; Adams, C. L.; Van Berkel, G. J. Chemical Derivatization for Electrospray Ionization Mass Spectrometry. 1. Alkyl Halides, Alcohols, Phenols, Thiols, and Amines. Anal. Chem. 1994, 66, 1302–1315. DOI:10.1021/ac00080a016.
  • Alexandridou, A.; Volmer, D. A. Stability of Sample Extracts of Vitamin D(3) Metabolites after Chemical Derivatization for LC-MS/MS Analysis. Anal. Bioanal. Chem. 2023, 415, 327–333. DOI:10.1007/s00216-022-04409-5.
  • Aronov, P. A.; Hall, L. M.; Dettmer, K.; Stephensen, C. B.; Hammock, B. D. Metabolic Profiling of Major Vitamin D Metabolites Using Diels-Alder Derivatization and Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2008, 391, 1917–1930. DOI:10.1007/s00216-008-2095-8.
  • Farrell, C. J.; Martin, S.; McWhinney, B.; Straub, I.; Williams, P.; Herrmann, M. State-of-the-Art Vitamin D Assays: A Comparison of Automated Immunoassays with Liquid Chromatography-Tandem Mass Spectrometry Methods. Clin. Chem. 2012, 58, 531–542. DOI:10.1373/clinchem.2011.172155.
  • Temova, Ž.; Roškar, R. Stability-Indicating HPLC-UV Method for Vitamin D3 Determination in Solutions, Nutritional Supplements and Pharmaceuticals. J. Chromatogr. Sci. 2016, 54, 1180–1186. DOI:10.1093/chromsci/bmw048.
  • Keyfi, F.; Nahid, S.; Mokhtariye, A.; Nayerabadi, S.; Alaei, A.; Varasteh, A.-R. Evaluation of 25-OH Vitamin D by High Performance Liquid Chromatography: Validation and Comparison with Electrochemiluminescence. J. Anal. Sci. Technol. 2018, 9, 25. DOI:10.1186/s40543-018-0155-z.
  • Abu el Maaty, M. A.; Hanafi, R. S.; Aboul-Enein, H. Y.; Gad, M. Z. Design-of-Experiment Approach for HPLC Analysis of 25-Hydroxyvitamin D: A Comparative Assay with ELISA. J. Chromatogr. Sci. 2015, 53, 66–72. DOI:10.1093/chromsci/bmu017.
  • Helmeczi, E.; Fries, E.; Perry, L.; Choong, K.; O'Hearn, K.; McNally, D.; Britz-McKibbin, P. A High-Throughput Platform for the Rapid Screening of Vitamin D Status by Direct infusion-MS/MS. J. Lipid Res. 2022, 63, 100204. DOI:10.1016/j.jlr.2022.100204.
  • Benton, S. C.; Tetteh, G. K.; Needham, S. J.; Mücke, J.; Sheppard, L.; Alderson, S.; Ruppen, C.; Curti, M.; Redondo, M.; Milan, A. M. Evaluation of the 25-Hydroxy Vitamin D Assay on a Fully Automated Liquid Chromatography Mass Spectrometry System, the Thermo Scientific Cascadion SM Clinical Analyzer with the Cascadion 25-Hydroxy Vitamin D Assay in a Routine Clinical Laboratory. Clin. Chem. Lab Med. 2020, 58, 1010–1017. DOI:10.1515/cclm-2019-0834.
  • Tripathi, A.; Ansari, M.; Dandekar, P.; Jain, R. Analytical Methods for 25-Hydroxyvitamin D: Advantages and Limitations of the Existing Assays. J. Nutr. Biochem. 2022, 109, 109123. DOI:10.1016/j.jnutbio.2022.109123.
  • Galior, K.; Ketha, H.; Grebe, S.; Singh, R. J. 10 Years of 25-hydroxyvitamin-D Testing by LC-MS/MS-Trends in vitamin-D Deficiency and Sufficiency. Bone Rep. 2018, 8, 268–273. DOI:10.1016/j.bonr.2018.05.003.
