87
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Current Analytical Methods for the Sensitive Assay of New-Generation Ovarian Cancer Drugs in Pharmaceutical and Biological Samples

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Lorusso, D.; Ceni, V.; Daniele, G.; Salutari, V.; Pietragalla, A.; Muratore, M.; Nero, C.; Ciccarone, F.; Scambia, G. Newly Diagnosed Ovarian Cancer: Which First-Line Treatment? Cancer Treat Rev. 2020, 91, 102111. DOI: 10.1016/j.ctrv.2020.102111.
  • Orr, B.; Edwards, R. P. Diagnosis and Treatment of Ovarian Cancer. Hematol. Oncol. Clin. North Am. 2018, 32, 943–964. DOI: 10.1016/j.hoc.2018.07.010.
  • Ogundipe, O. D.; Olajubutu, O.; Adesina, S. K. Targeted Drug Conjugate Systems for Ovarian Cancer Chemotherapy. Biomed. Pharmacother. 2023, 165, 115151. DOI: 10.1016/j.biopha.2023.115151.
  • Hennessy, B. T.; Coleman, R. L.; Markman, M. Ovarian Cancer. The Lancet 2009, 374, 1371–1382. DOI: 10.1016/S0140-6736(09)61338-6.
  • Kwolek, D. G.; Gerstberger, S.; Tait, S.; Qiu, J. M. Ovarian, Uterine, and Vulvovaginal Cancers: Screening. Med. Clin. North Am. 2023, 107, 329–355. DOI: 10.1016/j.mcna.2022.10.016.
  • Zheng, F.; Zhang, Y.; Chen, S.; Weng, X.; Rao, Y.; Fang, H. Mechanism and Current Progress of Poly ADP-Ribose Polymerase (PARP) İnhibitors in the Treatment of Ovarian Cancer. Biomed. Pharmacother. 2020, 123, 109661. DOI: 10.1016/j.biopha.2019.109661.
  • Muinao, T.; Deka Boruah, H. P.; Pal, M. Diagnostic and Prognostic Biomarkers in Ovarian Cancer and the Potential Roles of Cancer Stem Cells – An Updated Review. Exp. Cell Res. 2018, 362, 1–10. DOI: 10.1016/j.yexcr.2017.10.018.
  • Zhang, B.; Cai, F. F.; Zhong, X. Y. An Overview of Biomarkers for the Ovarian Cancer Diagnosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 158, 119–123. DOI: 10.1016/j.ejogrb.2011.04.023.
  • Taylor, S. E.; Kirwan, J. M. Ovarian Cancer: Current Management and Future Directions. Obstet. Gynaecol. Reprod. Med. 2012, 22, 33–37. DOI: 10.1016/j.ogrm.2011.11.003.
  • Cham, S.; Liu, J. F. Present and Future for PARP Inhibitors in Ovarian Cancer. Adv. Oncol. 2021, 1, 139–154. DOI: 10.1016/j.yao.2021.02.012.
  • Wang, Y.; Liu, L.; Jin, X.; Yu, Y. Efficacy and Safety of Mirvetuximab Soravtansine in Recurrent Ovarian Cancer with FRa Positive Expression: A Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2023, 194, 104230. DOI: 10.1016/j.critrevonc.2023.104230.
  • Wei, Y.; Liang, H.; Liu, S.; Guan, S.; Ma, K.; Guan, Y.; Chen, Y.; Huang, M.; Wang, X.; Lan, C. Development and Validation of a Sensitive LC–MS/MS Method for the Assay of Four PARP İnhibitors in Human Plasma and İts Application in Ovarian Cancer Patients. J. Pharm. Biomed. Anal. 2024, 237, 115758. DOI: 10.1016/j.jpba.2023.115758.
  • Zhou, A.; Yu, J.; Wu, Y.; Xue, H.; Zhong, D.; Diao, X. A Validated LC-MS/MS Method for the Quantification of Bevacizumab in Rat, Cynomolgus Monkey, and Human Serum. J. Pharm. Biomed. Anal. 2023, 235, 115590. DOI: 10.1016/j.jpba.2023.115590.
