110
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Mechanistic Insight Into the Reactivity of Frustrated Lewis Pairs: Liquid-State NMR Studies

References

  • Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Reversible, Metal-Free Hydrogen Activation. Science 2006, 314, 1124–1126. DOI: 10.1126/science.1134230.
  • Stephan, D. W. Frustrated Lewis Pairs“: a Concept for New Reactivity and Catalysis. Org. Biomol. Chem. 2008, 6, 1535–1539. DOI: 10.1039/b802575b.
  • Carden, J. L.; Dasgupta, A.; Melen, R. L. Halogenated Triarylboranes: Synthesis, Properties and Applications in Catalysis. Chem. Soc. Rev. 2020, 49, 1706–1725. DOI: 10.1039/c9cs00769e.
  • Tan, X. Y.; Wang, H. D. Frustrated Lewis Pair Catalysis: It Takes Two to Make a Thing Go Right. Chin. J. Chem. 2021, 39, 1344–1352. DOI: 10.1002/cjoc.202100570.
  • Erker, G. Frustrated Lewis Pairs: Some Recent Developments. Pure. Appl. Chem. 2012, 84, 2203–2217. DOI: 10.1351/PAC-CON-12-04-07.
  • Stephan, D. W.; Erker, G. Frustrated Lewis Pair Chemistry: Development and Perspectives. Angew. Chem. Int. Ed. Engl. 2015, 54, 6400–6441. DOI: 10.1002/anie.201409800.
  • Stephan, D. W.; Erker, G. Frustrated Lewis Pair Chemistry of Carbon, Nitrogen and Sulfur Oxides. Chem. Sci. 2014, 5, 2625–2641. DOI: 10.1039/C4SC00395K.
  • Chen, E. Y. X. Polymerization by Classical and Frustrated Lewis Pairs. Top. Curr. Chem. 2013, 334, 239–260. DOI: 10.1007/128_2012_372.
  • Chen, J.; Hong, M.; Chen, E. Y. Lewis Pair Polymerization for New Reactivity and Structure in Polymer Synthesis. Molecules 2018, 23, 915. DOI: 10.3390/molecules23040915.
  • McGraw, M. L.; Chen, E. Y. X. Lewis Pair Polymerization: Perspective on a Ten-Year Journey. Macromolecules 2020, 53, 6102–6122. DOI: 10.1021/acs.macromol.0c01156.
  • Xu, T. Q.; Li, C. H. Application of Lewis Pair in the Polymerization. Prog. Chem. 2015, 27, 1087–1092. DOI: 10.7536/Pc150166.
  • Ma, Y. Y.; Zhang, S.; Chang, C. R.; Huang, Z. Q.; Ho, J. C.; Qu, Y. Q. Semi-Solid and Solid Frustrated Lewis Pair Catalysts. Chem. Soc. Rev. 2018, 47, 5541–5553. DOI: 10.1039/c7cs00691h.
  • Li, N.; Zhang, W. X. Frustrated Lewis Pairs: Discovery and Overviews in Catalysis. Chin. J. Chem. 2020, 38, 1360–1370. DOI: 10.1002/cjoc.202000027.
  • Rocchigiani, L. Experimental Insights into the Structure and Reactivity of Frustrated Lewis Pairs. Isr. J. Chem. 2015, 55, 134–149. DOI: 10.1002/ijch.201400139.
  • Paradies, J. From Structure to Novel Reactivity in Frustrated Lewis Pairs. Coordin. Chem. Rev. 2019, 380, 170–183. DOI: 10.1016/j.ccr.2018.09.014.
  • Becker, C.; Trapp, P. C.; Neumann, B.; Stammler, H. G.; Mitzel, N. W. Para-Chlorotetrafluorophenyl-Boranes-Syntheses and Structures of a Series of Mono- and Bidentate Lewis Acids. Dalton Trans. 2022, 51, 6565–6575. DOI: 10.1039/d2dt00586g.