  • Trimboli, F.; Rotundo, S.; Armili, S.; Mimmi, S.; Lucia, F.; Montenegro, N.; Antico, G. C.; Cerra, A.; Gaetano, M.; Galato, F.; et al. Serum 25-Hydroxyvitamin D Measurement: Comparative Evaluation of Three Automated Immunoassays. Pract. Lab. Med. 2021, 26, e00251. DOI:10.1016/j.plabm.2021.e00251.
  • Duan, X.; Weinstock-Guttman, B.; Wang, H.; Bang, E.; Li, J.; Ramanathan, M.; Qu, J. Ultrasensitive Quantification of Serum Vitamin D Metabolites Using Selective Solid-Phase Extraction Coupled to Microflow Liquid Chromatography and Isotope-Dilution Mass Spectrometry. Anal. Chem. 2010, 82, 2488–2497. DOI:10.1021/ac902869y.
  • Farrell, C. J.; Herrmann, M. Determination of Vitamin D and Its Metabolites. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 675–688. DOI:10.1016/j.beem.2013.06.001.
  • Eisman, J. A.; Shepard, R. M.; DeLuca, H. F. Determination of 25-Hydroxyvitamin D2 and 25-Hydroxyvitamin D3 in Human Plasma Using High-Pressure Liquid Chromatography. Anal. Biochem. 1977, 80, 298–305. DOI:10.1016/0003-2697(77)90648-0.
  • Rusli, H.; Putri, R. M.; Alni, A. Recent Developments of Liquid Chromatography Stationary Phases for Compound Separation: From Proteins to Small Organic Compounds. Molecules 2022, 27, 907. DOI:10.3390/molecules27030907.
  • Al-Zohily, B.; Al-Menhali, A.; Gariballa, S.; Haq, A.; Shah, I. Epimers of Vitamin D: A Review. Int. J. Mol. Sci. 2020, 21, 470. DOI:10.3390/ijms21020470.
  • Bedner, M.; Phinney, K. W. Development and Comparison of Three Liquid Chromatography–Atmospheric Pressure Chemical Ionization/Mass Spectrometry Methods for Determining Vitamin D Metabolites in Human Serum. J. Chromatogr. A 2012, 1240, 132–139. DOI:10.1016/j.chroma.2012.03.091.
  • Turpeinen, U.; Hohenthal, U.; Stenman, U.-H k Determination of 25-Hydroxyvitamin D in Serum by HPLC and Immunoassay. Clin. Chem. 2003, 49, 1521–1524. DOI:10.1373/49.9.1521.
  • Lensmeyer, G. L.; Wiebe, D. A.; Binkley, N.; Drezner, M. K. HPLC Method for 25-Hydroxyvitamin D Measurement: Comparison with Contemporary Assays. Clin. Chem. 2006, 52, 1120–1126. DOI:10.1373/clinchem.2005.064956.
  • Altieri, B.; Cavalier, E.; Bhattoa, H. P.; Pérez-López, F. R.; López-Baena, M. T.; Pérez-Roncero, G. R.; Chedraui, P.; Annweiler, C.; Della Casa, S.; Zelzer, S.; et al. Vitamin D Testing: Advantages and Limits of the Current Assays. Eur. J. Clin. Nutr. 2020, 74, 231–247. DOI:10.1038/s41430-019-0553-3.
  • Walter, T. H.; Iraneta, P.; Capparella, M. Mechanism of Retention Loss When C8 and C18 HPLC Columns Are Used with Highly Aqueous Mobile Phases. J. Chromatogr. A 2005, 1075, 177–183. DOI:10.1016/j.chroma.2005.04.039.
  • Brown, C. L.; Dornan, L. M.; Muldoon, M. J.; Hembre, R. T.; Stevenson, P. J.; Manesiotis, P. Comparison of Three Stationary Phases in the Separation of Polyphenyls by Liquid Chromatography. J. Chromatogr. A 2022, 1671, 462992. DOI:10.1016/j.chroma.2022.462992.
