315
Views
0
CrossRef citations to date
0
Altmetric
Review Article

MicroRNA Sensors Based on CRISPR/Cas12a Technologies: Evolution From Indirect to Direct Detection

, &

References

  • Friedman, R. C.; Farh, K. K.; Burge, C. B.; Bartel, D. P. Most Mammalian mRNAs Are Conserved Targets of microRNAs. Genome Res. 2009, 19, 92–105. DOI: 10.1101/gr.082701.108.
  • Jet, T.; Gines, G.; Rondelez, Y.; Taly, V. Advances in Multiplexed Techniques for the Detection and Quantification of microRNAs. Chem. Soc. Rev. 2021, 50, 4141–4161. DOI: 10.1039/d0cs00609b.
  • Ambros, V. The Functions of Animal microRNAs. Nature 2004, 431, 350–355. DOI: 10.1038/nature02871.
  • Iorio, M. V.; Ferracin, M.; Liu, C. G.; Veronese, A.; Spizzo, R.; Sabbioni, S.; Magri, E.; Pedriali, M.; Fabbri, M.; Campiglio, M.; et al. MicroRNA Gene Expression Deregulation in Human Breast Cancer. Cancer Res. 2005, 65, 7065–7070. DOI: 10.1158/0008-5472.
  • Lu, J.; Getz, G.; Miska, E. A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B. L.; Mak, R. H.; Ferrando, A. A.; et al. MicroRNA Expression Profiles Classify Human Cancers. Nature 2005, 435, 834–838. DOI: 10.1038/nature03702.
  • Volinia, S.; Calin, G. A.; Liu, C. G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; et al. A microRNA Expression Signature of Human Solid Tumors Defines Cancer Gene Targets. Proc. Natl. Acad. Sci. U S A 2006, 103, 2257–2261. DOI: 10.1073/pnas.0510565103.
  • van Rooij, E.; Olson, E. N. MicroRNA Therapeutics for Cardiovascular Disease: Opportunities and Obstacles. Nat. Rev. Drug Discov. 2012, 11, 860–872. DOI: 10.1038/nrd3864.
  • Hébert, S. S.; De Strooper, B. Molecular Biology. miRNAs in Neurodegeneration. Science 2007, 317, 1179–1180. DOI: 10.1126/science.1148530.
  • Hatley, M. E.; Patrick, D. M.; Garcia, M. R.; Richardson, J. A.; Bassel-Duby, R.; van Rooij, E.; Olson, E. N. Modulation of K-Ras-Dependent Lung Tumorigenesis by MicroRNA-21. Cancer Cell 2010, 18, 282–293. DOI: 10.1016/j.ccr.2010.08.013.
  • Li, Y. L.; Liu, X. M.; Zhang, C. Y.; Zhou, J. B.; Shao, Y.; Liang, C.; Wang, H. M.; Hua, Z. Y.; Lu, S. D.; Ma, Z. L. MicroRNA-34a/EGFR Axis Plays Pivotal Roles in Lung Tumorigenesis. Oncogenesis 2017, 6, e372. DOI: 10.1038/oncsis.2017.50.
  • Kim, T.; Croce, C. M. MicroRNA: Trends in Clinical Trials of Cancer Diagnosis and Therapy Strategies. Exp. Mol. Med. 2023, 55, 1314–1321. DOI: 10.1038/s12276-023-01050-9.
  • Schult, P.; Roth, H.; Adams, R. L.; Mas, C.; Imbert, L.; Orlik, C.; Ruggieri, A.; Pyle, A. M.; Lohmann, V. microRNA-122 Amplifies Hepatitis C Virus Translation by Shaping the Structure of the Internal Ribosomal Entry site. Nat. Commun. 2018, 9, 2613. DOI: 10.1038/s41467-018-05053-3.
  • Válóczi, A.; Hornyik, C.; Varga, N.; Burgyán, J.; Kauppinen, S.; Havelda, Z. Sensitive and Specific Detection of microRNAs by Northern Blot Analysis Using LNA-Modified Oligonucleotide Probes. Nucleic Acids Res. 2004, 32, e175. DOI: 10.1093/nar/gnh171.
  • Baker, M. MicroRNA Profiling: Separating Signal from Noise. Nat. Methods 2010, 7, 687–692. DOI: 10.1038/nmeth0910-687.
  • Yin, J. Q.; Zhao, R. C.; Morris, K. V. Profiling microRNA Expression with Microarrays. Trends Biotechnol. 2008, 26, 70–76. DOI: 10.1016/j.tibtech.2007.11.007.
  • Várallyay, E.; Burgyán, J.; Havelda, Z. MicroRNA Detection by Northern Blotting Using Locked Nucleic Acid Probes. Nat. Protoc. 2008, 3, 190–196. DOI: 10.1038/nprot.2007.528.
  • Ma, F.; Zhang, Q.; Zhang, C. Y. Catalytic Self-Assembly of Quantum-Dot-Based MicroRNA Nanosensor Directed by Toehold-Mediated Strand Displacement Cascade. Nano Lett. 2019, 19, 6370–6376. DOI: 10.1021/acs.nanolett.9b02544.
  • Hu, Y.; Rao, S. S.; Wang, Z. X.; Cao, J.; Tan, Y. J.; Luo, J.; Li, H. M.; Zhang, W. S.; Chen, C. Y.; Xie, H. Exosomes from Human Umbilical Cord Blood Accelerate Cutaneous Wound Healing through miR-21-3p-Mediated Promotion of Angiogenesis and Fibroblast Function. Theranostics 2018, 8, 169–184. DOI: 10.7150/thno.21234.