  • Pal, A.; Vanka, K. Proposing Late Transition Metal Complexes as Frustrated Lewis Pairs - a Computational Investigation. Dalton Trans. 2013, 42, 13866–13873. DOI: 10.1039/c3dt51677f.
  • Becerra, M.; Real-Enriquez, M.; Espinosa-Gavilanes, C.; Zambrano, C. H.; Almeida, R.; Torres, F. J.; Rincon, L. On the Thermodynamic Stability of the Intermolecular Association between Lewis Acids and Lewis Bases: A DFT Study. Theor Chem Acc 2016, 135, ARTN 77. DOI: 10.1007/s00214-016-1829-5.
  • Wu, D. L.; Liu, A. J.; Jia, D. Z. Density Functional Reactivity Theory Characterizing the Reactivity of Frustrated Lewis Pairs. Comput. Theor. Chem. 2018, 1131, 33–39. DOI: 10.1016/j.comptc.2018.03.027.
  • Sharma, G.; Newman, P. D.; Platts, J. A. A Review of Quantum Chemical Studies of Frustrated Lewis Pairs. J Mol Graph Model 2021, 105, 107846. DOI: 10.1016/j.jmgm.2021.107846.
  • Rosorius, C.; Daniliuc, C. G.; Fröhlich, R.; Kehr, G.; Erker, G. Structural Features and Reactions of a Geminal Frustrated Phosphane/Borane Lewis Pair. J. Organomet. Chem. 2013, 744, 149–155. DOI: 10.1016/j.jorganchem.2013.06.005.
  • Milovanović, M. R.; Andrić, J. M.; Medaković, V. B.; Djukic, J. P.; Zarić, S. D. Investigation of Interactions in Lewis Pairs between Phosphines and Boranes by Analyzing Crystal Structures from the Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2018, 74, 255–263. DOI: 10.1107/S2052520618003736.
  • Moreno, A.; Pregosin, P. S.; Veiros, L. F.; Albinati, A.; Rizzato, S. Ion Pairing and Salt Structure in Organic Salts through Diffusion, Overhauser, DFT and X-Ray Methods. Chemistry 2009, 15, 6848–6862. DOI: 10.1002/chem.200900021.
  • Marques, L. R.; Ando, R. A. Infrared Spectroscopy Evidence of Weak Interactions in Frustrated Lewis Pairs Formed by Tris(Pentafluorophenyl)Borane. ChemPhysChem. 2022, 24, e202200715. DOI: 10.1002/cphc.202200715.
  • Wiegand, T.; Eckert, H.; Grimme, S. Solid-State NMR as a Spectroscopic Tool for Characterizing Phosphane-Borane Frustrated Lewis Pairs. Top. Curr. Chem. 2013, 332, 291–345. DOI: 10.1007/128_2012_386.
  • Wang, L.; Kehr, G.; Daniliuc, C. G.; Brinkkötter, M.; Wiegand, T.; Wübker, A.-L.; Eckert, H.; Liu, L.; Brandenburg, J. G.; Grimme, S.; Erker, G. Solid State Frustrated Lewis Pair Chemistry. Chem. Sci. 2018, 9, 4859–4865. DOI: 10.1039/c8sc01089g.
  • Knitsch, R.; Brinkkötter, M.; Wiegand, T.; Kehr, G.; Erker, G.; Hansen, M. R.; Eckert, H. Solid-State NMR Techniques for the Structural Characterization of Cyclic Aggregates Based on Borane-Phosphane Frustrated Lewis Pairs. Molecules 2020, 25, 1400. DOI: 10.3390/molecules25061400.
  • Berry, D. B. G.; Clegg, I.; Codina, A.; Lyall, C. L.; Lowe, J. P.; Hintermair, U. Convenient and Accurate Insight into Solution-Phase Equilibria from FlowNMR Titrations. React. Chem. Eng. 2022, 7, 2009–2024. DOI: 10.1039/D2RE00123C.
  • Malär, A. A.; Sun, Q.; Zehnder, J.; Kehr, G.; Erker, G.; Wiegand, T. Proton-Phosphorous Connectivities Revealed by High-Resolution Proton-Detected Dolid-State NMR. Phys. Chem. Chem. Phys. 2022, 24, 7768–7778. DOI: 10.1039/d2cp00616b.