  • Hu, N.; Wei, F.; Lv, X.; Wu, L.; Dong, X. Y.; Chen, H. Profiling of Triacylglycerols in Plant Oils by High-Performance Liquid Chromatography-Atmosphere Pressure Chemical Ionization Mass Spectrometry Using a Novel Mixed-Mode Column. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 972, 65–72. DOI:10.1016/j.jchromb.2014.09.039.
  • Walczak-Skierska, J.; Szultka-Młyńska, M.; Pauter, K.; Buszewski, B. Study of Chromatographic Behavior of Antibiotic Drugs and Their Metabolites Based on Quantitative Structure-Retention Relationships with the Use of HPLC-DAD. J. Pharm. Biomed. Anal. 2020, 184, 113187. DOI:10.1016/j.jpba.2020.113187.
  • Sridhar, S. K.; Divya, S.; Madhuri, R.; Sudhakar, M. In UPLC - A Dynamic and Expeditious Approach to Liquid Chromatography. 2013.
  • Hagenhoff, S.; Hayen, H. LC/MS Analysis of Vitamin D Metabolites by Dielectric Barrier Discharge Ionization and a Comparison with Electrospray Ionization and Atmospheric Pressure Chemical Ionization. Anal. Bioanal. Chem. 2018, 410, 4905–4911. DOI:10.1007/s00216-018-1137-0.
  • Zelzer, S.; Goff, C. L.; Peeters, S.; Calaprice, C.; Meinitzer, A.; Enko, D.; Goessler, W.; Herrmann, M.; Cavalier, E. Comparison of Two LC-MS/MS Methods for the Quantification of 24,25-Dihydroxyvitamin D3 in Patients and External Quality Assurance Samples. Clin. Chem. Lab. Med. 2022, 60, 74–81. DOI:10.1515/cclm-2021-0792.
  • Hu, T.; Li, H.; Liu, H.; Cong, L.; Liu, L.; An, Z. High Throughput UHPLC-MS/MS Method for the Simultaneous Quantification of Six Vitamin D Metabolites: Application for Vitamin D Determination in Patients after Liver or Kidney Transplantation. Anal. Methods 2020, 12, 5591–5600. DOI:10.1039/D0AY01088J.
  • Rola, R.; Kowalski, K.; Bieńkowski, T.; Studzińska, S. Improved Sample Preparation Method for Fast LC-MS/MS Analysis of Vitamin D Metabolites in Serum. J. Pharm. Biomed. Anal. 2020, 190, 113529. DOI:10.1016/j.jpba.2020.113529.
  • Jenkinson, C.; Desai, R.; Slominski, A. T.; Tuckey, R. C.; Hewison, M.; Handelsman, D. J. Simultaneous Measurement of 13 Circulating Vitamin D3 and D2 Mono and Dihydroxy Metabolites Using Liquid Chromatography Mass Spectrometry. Clin. Chem. Lab. Med. 2021, 59, 1642–1652. DOI:10.1515/cclm-2021-0441.
  • Abouzid, M.; Karaźniewicz-Łada, M.; Pawlak, K.; Burchardt, P.; Kruszyna, Ł.; Główka, F. Measurement of Plasma 25-Hydroxyvitamin D2, 25-Hydroxyvitamin D3 and 3-Epi-25-Hydroxyvitamin D3 in Population of Patients with Cardiovascular Disease by UPLC-MS/MS Method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1159, 122350. DOI:10.1016/j.jchromb.2020.122350.
  • Fabregat-Cabello, N.; Farre-Segura, J.; Huyghebaert, L.; Peeters, S.; Le Goff, C.; Souberbielle, J. C.; Cavalier, É. A Fast and Simple Method for Simultaneous Measurements of 25(OH)D, 24,25(OH)(2)D and the Vitamin D Metabolite Ratio (VMR) in Serum Samples by LC-MS/MS. Clin. Chim. Acta 2017, 473, 116–123. DOI:10.1016/j.cca.2017.08.024.
  • Abu Kassim, N. S.; Shaw, P. N.; Hewavitharana, A. K. Simultaneous Determination of 12 Vitamin D Compounds in Human Serum Using Online Sample Preparation and Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2018, 1533, 57–65. DOI:10.1016/j.chroma.2017.12.012.