  • Madhavan, B.; Yue, S.; Galli, U.; Rana, S.; Gross, W.; Müller, M.; Giese, N. A.; Kalthoff, H.; Becker, T.; Büchler, M. W.; et al. Combined Evaluation of a Panel of Protein and miRNA Serum-Exosome Biomarkers for Pancreatic Cancer Diagnosis Increases Sensitivity and Specificity. Int. J. Cancer 2015, 136, 2616–2627. DOI: 10.1002/ijc.29324.
  • Zhang, J. X.; Song, W.; Chen, Z. H.; Wei, J. H.; Liao, Y. J.; Lei, J.; Hu, M.; Chen, G. Z.; Liao, B.; Lu, J.; et al. Prognostic and Predictive Value of a microRNA Signature in Stage II Colon Cancer: A microRNA Expression Analysis. Lancet Oncol. 2013, 14, 1295–1306. DOI: 10.1016/s1470-2045(13)70491-1.
  • Zhong, Z.; Lv, M.; Chen, J. Screening Differential Circular RNA Expression Profiles Reveals the Regulatory Role of circTCF25-miR-103a-3p/miR-107-CDK6 Pathway in Bladder Carcinoma. Sci. Rep. 2016, 6, 30919. DOI: 10.1038/srep30919.
  • Chen, C.; Ridzon, D. A.; Broomer, A. J.; Zhou, Z.; Lee, D. H.; Nguyen, J. T.; Barbisin, M.; Xu, N. L.; Mahuvakar, V. R.; Andersen, M. R.; et al. Real-Time Quantification of microRNAs by Stem-Loop RT-PCR. Nucleic Acids Res. 2005, 33, e179. DOI: 10.1093/nar/gni178.
  • Mestdagh, P.; Hartmann, N.; Baeriswyl, L.; Andreasen, D.; Bernard, N.; Chen, C.; Cheo, D.; D'Andrade, P.; DeMayo, M.; Dennis, L.; et al. Evaluation of Quantitative miRNA Expression Platforms in the microRNA Quality Control (miRQC) Study. Nat. Methods 2014, 11, 809–815. DOI: 10.1038/nmeth.3014.
  • Kilic, T.; Erdem, A.; Ozsoz, M.; Carrara, S. microRNA Biosensors: Opportunities and Challenges among Conventional and Commercially Available Techniques. Biosens. Bioelectron. 2018, 99, 525–546. DOI: 10.1016/j.bios.2017.08.007.
  • Huang, X.; Yuan, T.; Tschannen, M.; Sun, Z.; Jacob, H.; Du, M.; Liang, M.; Dittmar, R. L.; Liu, Y.; Liang, M.; et al. Characterization of Human Plasma-Derived Exosomal RNAs by Deep Sequencing. BMC Genomics 2013, 14, 319. DOI: 10.1186/1471-2164-14-319.
  • Jin, X.; Chen, Y.; Chen, H.; Fei, S.; Chen, D.; Cai, X.; Liu, L.; Lin, B.; Su, H.; Zhao, L.; et al. Evaluation of Tumor-Derived Exosomal miRNA as Potential Diagnostic Biomarkers for Early-Stage Non-Small Cell Lung Cancer Using Next-Generation Sequencing. Clin. Cancer Res. 2017, 23, 5311–5319. DOI: 10.1158/1078-0432.
  • Platt, R. J.; Chen, S.; Zhou, Y.; Yim, M. J.; Swiech, L.; Kempton, H. R.; Dahlman, J. E.; Parnas, O.; Eisenhaure, T. M.; Jovanovic, M.; et al. CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling. Cell 2014, 159, 440–455. DOI: 10.1016/j.cell.2014.09.014.
  • Mali, P.; Yang, L.; Esvelt, K. M.; Aach, J.; Guell, M.; DiCarlo, J. E.; Norville, J. E.; Church, G. M. RNA-Guided Human Genome Engineering via Cas9. Science 2013, 339, 823–826. DOI: 10.1126/science.1232033.
  • Joung, J.; Konermann, S.; Gootenberg, J. S.; Abudayyeh, O. O.; Platt, R. J.; Brigham, M. D.; Sanjana, N. E.; Zhang, F. Genome-Scale CRISPR-Cas9 Knockout and Transcriptional Activation Screening. Nat. Protoc. 2017, 12, 828–863. DOI: 10.1038/nprot.2017.016.
  • Gootenberg, J. S.; Abudayyeh, O. O.; Lee, J. W.; Essletzbichler, P.; Dy, A. J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N. M.; Freije, C. A.; et al. Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. DOI: 10.1126/science.aam9321.
  • Kellner, M. J.; Koob, J. G.; Gootenberg, J. S.; Abudayyeh, O. O.; Zhang, F. SHERLOCK: Nucleic Acid Detection with CRISPR Nucleases. Nat. Protoc. 2019, 14, 2986–3012. DOI: 10.1038/s41596-019-0210-2.
  • Aman, R.; Ali, Z.; Butt, H.; Mahas, A.; Aljedaani, F.; Khan, M. Z.; Ding, S.; Mahfouz, M. RNA Virus Interference via CRISPR/Cas13a System in Plants. Genome Biol. 2018, 19, 1. DOI: 10.1186/s13059-017-1381-1.