  • Maggioni, D.; Beringhelli, T.; D' Alfonso, G.; Malatesta, M. C.; Mercandelli, P.; Donghi, D. Competition between Hydrogen Bonds and Lewis Acid-Base Interactions in the Equilibria between Bis(Pentafluorophenyl)Borinic Acid and Pyridine: Insights from NMR, Diffractometric and Computational Studies. Z Phys. Chem. 2013, 227, 751–773. DOI: 10.1524/zpch.2013.0379.
  • Brown, L. C.; Hogg, J. M.; Gilmore, M.; Moura, L.; Imberti, S.; Gärtner, S.; Gunaratne, H. Q. N.; O'Donnell, R. J.; Artioli, N.; Holbrey, J. D.; Swadźba-Kwaśny, M. Frustrated Lewis Pairs in Ionic Liquids and Molecular Solvents - a Neutron Scattering and NMR Study of Encounter Complexes. Chem. Commun. (Camb) 2018, 54, 8689–8692. DOI: 10.1039/c8cc03794a.
  • Jupp, A. R. Evidence for the Encounter Complex in Frustrated Lewis Pair Chemistry. Dalton Trans. 2022, 51, 10681–10689. DOI: 10.1039/d2dt00655c.
  • Zhu, J.; An, K. Mechanistic Insight into the CO2 Capture by Amidophosphoranes: Interplay of the Ring Strain and the Trans Influence Determines the Reactivity of the Frustrated Lewis Pairs. Chem. Asian J. 2013, 8, 3147–3151. DOI: 10.1002/asia.201300864.
  • An, K.; Zhu, J. Why Does Activation of the Weaker C = S Bond in CS by P/N-Based Frustrated Lewis Pairs Require More Energy than That of the C = O Bond in CO? A DFT Study. Organometallics 2014, 33, 7141–7146. DOI: 10.1021/om5009346.
  • Guo, C.-X.; Schwedtmann, K.; Fidelius, J.; Hennersdorf, F.; Dickschat, A.; Bauzá, A.; Frontera, A.; Weigand, J. J. Bifunctional Fluorophosphonium Triflates as Intramolecular Frustrated Lewis Pairs: Reversible CO2 Sequestration and Binding of Carbonyls, Nitriles and Acetylenes. Chemistry 2021, 27, 13709–13714. DOI: 10.1002/chem.202102382.
  • Uhl, W.; Würthwein, E.-U. Novel Al-Based FLP Systems. Top. Curr. Chem. 2013, 334, 101–119. DOI: 10.1007/128_2012_374.
  • Federmann, P.; Bosse, T.; Wolff, S.; Cula, B.; Herwig, C.; Limberg, C. A Strained Intramolecular P/Al-FLP and Its Reactivity toward Allene. Chem. Commun. (Camb) 2022, 58, 13451–13454. DOI: 10.1039/d2cc05640b.
  • Federmann, P.; Müller, R.; Beckmann, F.; Lau, C.; Cula, B.; Kaupp, M.; Limberg, C. Synthesis of Intramolecular P/Al‐Based Frustrated Lewis Pairs via Aluminum‐Tin‐Exchange and Their Reactivity toward CO2. Chemistry 2022, 28, e202200404. DOI: 10.1002/chem.202200404.
  • Wickemeyer, L.; Aders, N.; Mix, A.; Neumann, B.; Stammler, H.-G.; Cabrera-Trujillo, J. J.; Fernández, I.; Mitzel, N. W. CarbonDioxide Reduction by an Al-O-P Frustrated Lewis Pair. Chem. Sci. 2022, 13, 8088–8094. DOI: 10.1039/d2sc01870e.
  • Wickemeyer, L.; Hartmann, L.; Neumann, B.; Stammler, H. G.; Mitzel, N. W. Differences in the Reactivity of Geminal Si-O-P and Al-O-P Frustrated Lewis Pairs. Chemistry 2022, 29, e202202842. DOI: 10.1002/chem.202202842.