  • Nalanda, R. B.; Srinivasa Rao, A.; Sankar, D. G. Olaparib Quantification in Human Plasma for Clinical Purposes Using High-Performance Liquid Chromatography with UV Detector. Anal. Chem. Lett. 2019, 9, 526–534. DOI: 10.1080/22297928.2019.1650109.
  • Muggia, F. M.; Garcia Jimenez, M.; Murthy, P. Platinum Compounds: Their Continued İmpact on Ovarian Cancer Treatment. Inorganica Chim Acta. 2019, 496, 119037. DOI: 10.1016/j.ica.2019.119037.
  • Katzung, B.G.; Trevor, A.J. eds. Basic & Clinical Pharmacology, 13th ed.; McGraw-Hill Publishing: New York, 2015.
  • Fruscella, E.; Gallo, D.; Ferrandina, G.; D'Agostino, G.; Scambia, G. Gemcitabine: Current Role and Future Options in the Treatment of Ovarian Cancer. Crit. Rev. Oncol. Hematol. 2003, 48, 81–88. DOI: 10.1016/S1040-8428(03)00119-7.
  • Zahedi, P.; Yoganathan, R.; Piquette-Miller, M.; Allen, C. Recent Advances in Drug Delivery Strategies for Treatment of Ovarian Cancer. Expert. Opin. Drug Deliv. 2012, 9, 567–583. DOI: 10.1517/17425247.2012.665366.
  • Colombo, N.; Conte, P. F.; Pignata, S.; Raspagliesi, F.; Scambia, G. Bevacizumab in Ovarian Cancer: Focus on Clinical Data and Future Perspectives. Crit. Rev. Oncol. Hematol. 2016, 97, 335–348. DOI: 10.1016/j.critrevonc.2015.08.017.
  • Frederick, P. J.; Straughn, J. M.; Alvarez, R. D.; Buchsbaum, D. J. Preclinical Studies and Clinical Utilization of Monoclonal Antibodies in Epithelial Ovarian Cancer. Gynecol. Oncol. 2009, 113, 384–390. DOI: 10.1016/j.ygyno.2009.01.008.
  • Alvarez Secord, A.; O'Malley, D. M.; Sood, A. K.; Westin, S. N.; Liu, J. F. Rationale for Combination PARP İnhibitor and Antiangiogenic Treatment in Advanced Epithelial Ovarian Cancer: A Review. Gynecol. Oncol. 2021, 162, 482–495. DOI: 10.1016/j.ygyno.2021.05.018.
  • Li, J.; Li, Q.; Zhang, L.; Zhang, S.; Dai, Y. Poly-ADP-Ribose Polymerase (PARP) İnhibitors and Ovarian Function. Biomed. Pharmacother. 2023, 157, 114028. DOI: 10.1016/j.biopha.2022.114028.
  • Adabi, M.; Saber, R.; Faridi-Majidi, R.; Faridbod, F. Performance of Electrodes Synthesized with Polyacrylonitrile-Based Carbon Nanofibers for Application in Electrochemical Sensors and Biosensors. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 48, 673–678. DOI: 10.1016/j.msec.2014.12.051.
  • Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. DOI: 10.1021/ac5039863.
  • Barani, M.; Bilal, M.; Sabir, F.; Rahdar, A.; Kyzas, G. Z. Nanotechnology in Ovarian Cancer: Diagnosis and Treatment. Life Sci. 2021, 266, 118914. DOI: 10.1016/j.lfs.2020.118914.
  • Vandghanooni, S.; Sanaat, Z.; Barar, J.; Adibkia, K.; Eskandani, M.; Omidi, Y. Recent Advances in Aptamer-Based Nanosystems and Microfluidics Devices for the Detection of Ovarian Cancer Biomarkers. TrAC – Trends Anal. Chem. 2021, 143, 116343. DOI: 10.1016/j.trac.2021.116343.
  • Sapountzi, E.; Braiek, M.; Chateaux, J. F.; Jaffrezic-Renault, N.; Lagarde, F. Recent Advances in Electrospun Nanofiber İnterfaces for Biosensing Devices. Sensors (Switzerland). 2017, 17, 1887. DOI: 10.3390/s17081887.