  • Yang, M. Y.; Huang, C. Y.; Chiu, T. H. T.; Chang, K. C.; Lin, M. N.; Chen, L. Y.; Hu, A. Using Gas Chromatography and Mass Spectrometry to Determine 25-Hydroxyvitamin D Levels for Clinical Assessment of Vitamin D Deficiency. J. Food Drug Anal. 2019, 27, 494–501. DOI:10.1016/j.jfda.2018.12.010.
  • Kauppila, T. J.; Kersten, H.; Benter, T. The Ionization Mechanisms in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization. J. Am. Soc. Mass Spectrom. 2014, 25, 1870–1881. DOI:10.1007/s13361-014-0988-7.
  • Byrdwell, W. C. Quadruple Parallel Mass Spectrometry for Analysis of Vitamin D and Triacylglycerols in a Dietary Supplement. J. Chromatogr. A 2013, 1320, 48–65. DOI:10.1016/j.chroma.2013.10.031.
  • Adamec, J.; Jannasch, A.; Huang, J.; Hohman, E.; Fleet, J. C.; Peacock, M.; Ferruzzi, M. G.; Martin, B.; Weaver, C. M. Development and Optimization of an LC-MS/MS-Based Method for Simultaneous Quantification of Vitamin D2, Vitamin D3, 25-Hydroxyvitamin D2 and 25-Hydroxyvitamin D3. J. Sep. Sci. 2011, 34, 11–20. DOI:10.1002/jssc.201000410.
  • Gilbert-López, B.; Geltenpoth, H.; Meyer, C.; Michels, A.; Hayen, H.; Molina-Díaz, A.; García-Reyes, J. F.; Franzke, J. Performance of Dielectric Barrier Discharge Ionization Mass Spectrometry for Pesticide Testing: A Comparison with Atmospheric Pressure Chemical Ionization and Electrospray Ionization. Rapid Commun. Mass Spectrom. 2013, 27, 419–429. DOI:10.1002/rcm.6469.
  • Qi, Y.; Müller, M. J.; Volmer, D. A. Activation of Reactive MALDI Adduct Ions Enables Differentiation of Dihydroxylated Vitamin D Isomers. J. Am. Soc. Mass Spectrom. 2017, 28, 2532–2537. DOI:10.1007/s13361-017-1775-z.
  • Qi, Y.; Geib, T.; Schorr, P.; Meier, F.; Volmer, D. A. On the Isobaric Space of 25-Hydroxyvitamin D in Human Serum: Potential for Interferences in Liquid Chromatography/Tandem Mass Spectrometry, Systematic Errors and Accuracy Issues. Rapid Commun. Mass Spectrom. 2015, 29, 1–9. DOI:10.1002/rcm.7075.
  • Kailemia, M. J.; Ruhaak, L. R.; Lebrilla, C. B.; Amster, I. J. Oligosaccharide Analysis by Mass Spectrometry: A Review of Recent Developments. Anal. Chem. 2014, 86, 196–212. DOI:10.1021/ac403969n.
  • Clark, A. E.; Kaleta, E. J.; Arora, A.; Wolk, D. M. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: A Fundamental Shift in the Routine Practice of Clinical Microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. DOI:10.1128/cmr.00072-12.
  • van Kampen, J. J.; Burgers, P. C.; Gruters, R. A.; Osterhaus, A. D.; de Groot, R.; Luider, T. M.; Volmer, D. A. Quantitative Analysis of Antiretroviral Drugs in Lysates of Peripheral Blood Mononuclear Cells Using MALDI-Triple Quadrupole Mass Spectrometry. Anal. Chem. 2008, 80, 4969–4975. DOI:10.1021/ac800218a.
  • Volmer, D. A.; Sleno, L.; Bateman, K.; Sturino, C.; Oballa, R.; Mauriala, T.; Corr, J. Comparison of MALDI to ESI on a Triple Quadrupole Platform for Pharmacokinetic Analyses. Anal. Chem. 2007, 79, 9000–9006. DOI:10.1021/ac7016234.
