83
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Research Progress on the Application of Multifunctional Amino Derivative Fluorescent Probes in Food, the Environment, and the Microenvironment

, &

References

  • Pandiselvam, R.; Mayookha, V. P.; Kothakota, A.; Ramesh, S. V.; Thirumdas, R.; Juvvi, P. Biospeckle Laser Technique – a Novel Non-Destructive Approach for Food Quality and Safety Detection. Trends Food Sci. Tech. 2020, 97, 1–13. DOI: 10.1016/j.tifs.2019.12.028.
  • Qi, Y.-L.; Li, Y.-Z.; Tan, M.-J.; Yuan, F.-F.; Murthy, N.; Duan, Y.-T.; Zhu, H.-L.; Yang, S.-Y. Recent advances in organic near-infrared ratiometric small-molecule fluorescent probes. Coordin. Chem. Rev. 2023, 486, 215310.
  • Hou, Y.; Chen, R.; Wang, Z.; Lu, R.; Wang, Y.; Ren, S.; Li, S.; Wang, Y.; Han, T.; Yang, S.; et al. Bio-Barcode Assay: A Useful Technology for Ultrasensitive and Logic-Controlled Specific Detection in Food Safety: A Review. Anal. Chim. Acta. 2023, 1267, 341351. DOI: 10.1016/j.aca.2023.341351.
  • Mohammad-Razdari, A.; Ghasemi-Varnamkhasti, M.; Izadi, Z.; Rostami, S.; Ensafi, A. A.; Siadat, M.; Losson, E. Detection of Sulfadimethoxine in Meat Samples Using a Novel Electrochemical Biosensor as a Rapid Analysis Method. J. Food Compos. Anal. 2019, 82, 103252. DOI: 10.1016/j.jfca.2019.103252.
  • Coates, L. J.; Gooley, A.; Lam, S. C.; Firme, B.; Haddad, P. R.; Wirth, H.-J.; Diaz, A.; Riley, F.; Paull, B. Compact Capillary High Performance Liquid Chromatography System for Pharmaceutical on-Line Reaction Monitoring. Anal. Chim. Acta. 2023, 1247, 340903. DOI: 10.1016/j.aca.2023.340903.
  • Ozalp, O.; Soylak, M. Ag Modified ZnO Nanoflowers for the Dispersive Micro-Solid-Phase Extraction of Lead(II) from Food and Water Samples Prior to Its Detection with High-Resolution Continuum Source Flame Atomic Absorption Spectrometry. Talanta 2023, 253, 124082. DOI: 10.1016/j.talanta.2022.124082.
  • Caleb, J.; Alshana, U.; Ertaş, N.; Bakırdere, S. Smartphone Digital Image Colorimetry Combined with Dispersive Solid-Phase Microextraction for the Determination of Boron in Food Samples. Food Chem. 2023, 426, 136528., DOI: 10.1016/j.foodchem.2023.136528.
  • Luo, F.; Zhan, L.; Deng, Y.; Qiao, K.; Pan, N.; Weng, Z.; Lin, C.; Qiu, B.; Lin, Z. Oxygen-Induced Dual-Signal Point-of-Care Testing Aptasensor for Aflatoxin B1 Detection Using Platinum Nanoparticle Catalysis in Visual Fluorometry and Gravimetry. Anal. Chim. Acta. 2023, 1273, 341544. DOI: 10.1016/j.aca.2023.341544.
  • Takano, Y.; Echizen, H.; Hanaoka, K. Fluorescent Probes and Selective Inhibitors for Biological Studies of Hydrogen Sulfide- and Polysulfide-Mediated Signaling. Antioxid. Redox Signal. 2017, 27, 669–683. DOI: 10.1089/ars.2017.7070.
  • Tang, Y.; Ma, Y.; Yin, J.; Lin, W. Strategies for Designing Organic Fluorescent Probes for Biological Imaging of Reactive Carbonyl Species. Chem. Soc. Rev. 2019, 48, 4036–4048. DOI: 10.1039/c8cs00956b.
  • Chen, W.; Ma, X.; Chen, H.; Liu, S. H.; Yin, J. Fluorescent Probes for pH and Alkali Metal Ions. Coordin. Chem. Rev. 2021, 427, 213584. DOI: 10.1016/j.ccr.2020.213584.