  • Chakravarty, A.; Maiti, S.; Mahanty, S.; De, G. Green Synthesis of Electrospun Porous Carbon Nanofibers from Sucrose and Doping of Ag Nanoparticle with Improved Electrical and Electrochemical Properties. Chem. Select. 2017, 2, 2265–2276. DOI: 10.1002/slct.201601920.
  • Jayabal, S.; Viswanathan, P.; Ramaraj, R. Reduced Graphene Oxide-Gold Nanorod Composite Material Stabilized in Silicate Sol-Gel Matrix for Nitric Oxide Sensor. RSC Adv. 2014, 4, 33541–33548. DOI: 10.1039/C4RA04859H.
  • Lai, L.; Chen, L.; Zhan, D.; Sun, L.; Liu, J.; Lim, S. H.; Poh, C. K.; Shen, Z.; Lin, J. One-Step Synthesis of NH2-Graphene from in Situ Graphene-Oxide Reduction and İts İmproved Electrochemical Properties. Carbon N Y. 2011, 49, 3250–3257. DOI: 10.1016/j.carbon.2011.03.051.
  • Liu, X.; Wang, D.; Li, Y. Synthesis and Catalytic Properties of Bimetallic Nanomaterials with Various Architectures. Nano Today. 2012, 7, 448–466. DOI: 10.1016/j.nantod.2012.08.003.
  • Alizadeh, N.; Hallaj, R.; Salimi, A. A Highly Sensitive Electrochemical İmmunosensor for Hepatitis B Virus Surface Antigen Detection Based on Hemin/G-Quadruplex Horseradish Peroxidase-Mimicking DNAzyme-Signal Amplification. Biosens. Bioelectron. 2017, 94, 184–192. DOI: 10.1016/j.bios.2017.02.039.
  • Jirkovský, I.; Panas, E.; Ahlberg, M.; Halasa, S.; Romani, D. J.; Schiffrin. Single Atom Hot-Spots at Au-Pd Nanoalloys for Electrocatalytic H 2O 2 Production. J. Am. Chem. Soc. 2011, 133, 19432–19441. DOI: 10.1021/ja206477z.
  • Liu, R.; Chen, H. M.; Fang, L. P.; Xu, C.; He, Z.; Lai, Y.; Zhao, H.; Bekana, D.; Liu, J. F. Au@Pd Bimetallic Nanocatalyst for Carbon-Halogen Bond Cleavage: An Old Story with New Insight into How the Activity of Pd is Influenced by Au. Environ. Sci. Technol. 2018, 52, 4244–4255. DOI: 10.1021/acs.est.7b05996.
  • Wang, F.; Li, C.; Sun, L. D.; Wu, H.; Ming, T.; Wang, J.; Yu, J. C.; Yan, C. H. Heteroepitaxial Growth of High-İndex-Faceted Palladium Nanoshells and Their Catalytic Performance. J. Am. Chem. Soc. 2011, 133, 1106–1111. DOI: 10.1021/ja1095733.
  • Kong, L.; Su, M.; Peng, Y.; Hou, L.; Liu, J.; Li, H.; Diao, Z.; Shih, K.; Xiong, Y.; Chen, D. Producing Sawdust Derived Activated Carbon by Co-Calcinations with Limestone for Enhanced Acid Orange II Adsorption. J. Clean Prod. 2017, 168, 22–29. DOI: 10.1016/j.jclepro.2017.09.005.
  • Yao, G.; Pei, H.; Li, J.; Zhao, Y.; Zhu, D.; Zhang, Y.; Lin, Y.; Huang, Q.; Fan, C. Clicking DNA to Gold Nanoparticles: Poly-Adenine-Mediated Formation of Monovalent DNA-Gold Nanoparticle Conjugates with Nearly Quantitative Yield. NPG Asia Mater. 2015, 7, e159–e159. DOI: 10.1038/am.2014.131.