  • Qi, Y.; Müller, M.; Stokes, C. S.; Volmer, D. A. Rapid Quantification of 25-Hydroxyvitamin D(3) in Human Serum by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2018, 29, 1456–1462. DOI:10.1007/s13361-018-1956-4.
  • Smith, K. W.; Flinders, B.; Thompson, P. D.; Cruickshank, F. L.; Mackay, C. L.; Heeren, R. M. A.; Cobice, D. F. Spatial Localization of Vitamin D Metabolites in Mouse Kidney by Mass Spectrometry Imaging. ACS Omega 2020, 5, 13430–13437. DOI:10.1021/acsomega.0c01697.
  • Takáts, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Mass Spectrometry Sampling under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473. DOI:10.1126/science.1104404.
  • Morato, N. M.; Cooks, R. G. Desorption Electrospray Ionization Mass Spectrometry: 20 Years. Acc. Chem. Res. 2023, 56, 2526–2536. DOI:10.1021/acs.accounts.3c00382.
  • Cotte-Rodríguez, I.; Takáts, Z.; Talaty, N.; Chen, H.; Cooks, R. G. Desorption Electrospray Ionization of Explosives on Surfaces: Sensitivity and Selectivity Enhancement by Reactive Desorption Electrospray Ionization. Anal. Chem. 2005, 77, 6755–6764. DOI:10.1021/ac050995+.
  • Chen, H.; Talaty, N. N.; Takáts, Z.; Cooks, R. G. Desorption Electrospray Ionization Mass Spectrometry for High-Throughput Analysis of Pharmaceutical Samples in the Ambient Environment. Anal. Chem. 2005, 77, 6915–6927. DOI:10.1021/ac050989d.
  • Maciel, L. Í.; L.; Bernardo, R. A.; Martins, R. O.; Batista Junior, A. C.; Oliveira, J. V. A.; Chaves, A. R.; Vaz, B. G. Desorption Electrospray Ionization and Matrix-Assisted Laser Desorption/Ionization as Imaging Approaches for Biological Samples Analysis. Anal. Bioanal. Chem. 2023, 415, 4125–4145. DOI:10.1007/s00216-023-04783-8.
  • Jeanne Dit Fouque, D.; Maroto, A.; Memboeuf, A. Internal Standard Quantification Using Tandem Mass Spectrometry of a Tryptic Peptide in the Presence of an Isobaric Interference. Anal. Chem. 2018, 90, 14126–14130. DOI:10.1021/acs.analchem.8b05016.
  • Wang, M.; Wang, C.; Han, X. Selection of Internal Standards for Accurate Quantification of Complex Lipid Species in Biological Extracts by Electrospray Ionization Mass spectrometry-What, How and Why? Mass Spectrom. Rev. 2017, 36, 693–714. DOI:10.1002/mas.21492.
  • Yang, S.; Mu, L.; Feng, R.; Kong, X. Selection of Internal Standards for Quantitative Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis Based on Correlation Coefficients. ACS Omega 2019, 4, 8249–8254. DOI:10.1021/acsomega.9b00566.
  • Ishige, T.; Satoh, M.; Ogawa, S.; Nishimura, M.; Matsushita, K.; Higashi, T.; Nomura, F. Improved Sensitivity of Serum/Plasma 1α,25-Dihydroxyvitamin D Quantification by DAPTAD Derivatization. Clin. Chim. Acta 2017, 473, 173–179. DOI:10.1016/j.cca.2017.08.033.
  • Chin, S.-F.; Osman, J.; Jamal, R. Simultaneous Determination of 25-Hydroxyvitamin D2 and 25-Hydroxyvitamin D3 in Human Serum by Ultra Performance Liquid Chromatography: An Economical and Validated Method with Bovine Serum Albumin. Clin. Chim. Acta 2018, 485, 60–66. DOI:10.1016/j.cca.2018.06.024.