  • Bruch, R.; Baaske, J.; Chatelle, C.; Meirich, M.; Madlener, S.; Weber, W.; Dincer, C.; Urban, G. A. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics. Adv. Mater. 2019, 31, e1905311. DOI: 10.1002/adma.201905311.
  • Fozouni, P.; Son, S.; Díaz de León Derby, M.; Knott, G. J.; Gray, C. N.; D'Ambrosio, M. V.; Zhao, C.; Switz, N. A.; Kumar, G. R.; Stephens, S. I.; et al. Amplification-Free Detection of SARS-CoV-2 with CRISPR-Cas13a and Mobile Phone Microscopy. Cell 2021, 184, 323–333.e9. DOI: 10.1016/j.cell.2020.12.001.
  • Chen, J. S.; Ma, E.; Harrington, L. B.; Da Costa, M.; Tian, X.; Palefsky, J. M.; Doudna, J. A. CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity. Science 2018, 360, 436–439. DOI: 10.1126/science.aar6245.
  • Wang, X.; Xiong, E.; Tian, T.; Cheng, M.; Lin, W.; Wang, H.; Zhang, G.; Sun, J.; Zhou, X. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Lateral Flow Nucleic Acid Assay. ACS Nano 2020, 14, 2497–2508. DOI: 10.1021/acsnano.0c00022.
  • Moon, J.; Kwon, H. J.; Yong, D.; Lee, I. C.; Kim, H.; Kang, H.; Lim, E. K.; Lee, K. S.; Jung, J.; Park, H. G.; et al. Colorimetric Detection of SARS-CoV-2 and Drug-Resistant pH1N1 Using CRISPR/dCas9. ACS Sens. 2020, 5, 4017–4026. DOI: 10.1021/acssensors.0c01929.
  • Wang, L.; Shen, X.; Wang, T.; Chen, P.; Qi, N.; Yin, B. C.; Ye, B. C. A Lateral Flow Strip Combined with Cas9 Nickase-Triggered Amplification Reaction for Dual Food-Borne Pathogen Detection. Biosens. Bioelectron. 2020, 165, 112364. DOI: 10.1016/j.bios.2020.112364.
  • Kordasht, H. K.; Hasanzadeh, M. Specific Monitoring of Aflatoxin M1 in Real Samples Using Aptamer Binding to DNFS Based on Turn-on Method: A Novel Biosensor. J. Mol. Recognit. 2020, 33, e2832. DOI: 10.1002/jmr.2832.
  • Kordasht, H. K.; Hasanzadeh, M. Aptamer Based Recognition of Cancer Cells: Recent Progress and Challenges in Bioanalysis. Talanta 2020, 220, 121436. DOI: 10.1016/j.talanta.2020.121436.
  • Kordasht, H. K.; Saadati, A.; Hasanzadeh, M. A Flexible Paper Based Electrochemical Portable Biosensor towards Recognition of Ractopamine as Animal Feed Additive: Low Cost Diagnostic Tool towards Food Analysis Using Aptasensor Technology. Food Chem. 2022, 373, 131411. DOI: 10.1016/j.foodchem.2021.131411.
  • Cheng, X.; Li, Y.; Kou, J.; Liao, D.; Zhang, W.; Yin, L.; Man, S.; Ma, L. Novel Non-Nucleic Acid Targets Detection Strategies Based on CRISPR/Cas Toolboxes: A Review. Biosens. Bioelectron. 2022, 215, 114559. DOI: 10.1016/j.bios.2022.114559.
  • Mao, Z.; Chen, R.; Wang, X.; Zhou, Z.; Peng, Y.; Li, S.; Han, D.; Li, S.; Wang, Y.; Han, T.; et al. CRISPR/Cas12a-Based Technology: A Powerful Tool for Biosensing in Food Safety. Trends Food Sci. Technol. 2022, 122, 211–222. DOI: 10.1016/j.tifs.2022.02.030.
  • Nouri, R.; Tang, Z.; Dong, M.; Liu, T.; Kshirsagar, A.; Guan, W. CRISPR-Based Detection of SARS-CoV-2: A Review from Sample to Result. Biosens. Bioelectron. 2021, 178, 113012. DOI: 10.1016/j.bios.2021.113012.
  • Wu, H.; Chen, X.; Zhang, M.; Wang, X.; Chen, Y.; Qian, C.; Wu, J.; Xu, J. Versatile Detection with CRISPR/Cas System from Applications to Challenges. TrAC-Trends Anal. Chem. 2021, 135, 116150. DOI: 10.1016/j.trac.2020.116150.
  • Yin, L.; Man, S.; Ye, S.; Liu, G.; Ma, L. CRISPR-Cas Based Virus Detection: Recent Advances and Perspectives. Biosens. Bioelectron. 2021, 193, 113541. DOI: 10.1016/j.bios.2021.113541.
  • Zeng, R.; Gong, H.; Li, Y.; Li, Y.; Lin, W.; Tang, D.; Knopp, D. CRISPR-Cas12a-Derived Photoelectrochemical Biosensor for Point-Of-Care Diagnosis of Nucleic Acid. Anal. Chem. 2022, 94, 7442–7448. DOI: 10.1021/acs.analchem.2c01373.