  • Chen, L.; Chao, J.; Qu, X.; Zhang, H.; Zhu, D.; Su, S.; Aldalbahi, A.; Wang, L.; Pei, H. Probing Cellular Molecules with PolyA-Based Engineered Aptamer Nanobeacon. ACS Appl. Mater. Interf. 2017, 9, 8014–8020. DOI: 10.1021/acsami.6b16764.
  • Baig, N.; Sajid, M.; Saleh, T. A. Recent Trends in Nanomaterial-Modified Electrodes for Electroanalytical Applications. TrAC – Trends Anal. Chem. 2019, 111, 47–61. DOI: 10.1016/j.trac.2018.11.044.
  • Tahir, A. A.; Wijayantha, K. G. U.; Saremi-Yarahmadi, S.; Mazhar, M.; McKee, V. Nanostructured α-Fe2O3 Thin Films for Photoelectrochemical Hydrogen Generation. Chem. Mater. 2009, 21, 3763–3772. DOI: 10.1021/cm803510v.
  • Ozkan, E.; Cetinkaya, A.; Ozcelikay, G.; Nemutlu, E.; Kır, S.; Ozkan, S. A. Sensitive and Cost-Effective Boron Doped Diamond and Fe2O3/Chitosan Nanocomposite Modified Glassy Carbon Electrodes for the Trace Level Quantification of anti-Diabetic Dapagliflozin Drug. Electroanal. Chem. 2022, 908, 116092. DOI: 10.1016/j.jelechem.2022.116092.
  • Cetinkaya, A.; Kaya, S. I.; Şenel, P.; Cini, N.; Atici, E. B.; Ozkan, S. A.; Yurtsever, M.; Gölcü, A. Detection of Axitinib Using Multiwalled Carbon Nanotube-Fe2O3/Chitosan Nanocomposite-Based Electrochemical Sensor and Modeling with Density Functional Theory. ACS Omega. 2022, 7, 34495–34505. DOI: 10.1021/acsomega.2c04244.
  • Erdem, A.; Karadeniz, H.; Mayer, G.; Famulok, M.; Caliskan, A. Electrochemical Sensing of Aptamer-Protein İnteractions Using a Magnetic Particle Assay and Single-Use Sensor Technology. Electroanalysis. 2009, 21, 1278–1284. DOI: 10.1002/elan.200804557.
  • Grabowska, I.; Sharma, N.; Vasilescu, A.; Iancu, M.; Badea, G.; Boukherroub, R.; Ogale, S.; Szunerits, S. Electrochemical Aptamer-Based Biosensors for the Detection of Cardiac Biomarkers. ACS Omega. 2018, 3, 12010–12018. DOI: 10.1021/acsomega.8b01558.
  • Majidian, M.; Ozcelikay, G.; Cetinkaya, A.; Unal, M. A.; Nazır, H.; Atici, E. B.; Ozkan, S. A. Nanomaterial-Based Electrochemical Sensing Platform for the Determination of Olaparib. Electrochim. Acta. 2023, 449, 142198. DOI: 10.1016/j.electacta.2023.142198.
  • Erk, N.; Vural, Ö.; Bouali, W.; Ayse Genc, A.; Gnanasekaran, L.; Karimi-Maleh, H. Smart and Sensitive Nanomaterial-Based Electrochemical Sensor for the Determination of a Poly (ADP-Ribose) Polymerase (PARP) İnhibitor Anticancer Agent. Environ. Res. 2023, 238, 117082. DOI: 10.1016/j.envres.2023.117082.
  • Yan, Q.; Cao, L.; Dong, H.; Tan, Z.; Liu, Q.; Zhang, W.; Zhao, P.; Li, Y.; Liu, Y.; Dong, Y. Sensitive Amperometric İmmunosensor with İmproved Electrocatalytic Au@Pd Urchin-Shaped Nanostructures for Human Epididymis Specific Protein 4 Antigen Detection. Anal. Chim Acta. 2019, 1069, 117–125. DOI: 10.1016/j.aca.2019.04.023.