  • Chen, Z.; Hu, Y.; Ma, L.; Zhang, Z.; Li, D.; Liu, C. Rational Design of an Ortho -Vinylhydropyridine-Assisted Amino-Fluorophore as a Hypochlorite Fluorescent Probe. New J. Chem. 2023, 47, 92–96. DOI: 10.1039/D2NJ04481A.
  • Xiao, H.; Li, P.; Tang, B. Recent Progresses in Fluorescent Probes for Detection of Polarity. Coordin. Chem. Rev. 2021, 427, 213582. DOI: 10.1016/j.ccr.2020.213582.
  • Xiao, H.; Li, P.; Tang, B. Small Molecular Fluorescent Probes for Imaging of Viscosity in Living Biosystems. Chemistry 2021, 27, 6880–6898. DOI: 10.1002/chem.202004888.
  • Patil, D. Y.; Khadke, N. B.; Patil, A. A.; Borhade, A. V. Colorimetric Detection of Cu2+ by Amino Phenol Based Chemosensor. Results Chem. 2022, 4, 100658. DOI: 10.1016/j.rechem.2022.100658.
  • Kim, K.-H.; Jahan, S. A.; Lee, J.-T. Exposure to Formaldehyde and Its Potential Human Health Hazards. J. Environ. Sci. Health. C Environ. Carcinog. Ecotoxicol. Rev. 2011, 29, 277–299. DOI: 10.1080/10590501.2011.629972.
  • Zhao, X.-Q.; Zhang, Z.-Q. Microwave-Assisted on-Line Derivatization for Sensitive Flow Injection Fluorometric Determination of Formaldehyde in Some Foods. Talanta 2009, 80, 242–245. DOI: 10.1016/j.talanta.2009.06.066.
  • Tang, Y.; Zhao, Y.; Lin, W. Preparation of Robust Fluorescent Probes for Tracking Endogenous Formaldehyde in Living Cells and Mouse Tissue Slices. Nat. Protoc. 2020, 15, 3499–3526. DOI: 10.1038/s41596-020-0384-7.
  • Xu, J.; Zhang, Y.; Zeng, L.; Liu, J.; Kinsella, J. M.; Sheng, R. A Simple Naphthalene-Based Fluorescent Probe for High Selective Detection of Formaldehyde in Toffees and HeLa Cells via aza-Cope Reaction. Talanta 2016, 160, 645–652. DOI: 10.1016/j.talanta.2016.08.010.
  • He, L.; Yang, X.; Liu, Y.; Kong, X.; Lin, W. A Ratiometric Fluorescent Formaldehyde Probe for Bioimaging Applications. Chem. Commun. 2016, 52, 4029–4032. DOI: 10.1039/C5CC09796G.
  • Yang, X.; He, L.; Xu, K.; Yang, Y.; Lin, W. A Turn-on Fluorescent Formaldehyde Probe Regulated by Combinational PET and ICT Mechanisms for Bioimaging Applications. Anal. Methods 2018, 10, 2963–2967. DOI: 10.1039/C8AY00849C.
  • Yang, X.; He, L.; Xu, K.; Yang, Y.; Lin, W. The Development of an ICT-Based Formaldehyde-Responsive Fluorescence Turn-on Probe with a High Signal-to-Noise Ratio. New J. Chem. 2018, 42, 12361–12364. DOI: 10.1039/C8NJ02467G.
  • Gu, J.; Li, X.; Zhou, G.; Liu, W.; Gao, J.; Wang, Q. A Novel Self-Calibrating Strategy for Real Time Monitoring of Formaldehyde Both in Solution and Solid Phase. J. Hazard. Mater. 2020, 386, 121883. DOI: 10.1016/j.jhazmat.2019.121883.
  • Liu, C.; Jiao, X.; He, S.; Zhao, L.; Zeng, X. A Reaction-Based Fluorescent Probe for the Selective Detection of Formaldehyde and Methylglyoxal via Distinct Emission Patterns. Dyes Pigm. 2017, 138, 23–29. DOI: 10.1016/j.dyepig.2016.11.020.