  • Bodach, A.; Nöthling, N.; Felderhoff, M. Activation of Molecular Hydrogen by Inter- and Intramolecular Al-N Lewis Pairs. Eur J. Inorg. Chem. 2021, 2021, 1240–1243. DOI: 10.1002/ejic.202001152.
  • Schwendemann, S.; Oishi, S.; Saito, S.; Fröhlich, R.; Kehr, G.; Erker, G. Reaction of an “Invisible” Frustrated N/B Lewis Pair with Dihydrogen. Chem. Asian J. 2013, 8, 212–217. DOI: 10.1002/asia.201200776.
  • Wang, T.; Daniliuc, C. G.; Mück-Lichtenfeld, C.; Kehr, G.; Erker, G. Formation of Reactive π-Conjugated Frustrated N/B Pairs by Borane-Induced Propargyl Amine Rearrangement. J. Am. Chem. Soc. 2018, 140, 3635–3643. DOI: 10.1021/jacs.7b11958.
  • Mao, H.; Chen, Z. J.; Cheng, L. J.; Wang, K. The Activity and Reversibility of Intramolecular B/N Frustrated Lewis Pairs in the Hydrogenation. Int. J. Hydrogen Energ. 2021, 46, 110–118. DOI: 10.1016/j.ijhydene.2020.09.248.
  • Stephan, D. W.; Erker, G. Frustrated Lewis Pairs: Metal-Free Hydrogen Activation and More. Angew. Chem. Int. Ed. Engl. 2010, 49, 46–76. DOI: 10.1002/anie.200903708.
  • Macchioni, A.; Ciancaleoni, G.; Zuccaccia, C.; Zuccaccia, D. Determining Accurate Molecular Sizes in Solution through NMR Diffusion Spectroscopy. Chem. Soc. Rev. 2008, 37, 479–489. DOI: 10.1039/b615067p.
  • Ng, S.; Sathasivam, R. V.; Lo, K. M. Possible Intermolecular Association in Triphenyltin Chloride in the Solution State as Detected by NMR Spectroscopy. Magn. Reson. Chem. 2011, 49, 749–752. DOI: 10.1002/mrc.2827.
  • Takemasa, M.; Nishinari, K. Solution Structure of Molecular Associations Investigated Using NMR for Polysaccharides: Xanthan/Galactomannan Mixtures. J. Phys Chem B. 2016, 120, 3027–3037. DOI: 10.1021/acs.jpcb.5b11665.
  • Fernández, I.; Pregosin, P. S. 1H and 19F PGSE Diffusion and HOESY NMR Studies on Cationic Palladium (II) 1,3-Diphenylallyl Complexes in THF Solution. Magn. Reson. Chem. 2006, 44, 76–82. DOI: 10.1002/mrc.1729.
  • Nama, D.; Kumar, P. G. A.; Pregosin, P. S.; Geldbach, T. J.; Dyson, P. J. 1H, 19F-HOESY and PGSE Diffusion Studies on Ionic Liquids: The Effect of Co-Solvent on Structure. Inorg. Chim. Acta. 2006, 359, 1907–1911. DOI: 10.1016/j.ica.2005.09.015.
  • Rocchigiani, L.; Ciancaleoni, G.; Zuccaccia, C.; Macchioni, A. Probing the Association of Frustrated Phosphine-Borane Lewis Pairs in Solution by NMR Spectroscopy. J. Am. Chem. Soc. 2014, 136, 112–115. DOI: 10.1021/ja4119169.
  • Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Fröhlich, R.; Grimme, S.; Stephan, D. W. Rapid Intramolecular Heterolytic Dihydrogen Activation by a Four-Membered Heterocyclic Phosphane-Borane Adduct. Chem. Commun. (Camb) 2007, 47, 5072–5074. DOI: 10.1039/b710475h.
  • Axenov, K. V.; Mömming, C. M.; Kehr, G.; Fröhlich, R.; Erker, G. Structure and Dynamic Features of an Intramolecular Frustrated Lewis Pair. Chemistry 2010, 16, 14069–14073. DOI: 10.1002/chem.201001814.