  • Li, Y.; Zeng, R.; Wang, W.; Xu, J.; Gong, H.; Li, L.; Li, M.; Tang, D. Size-Controlled Engineering Photoelectrochemical Biosensor for Human Papillomavirus-16 Based on CRISPR-Cas12a-Induced Disassembly of Z-Scheme Heterojunctions. ACS Sens. 2022, 7, 1593–1601. DOI: 10.1021/acssensors.2c00691.
  • Ali, M. M.; Li, F.; Zhang, Z.; Zhang, K.; Kang, D.-K.; Ankrum, J. A.; Le, X. C.; Zhao, W. Rolling Circle Amplification: A Versatile Tool for Chemical Biology, Materials Science and Medicine. Chem. Soc. Rev. 2014, 43, 3324–3341. DOI: 10.1039/c3cs60439j.
  • Zhao, W.; Ali, M. M.; Brook, M. A.; Li, Y. Rolling Circle Amplification: Applications in Nanotechnology and Biodetection with Functional Nucleic Acids. Angew. Chem. Int. Ed. Engl. 2008, 47, 6330–6337. DOI: 10.1002/anie.200705982.
  • Cheng, Y.; Zhang, X.; Li, Z.; Jiao, X.; Wang, Y.; Zhang, Y. Highly Sensitive Determination of microRNA Using Target-Primed and Branched Rolling-Circle Amplification. Angew. Chem. Int. Ed. Engl. 2009, 48, 3268–3272. DOI: 10.1002/anie.200805665.
  • Zhang, K.; Lv, S.; Lin, Z.; Li, M.; Tang, D. Bio-Bar-Code-Based Photoelectrochemical Immunoassay for Sensitive Detection of Prostate-Specific Antigen Using Rolling Circle Amplification and Enzymatic Biocatalytic Precipitation. Biosens. Bioelectron. 2018, 101, 159–166. DOI: 10.1016/j.bios.2017.10.031.
  • Qiu, Z.; Shu, J.; He, Y.; Lin, Z.; Zhang, K.; Lv, S.; Tang, D. CdTe/CdSe Quantum Dot-Based Fluorescent Aptasensor with Hemin/G-Quadruplex DNzyme for Sensitive Detection of Lysozyme Using Rolling Circle Amplification and Strand Hybridization. Biosens. Bioelectron. 2017, 87, 18–24. DOI: 10.1016/j.bios.2016.08.003.
  • Chen, H.; Zhuang, Z.; Chen, Y.; Qiu, C.; Qin, Y.; Tan, C.; Tan, Y.; Jiang, Y. A Universal Platform for One-Pot Detection of Circulating Non-Coding RNA Combining CRISPR-Cas12a and Branched Rolling Circle Amplification. Anal. Chim. Acta. 2023, 1246, 340896. DOI: 10.1016/j.aca.2023.340896.
  • Niu, C.; Liu, J.; Xing, X.; Zhang, C. Exploring the Trans-Cleavage Activity with Rolling Circle Amplification for Fast Detection of miRNA. Biodes. Res. 2023, 5, 0010. DOI: 10.34133/bdr.0010.
  • Liu, M.; Ma, W.; Zhou, Y.; Liu, B.; Zhang, X.; Zhang, S. A Label-Free Photoelectrochemical Biosensor Based on CRISPR/Cas12a System Responsive Deoxyribonucleic Acid Hydrogel and "Click" Chemistry. ACS Sens. 2022, 7, 3153–3160. DOI: 10.1021/acssensors.2c01636.
  • Shen, H.; Yang, H.; Qileng, A.; Ma, Y.; Liang, H.; Meng, J.; Lei, H.; Liu, Y.; Liu, W. Programmable Readout Sensor for microRNA: CRISPR/Cas12a-Assisted Multi-Amplification Strategy Activated Photoelectrochemistry-Colorimetry Detection. Sens. Actuators B Chem. 2022, 371, 132585. DOI: 10.1016/j.snb.2022.132585.
  • Xia, X.; Chen, Q.; Ren, D.; Xu, G.; Wei, F.; Yang, J.; Hu, Q.; Cen, Y. Self-Primer Exponential Cas12a Tandem Reaction-Amplified and Cu(tz) Nanosheets Based Neoteric Biosensing Platform for Quantifying Multiple mTBI-Related miRNAs. Sens. Actuators B Chem. 2023, 393, 134327. DOI: 10.1016/j.snb.2023.134327.
  • Zhao, W.; Zhang, X.; Tian, R.; Li, H.; Zhong, S.; Yu, R. The Sensor Platform Combined with Dual Signal Amplification and Based on UCNPs and CRISPR/Cas12a for MiRNA-21 Detection. Sens. Actuators B Chem. 2023, 393, 134238. DOI: 10.1016/j.snb.2023.134238.
  • Zhou, Y.; Xie, S.; Liu, B.; Wang, C.; Huang, Y.; Zhang, X.; Zhang, S. Chemiluminescence Sensor for miRNA-21 Detection Based on CRISPR-Cas12a and Cation Exchange Reaction. Anal. Chem. 2023, 95, 3332–3339. DOI: 10.1021/acs.analchem.2c04484.
  • Zhou, S.; Sun, H.; Dong, J.; Lu, P.; Deng, L.; Liu, Y.; Yang, M.; Huo, D.; Hou, C. Highly Sensitive and Facile microRNA Detection Based on Target Triggered Exponential Rolling-Circle Amplification Coupling with CRISPR/Cas12a. Anal. Chim. Acta. 2023, 1265, 341278. DOI: 10.1016/j.aca.2023.341278.