  • He, L.; Yang, X.; Ren, M.; Kong, X.; Liu, Y.; Lin, W. An Ultra-Fast Illuminating Fluorescent Probe for Monitoring Formaldehyde in Living Cells, Shiitake Mushrooms, and Indoors. Chem. Commun. (Camb). 2016, 52, 9582–9585. DOI: 10.1039/c6cc04254f.
  • Martínez-Aquino, C.; Costero, A. M.; Gil, S.; Gaviña, P. A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions. Molecules 2018, 23, 2646., DOI: 10.3390/molecules23102646.
  • Quan, W.; Zhang, G.; Li, Y.; Song, W.; Zhan, J.; Lin, W. Upregulation of Formaldehyde in Parkinson’s Disease Found by a near-Infrared Lysosome-Targeted Fluorescent Probe. Anal. Chem. 2023, 95, 2925–2931. DOI: 10.1021/acs.analchem.2c04567.
  • Song, X.; Han, X.; Yu, F.; Zhang, J.; Chen, L.; Lv, C. A Reversible Fluorescent Probe Based on C[Double Bond, Length as m-Dash]N Isomerization for the Selective Detection of Formaldehyde in Living Cells and in Vivo. Analyst 2018, 143, 429–439. DOI: 10.1039/c7an01488k.
  • Wen, X.; Yan, L.; Fan, Z. One-Step Construction of a Novel AIE Probe Based on Diaminomaleonitrile and Its Application in Double-Detection of Hypochlorites and Formaldehyde Gas. New J. Chem. 2021, 45, 8155–8165. DOI: 10.1039/D1NJ00932J.
  • Jana, A.; Baruah, M.; Munan, S.; Samanta, A. ICT Based Water-Soluble Fluorescent Probe for Discriminating Mono and Dicarbonyl Species and Analysis in Foods. Chem. Commun. (Camb). 2021, 57, 6380–6383. DOI: 10.1039/d1cc02600c.
  • Ding, N.; Li, Z.; Hao, Y.; Yang, X. A New Amine Moiety-Based near-Infrared Fluorescence Probe for Detection of Formaldehyde in Real Food Samples and Mice. Food Chem. 2022, 384, 132426. DOI: 10.1016/j.foodchem.2022.132426.
  • Fan, L.; Li, W.; Jia, D.; Zhang, W.; Ding, Y. Pattern Recognition and Visual Detection of Aldehydes Using a Single ESIPT Dye. Anal. Chem. 2023, 95, 12284–12289. DOI: 10.1021/acs.analchem.3c01231.
  • Spange, S.; Sens, R.; Zimmerman, Y.; Seifert, A.; Roth, I.; Anders, S.; Hofmann, K. A Solvatochromic Dye for Probing Significantly the Dipolarity/Polarizability of HBD (Hydrogen Bond Donating) Environments. New J. Chem. 2003, 27, 520–524. DOI: 10.1039/b208179m.
  • Mengesha, E. T.; Demissie, T. B.; Redi-Abshiro, M.; Mohammed, A. M. Dual Fluorescence of (E)-N-(4-(Dimethylamino)Benzylidene)-2H-1,2,4-Triazol-3-Amine (DMABA-Amtr): A Ground State Perspective. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 189, 601–607. DOI: 10.1016/j.saa.2017.08.070.
  • Huang, L.; Zhu, L.; Su, W.; Liang, X.; Li, W.; Lin, W. Novel Polarity Fluorescent Probe for Dual-Color Visualization of Lysosomes and Plasma Membrane during Apoptosis. Anal. Chem. 2022, 94, 11643–11649. DOI: 10.1021/acs.analchem.2c02207.
  • Yao, D.; Lin, Z.; Wu, J. Near-Infrared Fluorogenic Probes with Polarity-Sensitive Emission for in Vivo Imaging of an Ovarian Cancer Biomarker. ACS Appl. Mater. Interfaces. 2016, 8, 5847–5856. DOI: 10.1021/acsami.5b11826.
  • Wang, Y.; Wang, G.; Wang, K.; Wang, Z.; Guo, Y.; Zhang, H. A Lysosomes-Targeted Ratio Fluorescent Probe for Real-Time Monitoring of Micropolarity in Cancer Cells. Actuat. B-Chem. 2018, 261, 210–217. DOI: 10.1016/j.snb.2018.01.132.