  • Kehr, G.; Schwendemann, S.; Erker, G. Intramolecular Frustrated Lewis Pairs: Formation and Chemical Features. Top Curr Chem 2013, 332, 45–83. DOI: 10.1007/128_2012_373.
  • Wang, X.; Kehr, G.; Daniliuc, C. G.; Erker, G. Internal Adduct Formation of Active Intramolecular C4-Bridged Frustrated Phosphane/Borane Lewis Pairs. J. Am. Chem. Soc. 2014, 136, 3293–3303. DOI: 10.1021/ja413060u.
  • Sajid, M.; Kehr, G.; Wiegand, T.; Eckert, H.; Schwickert, C.; Pöttgen, R.; Cardenas, A. J. P.; Warren, T. H.; Fröhlich, R.; Daniliuc, C. G.; Erker, G. Noninteracting, Vicinal Frustrated P/B-Lewis Pair at the Norbornane Framework: Synthesis, Characterization, and Reactions. J. Am Chem Soc 2013, 135, 8882–8895. DOI: 10.1021/ja400338e.
  • Rosorius, C.; Kehr, G.; Fröhlich, R.; Grimme, S.; Erker, G. Electronic Control of Frustrated Lewis Pair Behavior: Chemistry of a Geminal Alkylidene-Bridged per-Pentafluorophenylated P/B Pair. Organometallics 2011, 30, 4211–4219. DOI: 10.1021/om200569k.
  • Stute, A.; Heletta, L.; Fröhlich, R.; Daniliuc, C. G.; Kehr, G.; Erker, G. Anomalous Staudinger Reaction at Intramolecular Frustrated P-B Lewis Pair Frameworks. Chem Commun (Camb) 2012, 48, 11739–11741. DOI: 10.1039/c2cc36782c.
  • Stute, A.; Kehr, G.; Daniliuc, C. G.; Fröhlich, R.; Erker, G. Electronic Control in Frustrated Lewis Pair Chemistry: Adduct Formation of Intramolecular FLP Systems with -P(C6F5)2 Lewis Base Components. Dalton Trans 2013, 42, 4487–4499. DOI: 10.1039/c2dt32806b.
  • Özgün, T.; Ye, K.-Y.; Daniliuc, C. G.; Wibbeling, B.; Liu, L.; Grimme, S.; Kehr, G.; Erker, G. Why Does the Intramolecular Trimethylene-Bridged Frustrated Lewis Pair Mes2PCH2CH2CH2B(C6F5)2 Not Activate Dihydrogen? Chemistry 2016, 22, 5988–5995. DOI: 10.1002/chem.201505200.
  • Marwitz, A. J.; Dutton, J. L.; Mercier, L. G.; Piers, W. E. Dihydrogen Activation with tBu3P/B(C6F5)3: A Chemically Competent Indirect Mechanism via in Situ-Generated p-tBu2P-C6F4-B(C6F5)2. J. Am Chem Soc 2011, 133, 10026–10029. DOI: 10.1021/ja203214f.
  • Rocchigiani, L.; Macchioni, A. Disclosing the Multi-Faceted world of weakly Interacting Inorganic Systems by Means of NMR Spectroscopy. Dalton Trans 2016, 45, 2785–2790. DOI: 10.1039/c5dt04620c.
  • Sieland, B.; Stahn, M.; Schoch, R.; Daniliuc, C.; Spicher, S.; Grimme, S.; Hansen, A.; Paradies, J. Dispersion Energy-Stabilized Boron and Phosphorus Lewis Pairs. Angew Chem Int Ed Engl 2023, 62, e202308752. DOI: 10.1002/anie.202308752.
  • Anaya de Parrodi, C.; Walsh, P. J. All Kinds of Reactivity: Recent Breakthroughs in Metal-Catalyzed Alkyne Chemistry. Angew Chem Int Ed Engl 2009, 48, 4679–4682. DOI: 10.1002/anie.200900900.