  • Zhang, G.; Zhang, L.; Tong, J.; Zhao, X.; Ren, J. CRISPR-Cas12a Enhanced Rolling Circle Amplification Method for Ultrasensitive miRNA Detection. Microchem. J. 2020, 158, 105239. DOI: 10.1016/j.microc.2020.105239.
  • Jiang, W.; Chen, Z.; Lu, J.; Ren, X.; Ma, Y. Ultrasensitive Visual Detection of miRNA-143 Using a CRISPR/Cas12a-Based Platform Coupled with Hyperbranched Rolling Circle Amplification. Talanta 2023, 251, 123784. DOI: 10.1016/j.talanta.2022.123784.
  • Jin, J.; Vaud, S.; Zhelkovsky, A. M.; Posfai, J.; McReynolds, L. A. Sensitive and Specific miRNA Detection Method Using SplintR Ligase. Nucleic Acids Res. 2016, 44, e116. DOI: 10.1093/nar/gkw399.
  • Li, N.; Jablonowski, C.; Jin, H.; Zhong, W. Stand-Alone Rolling Circle Amplification Combined with Capillary Electrophoresis for Specific Detection of Small RNA. Anal. Chem. 2009, 81, 4906–4913. DOI: 10.1021/ac900578a.
  • Zhang, D. Y.; Seelig, G. Dynamic DNA Nanotechnology Using Strand-Displacement Reactions. Nat. Chem. 2011, 3, 103–113. DOI: 10.1038/nchem.957.
  • Feng, S.; Chen, H.; Hu, Z.; Wu, T.; Liu, Z. Ultrasensitive Detection of miRNA via CRISPR/Cas12a Coupled with Strand Displacement Amplification Reaction. ACS Appl. Mater. Interfaces 2023, 15, 28933–28940. DOI: 10.1021/acsami.3c03399.
  • Zhou, Z.; Liu, Z.; Zhang, H.; Li, C.; Deng, K. Ψ-Type Hybridization and CRISPR/Cas12a-Based Two-Stage Signal Amplification for microRNA Detection. Sens. Actuators B Chem. 2022, 371, 132535. DOI: 10.1016/j.snb.2022.132535.
  • Van Ness, J.; Van Ness, L. K.; Galas, D. J. Isothermal Reactions for the Amplification of Oligonucleotides. Proc. Natl. Acad. Sci. U S A 2003, 100, 4504–4509. DOI: 10.1073/pnas.0730811100.
  • Yang, Y.; Yang, J.; Gong, F.; Zuo, P.; Tan, Z.; Li, J.; Xie, C.; Ji, X.; Li, W.; He, Z. Combining CRISPR/Cas12a with Isothermal Exponential Amplification as an Ultrasensitive Sensing Platform for microRNA Detection. Sens. Actuators B Chem. 2022, 367, 132158. DOI: 10.1016/j.snb.2022.132158.
  • Dong, J.; Zhou, S.; Liu, Y.; Deng, L.; Huang, Z.; Chen, J.; Li, J.; Hou, C.; Huo, D. A Self-Supply crRNA-Mediated CRISPR/Cas12a-Driven Controlled-Release Homogeneous Biosensor for Ultrasensitive Detection of microRNA. Chem. Eng. J. 2023, 471, 144507. DOI: 10.1016/j.cej.2023.144507.
  • Song, Y.; Zhang, Y.; Wang, T. H. Single Quantum Dot Analysis Enables Multiplexed Point Mutation Detection by Gap Ligase Chain Reaction. Small 2013, 9, 1096–1105. DOI: 10.1002/smll.201202242.
  • Yin, H.; Huang, X.; Ma, W.; Xu, L.; Zhu, S.; Kuang, H.; Xu, C. Ligation Chain Reaction Based Gold Nanoparticle Assembly for Ultrasensitive DNA Detection. Biosens. Bioelectron. 2014, 52, 8–12. DOI: 10.1016/j.bios.2013.07.064.
  • Abravaya, K.; Carrino, J. J.; Muldoon, S.; Lee, H. H. Detection of Point Mutations with a Modified Ligase Chain Reaction (Gap-LCR). Nucleic Acids Res. 1995, 23, 675–682. DOI: 10.1093/nar/23.4.675.
  • Yan, X.; Zhang, J.; Jiang, Q.; Jiao, D.; Cheng, Y. Integration of the Ligase Chain Reaction with the CRISPR-Cas12a System for Homogeneous, Ultrasensitive, and Visual Detection of microRNA. Anal. Chem. 2022, 94, 4119–4125. DOI: 10.1021/acs.analchem.2c00294.
  • Gibriel, A. A.; Adel, O. Advances in Ligase Chain Reaction and Ligation-Based Amplifications for Genotyping Assays: Detection and Applications. Mutat. Res. Rev. Mutat. Res. 2017, 773, 66–90. DOI: 10.1016/j.mrrev.2017.05.001.
  • Liu, W.; Zhu, M.; Liu, H.; Wei, J.; Zhou, X.; Xing, D. Invading Stacking Primer: A Trigger for High-Efficiency Isothermal Amplification Reaction with Superior Selectivity for Detecting microRNA Variants. Biosens. Bioelectron. 2016, 81, 309–316. DOI: 10.1016/j.bios.2016.02.073.