  • Danilkina, N. A.; Andrievskaya, E. V.; Vasileva, A. V.; Lyapunova, A. G.; Rumyantsev, A. M.; Kuzmin, A. A.; Bessonova, E. A.; Balova, I. A. 4-Azidocinnoline-Cinnoline-4-Amine Pair as a New Fluorogenic and Fluorochromic Environment-Sensitive Probe. Molecules 2021, 26, 7460. DOI: 10.3390/molecules26247460.
  • Basak, M.; Das, G. Amine-Incorporated Quinoxaline Based Fluorescent Sensor for Detection of Trace Water: Solvent Influenced Self-Assembly. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2022, 280, 121521. DOI: 10.1016/j.saa.2022.121521.
  • Tan, J.; Wang, Z.; Chen, S.; Hu, H. Progress and Outlook of Supercritical CO 2 –Heavy Oil Viscosity Reduction Technology: A Minireview. Energy Fuels 2023, 37, 11567–11583. DOI: 10.1021/acs.energyfuels.3c01387.
  • Ordiz, M. I.; Ryan, K. N.; Cimo, E. D.; Stoner, M. E.; Loehnig, M. E.; Manary, M. J. Effect of Emulsifier and Viscosity on Oil Separation in Ready-to-Use Therapeutic Food. Int. J. Food Sci. Nutr. 2015, 66, 642–648. DOI: 10.3109/09637486.2015.1077784.
  • Wang, H.; Zheng, H.; Zhang, W.; Yang, L.; Yu, M.; Li, Z. A near-Infrared Aggregation-Induced Emission Probe for Imaging Lipid Droplet and in Vivo Visualization of Diabetes-Related Viscosity Variations. Sensors. Actuat. B-Chem. 2023, 394, 134347., DOI: 10.1016/j.snb.2023.134347.
  • Hongjun, S.; Weijie, Z.; Ya, Z.; Caixia, Y.; Fangjun, H. Viscosity activated NIR fluorescent probe for visualizing mitochondrial viscosity dynamic and fatty liver mice. Chem Eng J. 2022, 445, 136448.
  • Zan, Q.; Fan, L.; Ma, L.; Yang, Q.; Zhao, K.; Huang, Y.; Dong, C.; Shuang, S. Dual-Channel Fluorescent Probe for Simultaneously Detecting H2S and Viscosity/Polarity and Its Application in Non-Alcoholic Fatty Liver, Tumor Tissue, and Food Spoilage. Sensors. Actuat. B-Chem 2023, 397, 134596. DOI: 10.1016/j.snb.2023.134596.
  • Han, D.; Yi, J.; Liu, C.; Liang, L.; Huang, K.; Jing, L.; Qin, D. A Fluoran-Based Viscosity Probe with High-Performance for Lysosome-Targeted Fluorescence Imaging. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 238, 118405. DOI: 10.1016/j.saa.2020.118405.
  • Wang, C.; Song, X.; Chen, L.; Xiao, Y. Specifically and Wash-Free Labeling of SNAP-Tag Fused Proteins with a Hybrid Sensor to Monitor Local Micro-Viscosity. Biosens. Bioelectron. 2017, 91, 313–320. DOI: 10.1016/j.bios.2016.11.018.
  • Chen, B.; Li, C.; Zhang, J.; Kan, J.; Jiang, T.; Zhou, J.; Ma, H. Sensing and Imaging of Mitochondrial Viscosity in Living Cells Using a Red Fluorescent Probe with a Long Lifetime. Chem. Commun. (Camb). 2019, 55, 7410–7413. DOI: 10.1039/c9cc03977e.
  • Yang, X.-Z.; Xu, B.; Shen, L.; Sun, R.; Xu, Y.-J.; Song, Y.-L.; Ge, J.-F. Series of Mitochondria/Lysosomes Self-Targetable near-Infrared Hemicyanine Dyes for Viscosity Detection. Anal. Chem. 2020, 92, 3517–3521. DOI: 10.1021/acs.analchem.0c00054.
  • Bakov, V. V.; Georgiev, N. I.; Bojinov, V. B. A Novel Fluorescent Probe for Determination of pH and Viscosity Based on a Highly Water-Soluble 1,8-Naphthalimide Rotor. Molecules 2022, 27, 7556. DOI: 10.3390/molecules27217556.