  • Farzin, L.; Sadjadi, S.; Shamsipur, M.; Sheibani, S.; Hasan Mousazadeh, M. Employing AgNPs Doped Amidoxime-Modified Polyacrylonitrile (PAN-Oxime) Nanofibers for Target İnduced Strand Displacement-Based Electrochemical Aptasensing of CA125 in Ovarian Cancer Patients. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 679–687. DOI: 10.1016/j.msec.2018.12.108.
  • Mattarozzi, M.; Giannetto, M.; Careri, M. Electrochemical İmmunomagnetic Assay as Biosensing Strategy for Determination of Ovarian Cancer Antigen HE4 in Human Serum. Talanta. 2020, 217, 120991. DOI: 10.1016/j.talanta.2020.120991.
  • Hu, C.; Qin, Z.; Fu, J.; Gao, Q.; Chen, C.; Tan, C. S.; Li, S. Aptamer-Based Carbohydrate Antigen 125 Sensor with Molybdenum Disulfide Functional Hybrid Materials. Anal Biochem. 2023, 675, 115213. DOI: 10.1016/j.ab.2023.115213.
  • Kovarova, A.; Kastrati, G.; Pekarkova, J.; Metelka, R.; Drbohlavova, J.; Bilkova, Z.; Selesovska, R.; Korecka, L. Biosensor with Electrochemically Active Nanocomposites for Signal Amplification and Simultaneous Detection of Three Ovarian Cancer Biomarkers. Electrochim Acta. 2023, 469, 143213. DOI: 10.1016/j.electacta.2023.143213.
  • Yang, Y.; Yang, X.; Yang, Y.; Yuan, Q. Aptamer-Functionalized Carbon Nanomaterials Electrochemical Sensors for Detecting Cancer Relevant Biomolecules. Carbon N Y. 2018, 129, 380–395. DOI: 10.1016/j.carbon.2017.12.013.
  • Elvira, K. S.; Gielen, F.; Tsai, S. S. H.; Nightingale, A. M. Materials and Methods for Droplet Microfluidic Device Fabrication. Lab Chip. 2022, 22, 859–875. DOI: 10.1039/d1lc00836f.
  • Gao, D.; Ma, Z.; Jiang, Y. Recent Advances in Microfluidic Devices for Foodborne Pathogens Detection. TrAC – Trends Anal. Chem. 2022, 157, 116788. DOI: 10.1016/j.trac.2022.116788.
  • Dabbagh Moghaddam, F.; Akbarzadeh, I.; Marzbankia, E.; Farid, M.; Khaledi, L.; Reihani, A. H.; Javidfar, M.; Mortazavi, P. Delivery of Melittin-Loaded Niosomes for Breast Cancer Treatment: An İn Vitro and İn Vivo Evaluation of anti-Cancer Effect. Cancer Nano. 2021, 12, 14. DOI: 10.1186/s12645-021-00085-9.
  • Bigham, A.; Rahimkhoei, V.; Abasian, P.; Delfi, M.; Naderi, J.; Ghomi, M.; Dabbagh Moghaddam, F.; Waqar, T.; Nuri Ertas, Y.; Sharifi, S.; et al. Advances in Tannic Acid-İncorporated Biomaterials: Infection Treatment, Regenerative Medicine, Cancer Therapy, and Biosensing. Chem. Eng. J. 2022, 432, 134146. DOI: 10.1016/j.cej.2021.134146.
  • Menon, I.; Zaroudi, M.; Zhang, Y.; Aisenbrey, E.; Hui, L. Fabrication of Active Targeting Lipid Nanoparticles: Challenges and Perspectives. Mater. Today Adv. 2022, 16, 100299. DOI: 10.1016/j.mtadv.2022.100299.
  • Saw, P. E.; Hui Cui, G.; Xu, X. Nanoparticles-Mediated CRISPR/Cas Gene Editing Delivery System. ChemMedChem. 2022, 17, e202100777. DOI: 10.1002/cmdc.202100777.