  • Chen, M.; Luo, R.; Li, S.; Li, H.; Qin, Y.; Zhou, D.; Liu, H.; Gong, X.; Chang, J. Paper-Based Strip for Ultrasensitive Detection of OSCC-Associated Salivary MicroRNA via CRISPR/Cas12a Coupling with is-Primer Amplification Reaction. Anal. Chem. 2020, 92, 13336–13342. DOI: 10.1021/acs.analchem.0c02642.
  • Tjong, V.; Yu, H.; Hucknall, A.; Rangarajan, S.; Chilkoti, A. Amplified on-Chip Fluorescence Detection of DNA Hybridization by Surface-Initiated Enzymatic Polymerization. Anal. Chem. 2011, 83, 5153–5159. DOI: 10.1021/ac200946t.
  • Gouge, J.; Rosario, S.; Romain, F.; Beguin, P.; Delarue, M. Structures of Intermediates along the Catalytic Cycle of Terminal Deoxynucleotidyltransferase: Dynamical Aspects of the Two-Metal Ion Mechanism. J. Mol. Biol. 2013, 425, 4334–4352. DOI: 10.1016/j.jmb.2013.07.009.
  • Lu, Z.; Ni, W.; Liu, N.; Jin, D.; Li, T.; Li, K.; Zhang, Y.; Yao, Q.; Zhang, G.-J. CRISPR/Cas12a-Based Fluorescence Biosensor for Detection of Exosomal miR-21 Derived from Lung Cancer. Microchem. J. 2023, 187, 108370. DOI: 10.1016/j.microc.2022.108370.
  • Li, X.; Liu, X.; Wei, J.; Bu, S.; Li, Z.; Hao, Z.; Zhang, W.; Wan, J. Ultrasensitive Detection of microRNAs Based on Click Chemistry-Terminal Deoxynucleotidyl Transferase Combined with CRISPR/Cas12a. Biochimie 2023, 208, 38–45. DOI: 10.1016/j.biochi.2022.12.001.
  • Yoo, E.; Choe, D.; Shin, J.; Cho, S.; Cho, B. K. Mini Review: Enzyme-Based DNA Synthesis and Selective Retrieval for Data Storage. Comput. Struct. Biotechnol. J. 2021, 19, 2468–2476. DOI: 10.1016/j.csbj.2021.04.057.
  • Liu, D.; Shen, H.; Zhang, Y.; Shen, D.; Zhu, M.; Song, Y.; Zhu, Z.; Yang, C. A Microfluidic-Integrated Lateral Flow Recombinase Polymerase Amplification (MI-IF-RPA) Assay for Rapid COVID-19 Detection. Lab Chip 2021, 21, 2019–2026. DOI: 10.1039/d0lc01222j.
  • Sun, Y.; Yu, L.; Liu, C.; Ye, S.; Chen, W.; Li, D.; Huang, W. One-Tube SARS-CoV-2 Detection Platform Based on RT-RPA and CRISPR/Cas12a. J. Transl. Med. 2021, 19, 74. DOI: 10.1186/s12967-021-02741-5.
  • Zhang, W. S.; Pan, J.; Li, F.; Zhu, M.; Xu, M.; Zhu, H.; Yu, Y.; Su, G. Reverse Transcription Recombinase Polymerase Amplification Coupled with CRISPR-Cas12a for Facile and Highly Sensitive Colorimetric SARS-CoV-2 Detection. Anal. Chem. 2021, 93, 4126–4133. DOI: 10.1021/acs.analchem.1c00013.
  • Huang, W. E.; Lim, B.; Hsu, C. C.; Xiong, D.; Wu, W.; Yu, Y.; Jia, H.; Wang, Y.; Zeng, Y.; Ji, M.; et al. RT-LAMP for Rapid Diagnosis of Coronavirus SARS-CoV-2. Microb. Biotechnol. 2020, 13, 950–961. DOI: 10.1111/1751-7915.13586.
  • Dao Thi, V. L.; Herbst, K.; Boerner, K.; Meurer, M.; Kremer, L. P.; Kirrmaier, D.; Freistaedter, A.; Papagiannidis, D.; Galmozzi, C.; Stanifer, M. L.; et al. A Colorimetric RT-LAMP Assay and LAMP-Sequencing for Detecting SARS-CoV-2 RNA in Clinical Samples. Sci. Transl. Med. 2020, 12, eabc7075. DOI: 10.1126/scitranslmed.abc7075.
  • Yan, C.; Cui, J.; Huang, L.; Du, B.; Chen, L.; Xue, G.; Li, S.; Zhang, W.; Zhao, L.; Sun, Y.; et al. Rapid and Visual Detection of 2019 Novel Coronavirus (SARS-CoV-2) by a Reverse Transcription Loop-Mediated Isothermal Amplification Assay. Clin. Microbiol. Infect 2020, 26, 773–779. DOI: 10.1016/j.cmi.2020.04.001.
  • Li, H.; Xie, Y.; Chen, F.; Bai, H.; Xiu, L.; Zhou, X.; Guo, X.; Hu, Q.; Yin, K. Amplification-Free CRISPR/Cas Detection Technology: Challenges, Strategies, and Perspectives. Chem. Soc. Rev. 2023, 52, 361–382. DOI: 10.1039/d2cs00594h.
  • Dai, J.; He, H.; Duan, Z.; Guo, Y.; Xiao, D. Self-Replicating Catalyzed Hairpin Assembly for Rapid Signal Amplification. Anal. Chem. 2017, 89, 11971–11975. DOI: 10.1021/acs.analchem.7b01946.