  • Wen, Y.; Jing, N.; Huo, F.; Yin, C. Recent Progress of Organic Small Molecule-Based Fluorescent Probes for Intracellular pH Sensing. Analyst 2021, 146, 7450–7463. DOI: 10.1039/d1an01621k.
  • Wang, J.; Huo, F.; Zhang, Y.; Yin, C. Spiropyran Isomerization Triggering ESIPT for Visualization of pH Fluctuations during Oxidative Stress in Living Cells. Chinese Chem.Lett. 2023, 34, 107818. DOI: 10.1016/j.cclet.2022.107818.
  • Munan, S.; Yadav, R.; Pareek, N.; Samanta, A. Ratiometric Fluorescent Probes for pH Mapping in Cellular Organelles. Analyst 2023, 148, 4242–4262. DOI: 10.1039/d3an00960b.
  • Sit, H.-Y.; Deng, J.-R.; Chan, W.-C.; Ko, B. C.-B.; Wong, M.-K. Quinolizinium-Based Tunable pH Fluorescent Probes for Imaging in Live Cells. Dyes Pigm. 2022, 205, 110541. DOI: 10.1016/j.dyepig.2022.110541.
  • Persi, E.; Duran-Frigola, M.; Damaghi, M.; Roush, W. R.; Aloy, P.; Cleveland, J. L.; Gillies, R. J.; Ruppin, E. Systems Analysis of Intracellular pH Vulnerabilities for Cancer Therapy. Nat. Commun. 2018, 9, 2997. DOI: 10.1038/s41467-018-05261-x.
  • Zhang, J.; Liu, Z.; Lian, P.; Qian, J.; Li, X.; Wang, L.; Fu, W.; Chen, L.; Wei, X.; Li, C. Selective Imaging and Cancer Cell Death via pH Switchable near-Infrared Fluorescence and Photothermal Effects. Chem. Sci. 2016, 7, 5995–6005. DOI: 10.1039/c6sc00221h.
  • Kashiri, M.; Cerisuelo, J. P.; Domínguez, I.; López-Carballo, G.; Muriel-Gallet, V.; Gavara, R.; Hernández-Muñoz, P. Zein Films and Coatings as Carriers and Release Systems of Zataria multiflora Boiss. essential Oil for Antimicrobial Food Packaging. P.H.-M.J.F. Hydrocolloids 2017, 70, 260–268., DOI: 10.1016/j.foodhyd.2017.02.021.
  • Liu, S. G.; Liu, T.; Li, N.; Geng, S.; Lei, J. L.; Li, N. B.; Luo, H. Q. Polyethylenimine-Derived Fluorescent Nonconjugated Polymer Dots with Reversible Dual-Signal pH Response and Logic Gate Operation. J. Phys. Chem. C 2017, 121, 6874–6883. DOI: 10.1021/acs.jpcc.6b12695.
  • Shi, L.; Liu, Y.; Wang, Q.; Wang, T.; Ding, Y.; Cao, Y.; Li, Z.; Wei, H. A pH Responsive AIE Probe for Enzyme Assays. Analyst 2018, 143, 741–746. DOI: 10.1039/c7an01710c.
  • Horváth, P.; Šebej, P.; Kovář, D.; Damborský, J.; Prokop, Z.; Klán, P. Fluorescent pH Indicators for Neutral to near-Alkaline Conditions Based on 9-Iminopyronin Derivatives. ACS Omega 2019, 4, 5479–5485., DOI: 10.1021/acsomega.9b00362.
  • Deng, B.; Ding, L.; Yang, S.; Tian, H.; Sun, B. A Dual-Function Fluorescent Probe for the Detection of pH Values and Formaldehyde. Luminescence 2023, 38, 1647–1653. DOI: 10.1002/bio.4552.
  • Zhang, C.; Wang, Y.; Li, X.; Nie, S.; Liu, C.; Zhang, Y.; Guo, J.; Liu, C. A Dual Functional Fluorescent Probe Based on Naphthalimide for Detecting Cu2+ and pH and Its Applications. Inorg. Chim. Acta 2023, 554, 121544. DOI: 10.1016/j.ica.2023.121544.
  • Guo-Lin, C.; Da-Ru, W.; Xin, L.; Xun, W.; Hao-Feng, L.; Chun-Ling, Z.; Zhen-Lu, Z.; Lin-Guang, L.; Chun-Xiang, Y. The apple lipoxygenase MdLOX3 positively regulates zinc tolerance. J. Hazard. Mater 2024, 461, 132553.