  • Kamao, M.; Tatematsu, S.; Hatakeyama, S.; Sakaki, T.; Sawada, N.; Inouye, K.; Ozono, K.; Kubodera, N.; Reddy, G. S.; Okano, T. C-3 Epimerization of Vitamin D3 Metabolites and Further Metabolism of C-3 Epimers: 25-Hydroxyvitamin D3 is Metabolized to 3-Epi-25-Hydroxyvitamin D3 and Subsequently Metabolized through C-1alpha or C-24 Hydroxylation. J. Biol. Chem. 2004, 279, 15897–15907. DOI:10.1074/jbc.M311473200.
  • Bailey, D.; Veljkovic, K.; Yazdanpanah, M.; Adeli, K. Analytical Measurement and Clinical Relevance of Vitamin D(3) C3-Epimer. Clin. Biochem. 2013, 46, 190–196. DOI:10.1016/j.clinbiochem.2012.10.037.
  • Karras, S. N.; Shah, I.; Petroczi, A.; Goulis, D. G.; Bili, H.; Papadopoulou, F.; Harizopoulou, V.; Tarlatzis, B. C.; Naughton, D. P. An Observational Study Reveals That Neonatal Vitamin D is Primarily Determined by Maternal Contributions: Implications of a New Assay on the Roles of Vitamin D Forms. Nutr. J. 2013, 12, 77. DOI:10.1186/1475-2891-12-77.
  • Glendenning, P.; Inderjeeth, C. A. Controversy and Consensus regarding Vitamin D: Recent Methodological Changes and the Risks and Benefits of Vitamin D Supplementation. Crit. Rev. Clin. Lab. Sci. 2016, 53, 13–28. DOI:10.3109/10408363.2015.1074157.
  • Shah, I.; Al-Dabbagh, B.; Gariballa, S.; Al-Menhali, A.; Muhammad, N.; Yasin, J.; Ashraf, S. S. Application of a New Vitamin D Blood Test on the Emirati Population. J. Steroid Biochem. Mol. Biol. 2018, 180, 118–128. DOI:10.1016/j.jsbmb.2018.02.003.
  • Schleicher, R. L.; Encisco, S. E.; Chaudhary-Webb, M.; Paliakov, E.; McCoy, L. F.; Pfeiffer, C. M. Isotope Dilution Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Measurement of 25-Hydroxyvitamin D2, 25-Hydroxyvitamin D3 and 3-Epi-25-Hydroxyvitamin D3 in Human Serum. Clin. Chim. Acta 2011, 412, 1594–1599. DOI:10.1016/j.cca.2011.05.010.
  • Goldman, M. M.; Viec, K. V.; Caulfield, M. P.; Reitz, R. E.; McPhaul, M. J.; Clarke, N. J. The Measurement of 3-Epimer 25-Hydroxyvitamin D by Mass Spectrometry in Clinical Specimens Detects Inconsequential Levels in Adult Subjects. J. Investig. Med. 2014, 62, 690–695. DOI:10.2310/jim.0000000000000067.
  • van den Ouweland, J. M.; Beijers, A. M.; van Daal, H. Overestimation of 25-Hydroxyvitamin D3 by Increased Ionisation Efficiency of 3-Epi-25-Hydroxyvitamin D3 in LC-MS/MS Methods Not Separating Both Metabolites as Determined by an LC-MS/MS Method for Separate Quantification of 25-Hydroxyvitamin D3, 3-Epi-25-Hydroxyvitamin D3 and 25-Hydroxyvitamin D2 in Human Serum. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 967, 195–202. DOI:10.1016/j.jchromb.2014.07.021.
  • Flynn, N.; Lam, F.; Dawnay, A. Enhanced 3-Epi-25-Hydroxyvitamin D3 Signal Leads to Overestimation of Its Concentration and Amplifies Interference in 25-Hydroxyvitamin D LC-MS/MS Assays. Ann. Clin. Biochem. 2014, 51, 352–359. DOI:10.1177/0004563213497691.
  • Schorr, P.; Kovačević, B.; Volmer, D. A. Overestimation of 3α- over 3β-25-Hydroxyvitamin D(3) Levels in Serum: A Mechanistic Rationale for the Different Mass Spectral Properties of the Vitamin D Epimers. J. Am. Soc. Mass Spectrom. 2021, 32, 1116–1125. DOI:10.1021/jasms.1c00054.