  • Karunanayake Mudiyanselage, A.; Yu, Q.; Leon-Duque, M. A.; Zhao, B.; Wu, R.; You, M. Genetically Encoded Catalytic Hairpin Assembly for Sensitive RNA Imaging in Live Cells. J. Am. Chem. Soc. 2018, 140, 8739–8745. DOI: 10.1021/jacs.8b03956.
  • Peng, S.; Tan, Z.; Chen, S.; Lei, C.; Nie, Z. Integrating CRISPR-Cas12a with a DNA Circuit as a Generic Sensing Platform for Amplified Detection of microRNA. Chem. Sci. 2020, 11, 7362–7368. DOI: 10.1039/d0sc03084h.
  • Chen, P.; Wang, L.; Qin, P.; Yin, B. C.; Ye, B. C. An RNA-Based Catalytic Hairpin Assembly Circuit Coupled with CRISPR-Cas12a for One-Step Detection of microRNAs. Biosens. Bioelectron. 2022, 207, 114152. DOI: 10.1016/j.bios.2022.114152.
  • Zeng, R.; Xu, J.; Lu, L.; Lin, Q.; Huang, X.; Huang, L.; Li, M.; Tang, D. Photoelectrochemical Bioanalysis of microRNA on Yolk-in-Shell Au@CdS Based on the Catalytic Hairpin Assembly-Mediated CRISPR-Cas12a System. Chem. Commun. 2022, 58, 7562–7565. DOI: 10.1039/d2cc02821b.
  • Gong, H.; Hu, X.; Zeng, R.; Li, Y.; Xu, J.; Li, M.; Tang, D. CRISPR/Cas12a-Based Photoelectrochemical Sensing of microRNA on Reduced Graphene Oxide-Anchored Bi2WO6 Coupling with Catalytic Hairpin Assembly. Sens. Actuators B Chem. 2022, 369, 132307. DOI: 10.1016/j.snb.2022.132307.
  • Wu, Y.; Fu, C.; Shi, W.; Chen, J. Recent Advances in Catalytic Hairpin Assembly Signal Amplification-Based Sensing Strategies for microRNA Detection. Talanta 2021, 235, 122735. DOI: 10.1016/j.talanta.2021.122735.
  • Dirks, R. M.; Pierce, N. A. Triggered Amplification by Hybridization Chain Reaction. Proc. Natl. Acad. Sci. U S A 2004, 101, 15275–15278. DOI: 10.1073/pnas.0407024101.
  • Zeng, R.; Zhang, L.; Su, L.; Luo, Z.; Zhou, Q.; Tang, D. Photoelectrochemical Bioanalysis of Antibiotics on rGO-Bi2WO6-Au Based on Branched Hybridization Chain Reaction. Biosens. Bioelectron. 2019, 133, 100–106. DOI: 10.1016/j.bios.2019.02.067.
  • Zhang, K.; Lv, S.; Zhou, Q.; Tang, D. CoOOH Nanosheets-Coated g-C3N4/CuInS2 Nanohybrids for Photoelectrochemical Biosensor of Carcinoembryonic Antigen Coupling Hybridization Chain Reaction with Etching Reaction. Sens. Actuators B Chem. 2020, 307, 127631. DOI: 10.1016/j.snb.2019.127631.
  • Jia, H. Y.; Zhao, H. L.; Wang, T.; Chen, P. R.; Yin, B. C.; Ye, B. C. A Programmable and Sensitive CRISPR/Cas12a-Based MicroRNA Detection Platform Combined with Hybridization Chain Reaction. Biosens. Bioelectron. 2022, 211, 114382. DOI: 10.1016/j.bios.2022.114382.
  • Long, K.; Cao, G.; Qiu, Y.; Yang, N.; Chen, J.; Yang, M.; Hou, C.; Huo, D. Hybridization Chain Reaction Circuit Controller: CRISPR/Cas12a Conversion Amplifier for miRNA-21 Sensitive Detection. Talanta 2024, 266, 125130. DOI: 10.1016/j.talanta.2023.125130.
  • Chai, H.; Cheng, W.; Jin, D.; Miao, P. Recent Progress in DNA Hybridization Chain Reaction Strategies for Amplified Biosensing. ACS Appl. Mater. Interfaces 2021, 13, 38931–38946. DOI: 10.1021/acsami.1c09000.
  • Ma, J.-Y.; Liu, B.; Raza, S.; Jiang, H.-X.; Tang, A.-N.; Kong, D.-M. CRISPR/Cas12a-Based Hypochlorous Acid and Myeloperoxidase Biosensors Designed on RESET Effect. Sens. Actuators B Chem. 2023, 376, 133000. DOI: 10.1016/j.snb.2022.133000.
  • Ma, J.-Y.; Wang, S.-Y.; Du, Y.-C.; Wang, D.-X.; Tang, A.-N.; Wang, J.; Kong, D.-M. RESET" Effect: Random Extending Sequences Enhance the Trans- Cleavage Activity of CRISPR/Cas12a. Anal. Chem. 2022, 94, 8050–8057. DOI: 10.1021/acs.analchem.2c01401.