  • Sharifi, E.; Bigham, A.; Yousefiasl, S.; Trovato, M.; Ghomi, M.; Esmaeili, Y.; Samadi, P.; Zarrabi, A.; Ashrafizadeh, M.; Sharifi, S.; et al. Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuli-Responsive, Toxicity, Immunogenicity, and Clinical Translation. Adv. Sci. 2022, 9, e2102678. DOI: 10.1002/advs.202102678.
  • Zhou, K.; Wang, M.; Zhou, Y.; Sun, M.; Xie, Y.; Yu, D. G. Comparisons of Antibacterial Performances between Electrospun Polymer@Drug Nanohybrids with Drug-Polymer Nanocomposites. Adv. Compos. Hybrid Mater. 2022, 5, 907–919. DOI: 10.1007/s42114-021-00389-9.
  • Doghish, A. H.; Hashem, A. M.; Shehabeldine, A. A. M.; Sallam, G. S.; El-Sayyad, S.; Salem. Nanocomposite Based on Gold Nanoparticles and Carboxymethyl Cellulose: Synthesis, Characterization, Antimicrobial, and Anticancer Activities. J. Drug Deliv. Sci. Technol. 2022, 77, 103874. DOI: 10.1016/j.jddst.2022.103874.
  • Lyu, L.; Liu, J.; Liu, H.; Liu, C.; Lu, Y.; Sun, K.; Fan, R.; Wang, N.; Lu, N.; Guo, Z.; Wujcik, E. K, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China. An Overview of Electrically Conductive Polymer Nanocomposites toward Electromagnetic İnterference Shielding. Eng. Sci. 2018, 2, 26–42. DOI: 10.30919/es8d615.
  • Wang, C. H.; Weng, C. H.; Che, Y. J.; Wang, K.; Bin Lee, G. Cancer Cell-Specific Oligopeptides Selected by an İntegrated Microfluidic System from a Phage Display Library for Ovarian Cancer Diagnosis. Theranostics. 2015, 5, 431–442. DOI: 10.7150/thno.10891.
  • Dabbagh Moghaddam, F.; Dadgar, D.; Esmaeili, Y.; Babolmorad, S.; Ilkhani, E.; Rafiee, M.; Wang, X. D.; Makvandi, P. Microfluidic Platforms in Diagnostic of Ovarian Cancer. Environ. Res. 2023, 237, 117084. DOI: 10.1016/j.envres.2023.117084.
  • Ibrahim, L. I.; Hajal, C.; Offeddu, G. S.; Gillrie, M. R.; Kamm, R. D. Omentum-on-a-Chip: A Multicellular, Vascularized Microfluidic Model of the Human Peritoneum for the Study of Ovarian Cancer Metastases. Biomaterials. 2022, 288, 121728. DOI: 10.1016/j.biomaterials.2022.121728.
  • Flont, M.; Jastrzębska, E.; Brzózka, Z. Synergistic Effect of the Combination Therapy on Ovarian Cancer Cells under Microfluidic Conditions. Anal. Chim. Acta. 2020, 1100, 138–148. DOI: 10.1016/j.aca.2019.11.047.
  • Liu, X.; Shen, J.; Gong, P.; Yu, H. Inclusion of the Tunneling Phase Shift for İnterferometric Particle İmaging for Bubble Sizing. Particuology. 2021, 54, 50–57. DOI: 10.1016/j.partic.2020.05.004.
  • Yang, Q.; Lian, Q.; Xu, F. Perspective: Fabrication of İntegrated Organ-on-a-Chip via Bioprinting. Biomicrofluidics. 2017, 11, 031301. DOI: 10.1063/1.4982945.
  • Wang, H. F.; Liu, Y.; Wang, T.; Yang, G.; Zeng, B.; Zhao, C. X. Tumor-Microenvironment-on-a-Chip for Evaluating Nanoparticle-Loaded Macrophages for Drug Delivery. ACS Biomater. Sci. Eng. 2020, 6, 5040–5050. DOI: 10.1021/acsbiomaterials.0c00650.
  • Kwak, C.; Han, W. Towards Size of Scene in Auditory Scene Analysis: A Systematic Review. J. Audiol. Otol. 2020, 24, 1–9. DOI: 10.7874/jao.2019.00248.