  • Müller, M. J.; Stokes, C. S.; Volmer, D. A. Quantification of the 3α and 3β Epimers of 25-Hydroxyvitamin D(3) in Dried Blood Spots by LC-MS/MS Using Artificial Whole Blood Calibration and Chemical Derivatization. Talanta 2017, 165, 398–404. DOI:10.1016/j.talanta.2016.12.081.
  • Geib, T.; Meier, F.; Schorr, P.; Lammert, F.; Stokes, C. S.; Volmer, D. A. A Simple Micro-Extraction Plate Assay for Automated LC-MS/MS Analysis of Human Serum 25-Hydroxyvitamin D Levels. J. Mass Spectrom. 2015, 50, 275–279. DOI:10.1002/jms.3522.
  • Meunier, C.; Montérémal, J.; Faure, P.; Ducros, V. Four Years of LC-MS/MS Method for Quantification of 25-Hydroxyvitamin D (D2 + D3) for Clinical Practice. J. Chromatogr. B Analyt. Technol. Biomed Life Sci. 2015, 989, 54–61. DOI:10.1016/j.jchromb.2015.02.040.
  • Couchman, L.; Benton, C. M.; Moniz, C. F. Variability in the Analysis of 25-Hydroxyvitamin D by Liquid Chromatography-Tandem Mass Spectrometry: The Devil is in the Detail. Clin. Chim. Acta 2012, 413, 1239–1243. DOI:10.1016/j.cca.2012.04.003.
  • Chouinard, C. D.; Cruzeiro, V. W. D.; Beekman, C. R.; Roitberg, A. E.; Yost, R. A. Investigating Differences in Gas-Phase Conformations of 25-Hydroxyvitamin D3 Sodiated Epimers Using Ion Mobility-Mass Spectrometry and Theoretical Modeling. J. Am. Soc. Mass Spectrom. 2017, 28, 1497–1505. DOI:10.1007/s13361-017-1673-4.
  • Paglia, G.; Kliman, M.; Claude, E.; Geromanos, S.; Astarita, G. Applications of Ion-Mobility Mass Spectrometry for Lipid Analysis. Anal. Bioanal. Chem. 2015, 407, 4995–5007. DOI:10.1007/s00216-015-8664-8.
  • Fenn, L. S.; McLean, J. A. Structural Resolution of Carbohydrate Positional and Structural Isomers Based on Gas-Phase Ion Mobility-Mass Spectrometry. Phys. Chem. Chem. Phys. 2011, 13, 2196–2205. DOI:10.1039/C0CP01414A.
  • May, J. C.; McLean, J. A. Ion Mobility-Mass Spectrometry: Time-Dispersive Instrumentation. Anal. Chem. 2015, 87, 1422–1436. DOI:10.1021/ac504720m.
  • Oranzi, N. R.; Lei, J.; Kemperman, R. H. J.; Chouinard, C. D.; Holmquist, B.; Garrett, T. J.; Yost, R. A. Rapid Quantitation of 25-Hydroxyvitamin D2 and D3 in Human Serum Using Liquid Chromatography/Drift Tube Ion Mobility-Mass Spectrometry. Anal. Chem. 2019, 91, 13555–13561. DOI:10.1021/acs.analchem.9b02683.
  • Binkley, N.; Krueger, D.; Cowgill, C. S.; Plum, L.; Lake, E.; Hansen, K. E.; DeLuca, H. F.; Drezner, M. K. Assay Variation Confounds the Diagnosis of Hypovitaminosis D: A Call for Standardization. J. Clin. Endocrinol. Metab. 2004, 89, 3152–3157. DOI:10.1210/jc.2003-031979.
  • Snellman, G.; Melhus, H.; Gedeborg, R.; Byberg, L.; Berglund, L.; Wernroth, L.; Michaëlsson, K. Determining Vitamin D Status: A Comparison between Commercially Available Assays. PLoS One 2010, 5, e11555. DOI:10.1371/journal.pone.0011555.