  • Li, Q.-N.; Wang, D.-X.; Han, G.-M.; Liu, B.; Tang, A.-N.; Kong, D.-M. Low-Background CRISPR/Cas12a Sensors for Versatile Live-Cell Biosensing. Anal. Chem. 2023, 95, 15725–15735. DOI: 10.1021/acs.analchem.3c03131.
  • Gong, H.; Wu, Y.; Zeng, R.; Zeng, Y.; Liu, X.; Tang, D. CRISPR/Cas12a-Mediated Liposome-Amplified Strategy for the Photoelectrochemical Detection of Nucleic Acid. Chem. Commun. 2021, 57, 8977–8980. DOI: 10.1039/d1cc03743a.
  • Zeng, R.; Wang, W.; Chen, M.; Wan, Q.; Wang, C.; Knopp, D.; Tang, D. CRISPR-Cas12a-Driven MXene-PEDOT:PSS Piezoresistive Wireless Biosensor. Nano Energy 2021, 82, 105711. DOI: 10.1016/j.nanoen.2020.105711.
  • Zhao, D.; Tang, J.; Tan, Q.; Xie, X.; Zhao, X.; Xing, D. CRISPR/Cas13a-Triggered Cas12a Biosensing Method for Ultrasensitive and Specific miRNA Detection. Talanta 2023, 260, 124582. DOI: 10.1016/j.talanta.2023.124582.
  • Zhu, Y.; Zheng, X.; Zhu, R.; Zhao, H.; Zhai, H.; Qian, F.; Zhang, T.; Xie, Z.; Liu, S.; Jiang, B.; et al. CRISPR-Cas12a Powered Multifunctional DNA Nanodumbbell Lock Biosensor for Multiple Molecular Detection. Chem. Eng. J. 2023, 468, 143494. DOI: 10.1016/j.cej.2023.143494.
  • Luo, T.; Li, J.; He, Y.; Liu, H.; Deng, Z.; Long, X.; Wan, Q.; Ding, J.; Gong, Z.; Yang, Y.; Zhong, S. Designing a CRISPR/Cas12a-and Au-Nanobeacon-Based Diagnostic Biosensor Enabling Direct, Rapid, and Sensitive miRNA Detection. Anal. Chem. 2022, 94, 6566–6573. DOI: 10.1021/acs.analchem.2c00401.
  • Chen, X.; Huang, C.; Zhang, J.; Hu, Q.; Wang, D.; You, Q.; Guo, Y.; Chen, H.; Xu, J.; Hu, M. Mini crRNA-Mediated CRISPR/Cas12a System (MCM-CRISPR/Cas12a) and Its Application in RNA Detection. Talanta 2024, 268, 125350. DOI: 10.1016/j.talanta.2023.125350.
  • Rananaware, S. R.; Vesco, E. K.; Shoemaker, G. M.; Anekar, S. S.; Sandoval, L. S. W.; Meister, K. S.; Macaluso, N. C.; Nguyen, L. T.; Jain, P. K. Programmable RNA Detection with CRISPR-Cas12a. Nat. Commun. 2023, 14, 5409–5409. DOI: 10.1038/s41467-023-41006-1.
  • Zetsche, B.; Gootenberg, J. S.; Abudayyeh, O. O.; Slaymaker, I. M.; Makarova, K. S.; Essletzbichler, P.; Volz, S. E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 2015, 163, 759–771. DOI: 10.1016/j.cell.2015.09.038.
  • Moon, J.; Liu, C. Asymmetric CRISPR Enabling Cascade Signal Amplification for Nucleic Acid Detection by Competitive crRNA. Nat. Commun. 2023, 14, 7504. DOI: 10.1038/s41467-023-43389-7.
  • Kim, H.; Lee, W-j.; Oh, Y.; Kang, S.-H.; Hur, J. K.; Lee, H.; Song, W.; Lim, K.-S.; Park, Y.-H.; Song, B.-S.; et al. Enhancement of Target Specificity of CRISPR-Cas12a by Using a Chimeric DNA-RNA Guide. Nucleic Acids Res. 2020, 48, 8601–8616. DOI: 10.1093/nar/gkaa605.
  • Swarts, D. C.; van der Oost, J.; Jinek, M. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. Mol. Cell 2017, 66, 221–233.e4. DOI: 10.1016/j.molcel.2017.03.016.
  • Swarts, D. C.; Jinek, M. Mechanistic Insights into the Cis- and trans- Acting DNase Activities of Cas12a. Mol. Cell 2019, 73, 589.e4–600.e4. DOI: 10.1016/j.molcel.2018.11.021.
  • Shi, K.; Xie, S.; Tian, R.; Wang, S.; Lu, Q.; Gao, D.; Lei, C.; Zhu, H.; Nie, Z. A CRISPR-Cas Autocatalysis-Driven Feedback Amplification Network for Supersensitive DNA Diagnostics. Sci. Adv. 2021, 7, eabc7802. DOI: 10.1126/sciadv.abc7802.
  • Politza, A. J.; Nouri, R.; Guan, W. Digital CRISPR Systems for the Next Generation of Nucleic Acid Quantification. Trends Analyt. Chem. 2023, 159, 116917. DOI: 10.1016/j.trac.2023.116917.
  • Wu, F.; Tian, H.; Shen, Y.; Hou, Z.; Ren, J.; Gou, G.; Sun, Y.; Yang, Y.; Ren, T. L. Vertical MoS2 Transistors with Sub-1-nm Gate Lengths. Nature 2022, 603, 259–264. DOI: 10.1038/s41586-021-04323-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.