  • Hu, L. F.; Chen, D. J.; Yang, J. L.; Zhang, X. H. An Investigation of the Organoborane/Lewis Base Pairs on the Copolymerization of Propylene Oxide with Succinic Anhydride. Molecules 2020, 25, 253. DOI: 10.3390/molecules25020253.
  • Kummari, A.; Pappuru, S.; Chakraborty, D. Fully Alternating and Regioselective Ring-Opening Copolymerization of Phthalic Anhydride with Epoxides Using Highly Active Metal-Free Lewis Pairs as a Catalyst. Polym. Chem 2018, 9, 4052–4062. DOI: 10.1039/C8PY00715B.
  • Hu, L.-F.; Zhang, C.-J.; Wu, H.-L.; Yang, J.-L.; Liu, B.; Duan, H.-Y.; Zhang, X.-H. Highly Active Organic Lewis Pairs for the Copolymerization of Epoxides with Cyclic Anhydrides: Metal-Free Access to Well-Defined Aliphatic Polyesters. Macromolecules 2018, 51, 3126–3134. DOI: 10.1021/acs.macromol.8b00499.
  • Guo, Y.; Li, S. A Novel Addition Mechanism for the Reaction of “Frustrated Lewis Pairs” with Olefins. Eur J. Inorg Chem 2008, 2008, 2501–2505. DOI: 10.1002/ejic.200800281.
  • Jiang, C. F.; Blacque, O.; Berke, H. Activation of Terminal Alkynes by Frustrated Lewis Pairs. Organometallics 2010, 29, 125–133. DOI: 10.1021/om9008636.
  • Welch, G. C.; Prieto, R.; Dureen, M. A.; Lough, A. J.; Labeodan, O. A.; Höltrichter-Rössmann, T.; Stephan, D. W. Reactions of Phosphines with Electron Deficient Boranes. Dalton Trans 2009, 9, 1559–1570. DOI: 10.1039/b814486a.
  • Mandal, D.; Chen, T.; Qu, Z. W.; Grimme, S.; Stephan, D. W. Reactions of Diethylazo‐Dicarboxylate with Frustrated Lewis Pairs. Chemistry 2022, 28, e202201701. DOI: 10.1002/chem.202201701.
  • Wang, M.; Nudelman, F.; Matthes, R. R.; Shaver, M. P. Frustrated Lewis Pair Polymers as Responsive Self-Healing Gels. J. Am. Chem. Soc. 2017, 139, 14232–14236. DOI: 10.1021/jacs.7b07725.
  • Ménard, G.; Tran, L.; McCahill, J. S. J.; Lough, A. J.; Stephan, D. W. Contrasting the Reactivity of Ethylene and Propylene with P/Al and P/B Frustrated Lewis Pairs. Organometallics 2013, 32, 6759–6763. DOI: 10.1021/om400222w.
  • Jupp, A. R.; Stephan, D. W. New Directions for Frustrated Lewis Pair Chemistry. Trends Chem. 2019, 1, 35–48. DOI: 10.1016/j.trechm.2019.01.006.
  • Zhao, X.; Stephan, D. W. Olefin-Borane “Van Der Waals Complexes”: Intermediates in Frustrated Lewis Pair Addition Reactions. J. Am. Chem. Soc. 2011, 133, 12448–12450. DOI: 10.1021/ja205598k.
  • Dureen, M. A.; Lough, A.; Gilbert, T. M.; Stephan, D. W. B-H Activation by Frustrated Lewis Pairs: Borenium or Boryl Phosphonium Cation? Chem. Commun. (Camb) 2008, 36, 4303–4305. DOI: 10.1039/b808348g.
  • Ullrich, M. S.; Lough, A. J.; Stephan, D. W. Dihydrogen Activation by B(p-C6F4H)3 and Phosphines. Organometallics 2010, 29, 3647–3654. DOI: 10.1021/om100563m.
  • Sumerin, V.; Schulz, F.; Nieger, M.; Leskelä, M.; Repo, T.; Rieger, B. Facile Heterolytic H2 Activation by Amines and B(C6F5)3. Angew. Chem. Int. Ed. Engl. 2008, 47, 6001–6003. DOI: 10.1002/anie.200800935.