  • Knowlton, S.; Onal, S.; Yu, C. H.; Zhao, J. J.; Tasoglu, S. Bioprinting for Cancer Research. Trends Biotechnol. 2015, 33, 504–513. DOI: 10.1016/j.tibtech.2015.06.007.
  • Moroni, L.; Burdick, J. A.; Highley, C.; Lee, S. J.; Morimoto, Y.; Takeuchi, S.; Yoo, J. J. Biofabrication Strategies for 3D in Vitro Models and Regenerative Medicine. Nat. Rev. Mater. 2018, 3, 21–37. DOI: 10.1038/s41578-018-0006-y.
  • Tsai, S. C.; Hung, L. Y.; Bin Lee, G. An İntegrated Microfluidic System for the İsolation and Detection of Ovarian Circulating Tumor Cells Using Cell Selection and Enrichment Methods. Biomicrofluidics. 2017, 11, 034122. DOI: 10.1063/1.4991476.
  • Liu, W. T.; Bin Lee, W.; Tsai, Y. C.; Chuang, Y. J.; Hsu, K. F.; Bin Lee, G. An Automated Microfluidic System for Selection of Aptamer Probes against Ovarian Cancer Tissues. Biomicrofluidics. 2019, 13, 014114. DOI: 10.1063/1.5085133.
  • Bahavarnia, F.; Saadati, A.; Hassanpour, S.; Hasanzadeh, M.; Shadjou, N.; Hassanzadeh, A. Paper Based İmmunosensing of Ovarian Cancer Tumor Protein CA 125 Using Novel Nano-İnk: A New Platform for Efficient Diagnosis of Cancer and Biomedical Analysis Using Microfluidic Paper-Based Analytical Devices (μPAD). Int. J. Biol. Macromol. 2019, 138, 744–754. DOI: 10.1016/j.ijbiomac.2019.07.109.
  • Kaya, S. I.; Majidian, M.; Ozcelikay-Akyildiz, G.; Cetinkaya, A.; Topal, B. D.; Atici, E. B.; Ozkan, S. A. A Comparative Study of Molecular Imprinting Techniques Used for Fabrication of Electrochemical Sensor of Olaparib. J. Electrochem. Soc. 2023, 170, 096502. DOI: 10.1149/1945-7111/acf620.
  • Reinhardt, S.; Zhao, M.; Mnatsakanyan, A.; Xu, L.; Ricklis, R. M.; Chen, A.; Karp, J. E.; Rudek, M. A. A Rapid and Sensitive Method for Determination of Veliparib (ABT-888), in Human Plasma, Bone Marrow Cells and Supernatant by Using LC/MS/MS. J. Pharm. Biomed. Anal. 2010, 52, 122–128. DOI: 10.1016/j.jpba.2009.12.015.
  • Ye, L.; Chen, J.; Long Li, S.; Liang Zhu, Y.; Xie, S.; Du, X. UPLC-MS/MS Method for the Determination of Talazoparib in Rat Plasma and İts Pharmacokinetic Study. J. Pharm. Biomed. Anal. 2020, 177, 112850. DOI: 10.1016/j.jpba.2019.112850.
  • Morosi, L.; Matteo, C.; Ceruti, T.; Giordano, S.; Ponzo, M.; Frapolli, R.; Zucchetti, M.; Davoli, E.; D'incalci, M.; Ubezio, P. Quantitative Determination of Niraparib and Olaparib Tumor Distribution by Mass Spectrometry İmaging. Int. J. Biol. Sci. 2020, 16, 1363–1375. DOI: 10.7150/ijbs.41395.
  • Krens, S. D.; van der Meulen, E.; Jansman, F. G. A.; Burger, D. M.; van Erp, N. P. Quantification of Cobimetinib, Cabozantinib, Dabrafenib, Niraparib, Olaparib, Vemurafenib, Regorafenib and İts Metabolite Regorafenib M2 in Human Plasma by UPLC–MS/MS. Biomed. Chromatogr. 2020, 34, e4758. DOI: 10.1002/bmc.4758.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.