  • Binkley, N.; Sempos, C. T. Standardizing Vitamin D Assays: The Way Forward. J. Bone Miner Res. 2014, 29, 1709–1714. DOI:10.1002/jbmr.2252.
  • Wise, S. A.; Camara, J. E.; Sempos, C. T.; Lukas, P.; Le Goff, C.; Peeters, S.; Burdette, C. Q.; Nalin, F.; Hahm, G.; Durazo-Arvizu, R. A.; et al. Vitamin D Standardization Program (VDSP) Intralaboratory Study for the Assessment of 25-Hydroxyvitamin D Assay Variability and Bias. J. Steroid Biochem. Mol. Biol. 2021, 212, 105917. DOI:10.1016/j.jsbmb.2021.105917.
  • Cashman, K. D.; Kiely, M.; Kinsella, M.; Durazo-Arvizu, R. A.; Tian, L.; Zhang, Y.; Lucey, A.; Flynn, A.; Gibney, M. J.; Vesper, H. W.; et al. Evaluation of Vitamin D Standardization Program Protocols for Standardizing Serum 25-Hydroxyvitamin D Data: A Case Study of the Program’s Potential for National Nutrition and Health Surveys. Am. J. Clin. Nutr. 2013, 97, 1235–1242. DOI:10.3945/ajcn.112.057182.
  • Tai, S. S.; Bedner, M.; Phinney, K. W. Development of a Candidate Reference Measurement Procedure for the Determination of 25-Hydroxyvitamin D3 and 25-Hydroxyvitamin D2 in Human Serum Using Isotope-Dilution Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chem 2010, 82, 1942–1948. DOI:10.1021/ac9026862.
  • Mineva, E. M.; Schleicher, R. L.; Chaudhary-Webb, M.; Maw, K. L.; Botelho, J. C.; Vesper, H. W.; Pfeiffer, C. M. A Candidate Reference Measurement Procedure for Quantifying Serum Concentrations of 25-Hydroxyvitamin D3 and 25-Hydroxyvitamin D2 Using Isotope-Dilution Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2015, 407, 5615–5624. DOI:10.1007/s00216-015-8733-z.
  • Sempos, C. T.; Vesper, H. W.; Phinney, K. W.; Thienpont, L. M.; Coates, P. M, Vitamin D Standardization Program (VDSP). Vitamin D Status as an International Issue: National Surveys and the Problem of Standardization. Scand. J. Clin. Lab. Invest. Suppl. 2012, 243, 32–40. DOI:10.3109/00365513.2012.681935.
  • Phinney, K. W.; Sempos, C. T.; Tai, S. S.; Camara, J. E.; Wise, S. A.; Eckfeldt, J. H.; Hoofnagle, A. N.; Carter, G. D.; Jones, J.; Myers, G. L.; et al. Baseline Assessment of 25-Hydroxyvitamin D Reference Material and Proficiency Testing/External Quality Assurance Material Commutability: A Vitamin D Standardization Program Study. J. AOAC Int. 2017, 100, 1288–1293. DOI:10.5740/jaoacint.17-0291.
  • Bjerg, L. N.; Halgreen, J. R.; Hansen, S. H.; Morris, H. A.; Jørgensen, N. R. An Evaluation of Total 25-Hydroxyvitamin D Assay Standardization: Where Are we Today? J. Steroid Biochem. Mol. Biol. 2019, 190, 224–233. DOI:10.1016/j.jsbmb.2019.03.015.
  • Erdman, P.; Palmer-Toy, D. E.; Horowitz, G.; Hoofnagle, A. Accuracy-Based Vitamin D Survey: Six Years of Quality Improvement Guided by Proficiency Testing. Arch. Pathol. Lab. Med. 2019, 143, 1531–1538. DOI:10.5858/arpa.2018-0625-CP.
  • Sempos, C. T.; Binkley, N. 25-Hydroxyvitamin D Assay Standardisation and Vitamin D Guidelines Paralysis. Public Health Nutr. 2020, 23, 1153–1164. DOI:10.1017/s1368980019005251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.