  • Greb, L.; Daniliuc, C. G.; Bergander, K.; Paradies, J. Functional-Group Tolerance in Frustrated Lewis Fairs: Hydrogenation of Nitroolefins and Acrylates. Angew. Chem. Int. Ed. Engl. 2013, 52, 5876–5879. DOI: 10.1002/anie.201210175.
  • Becker, C.; Schwabedissen, J.; Neumann, B.; Stammler, H. G.; Mitzel, N. W. Frustrated Lewis Pair Chemistry of Hydride Sponges. Dalton Trans. 2022, 51, 6547–6564. DOI: 10.1039/d2dt00585a.
  • McCahill, J. S.; Welch, G. C.; Stephan, D. W. Reactivity of “Frustrated Lewis Pairs”: Three-Component Reactions of Phosphines, a Borane, and Olefins. Angew. Chem. Int. Ed. Engl. 2007, 46, 4968–4971. DOI: 10.1002/anie.200701215.
  • Sorochkina, K.; Chernichenko, K.; Zhivonitko, V. V.; Nieger, M.; Repo, T. Water Reduction and Dihydrogen Addition in Aqueous Conditions with Ansa‐Phosphinoborane. Chemistry 2022, 28, e202201927. DOI: 10.1002/chem.202201927.
  • Samigullin, K.; Georg, I.; Bolte, M.; Lerner, H. W.; Wagner, M. A Highly Reactive Geminal P/B Frustrated Lewis Pair: Expanding the Scope to C-X (X = Cl, Br) Bond Activation. Chemistry 2016, 22, 3478–3484. DOI: 10.1002/chem.201504791.
  • Chen, E. Y.-X.; Marks, T. J. Cocatalysts for Metal-Catalyzed Olefin Polymerization: Activators, Activation Processes, and Structure − Activity Relationships. Chem. Rev. 2000, 100, 1391–1434. DOI: 10.1021/cr980462j.
  • Yang, J. L.; Wu, H. L.; Li, Y.; Zhang, X. H.; Darensbourg, D. J. Perfectly Alternating and Regioselective Copolymerization of Carbonyl Sulfide and Epoxides by Metal-Free Lewis Pairs. Angew. Chem. Int. Ed. Engl. 2017, 56, 5774–5779. DOI: 10.1002/anie.201701780.
  • Zhang, Y.; Miyake, G. M.; Chen, E. Y. Alane-Based Classical and Frustrated Lewis Pairs in Polymer Synthesis: Rapid Polymerization of MMA and Naturally Renewable Methylene Butyrolactones into High-Molecular-Weight Polymers. Angew. Chem. Int. Ed. Engl. 2010, 49, 10158–10162. DOI: 10.1002/anie.201005534.
  • Piedra-Arroni, E.; Brignou, P.; Amgoune, A.; Guillaume, S. M.; Carpentier, J. F.; Bourissou, D. A Dual Organic/Organometallic Approach for Catalytic Ring-Opening Polymerization. Chem. Commun. (Camb) 2011, 47, 9828–9830. DOI: 10.1039/c1cc13915k.
  • Hong, M.; Chen, J.; Chen, E. Y. Polymerization of Polar Monomers Mediated by Main-Group Lewis Acid-Base Pairs. Chem. Rev. 2018, 118, 10551–10616. DOI: 10.1021/acs.chemrev.8b00352.
  • Walther, P.; Krauß, A.; Naumann, S. Lewis Pair Polymerization of Epoxides via Zwitterionic Species as a Route to High-Molar-Mass Polyethers. Angew. Chem. Int. Ed. Engl. 2019, 58, 10737–10741. DOI: 10.1002/anie.201904806.
  • Zhao, W. C.; He, J. H.; Zhang, Y. T. Lewis Pairs Polymerization of Polar Vinyl Monomers. Sci. Bull. (Beijing) 2019, 64, 1830–1840. DOI: 10.1016/j.scib.2019.08.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.