  • Cuajungco, M. P.; Ramirez, M. S.; Tolmasky, M. E. Zinc: Multidimensional Effects on Living Organisms. Biomedicines 2021, 9, 9–208. DOI: 10.3390/biomedicines9020208.
  • Li, C.; Fu, Y.; Tian, Y.; Zang, Z.; Gentekaki, E.; Wang, Z.; Warren, A.; Li, L. Comparative Transcriptome and Antioxidant Biomarker Response Reveal Molecular Mechanisms to Cope with Zinc Ion Exposure in the Unicellular Eukaryote Paramecium. J. Hazard. Mater. 2023, 453, 131364. DOI: 10.1016/j.jhazmat.2023.131364.
  • Liu, S.; Wang, Y.-M.; Han, J. Fluorescent Chemosensors for Copper(II) Ion: Structure, Mechanism and Application. J. Photoch. Photobio. C 2017, 32, 78–103. DOI: 10.1016/j.jphotochemrev.2017.06.002.
  • Chen, L.; Min, J.; Wang, F. Copper homeostasis and cuproptosis in health and disease. Sig. Transd. Target. Ther. 2022, 7, 378.
  • Kumar, M.; Kumar, A.; Singh, M. K.; Sahu, S. K.; John, R. P. A Novel Benzidine Based Schiff Base “Turn-on” Fluorescent Chemosensor for Selective Recognition of Zn2+. Sensor. Actuat. B-Chem. 2017, 241, 1218–1223. DOI: 10.1016/j.snb.2016.10.008.
  • Wang, H.; Kang, T.; Wang, X.; Feng, L. A Facile Strategy for Achieving High Selective Zn(II) Fluorescence Probe by Regulating the Solvent Polarity. Talanta 2018, 184, 7–14. DOI: 10.1016/j.talanta.2018.02.094.
  • Hagimori, M.; Hara, F.; Mizuyama, N.; Fujino, T.; Saji, H.; Mukai, T. High-Affinity Ratiometric Fluorescence Probe Based on 6-Amino-2,2'-Bipyridine Scaffold for Endogenous Zn2+ and Its Application to Living Cells. Molecules 2022, 27, 27–1287. DOI: 10.3390/molecules27041287.
  • Wang, Y.; Liu, S.; Chen, H.; Liu, Y.; Li, H. A Novel “Turn-on” Fluorescence Probe Based on Azoaniline-Arylimidazole Dyad for the Detection of Cu2+. Dyes Pigm. 2017, 142, 293–299. DOI: 10.1016/j.dyepig.2017.03.051.
  • Zhang, H.; Dong, X.; Wang, J.; Guan, R.; Cao, D.; Chen, Q. Fluorescence Emission of Polyethylenimine-Derived Polymer Dots and Its Application to Detect Copper and Hypochlorite Ions. ACS Appl. Mater. Interfaces. 2019, 11, 32489–32499. DOI: 10.1021/acsami.9b09545.
  • Kaur, M.; Mehta, S. K.; Kansal, S. K. Amine-Functionalized Titanium Metal-Organic Framework (NH2-MIL-125(Ti)): a Novel Fluorescent Sensor for the Highly Selective Sensing of Copper Ions. Mater. Chem. Phys. 2020, 254, 123539. DOI: 10.1016/j.matchemphys.2020.123539.
  • Ren, H.; Wu, P.; Li, F.; Yu, S.; Jin, L.; Lou, D. Development of a colorimetric and fluorescent Cu2+ ion probe based on 2′-hydroxy-2, 4-diaminoazobenzene and its application in real water sample and living cells. Inorg. Chim. Acta 2020, 507, 119583.
  • Zhu, B.; Wu, L.; Zhang, M.; Wang, Y.; Zhao, Z.; Wang, Z.; Duan, Q.; Jia, P.; Liu, C. A Fast-Response, Highly Specific Fluorescent Probe for the Detection of Picomolar Hypochlorous Acid and Its Bioimaging Applications. Sensor. Actuat. B-Chem. 2018, 263, 103–108. DOI: 10.1016/j.snb.2018.02.083.
  • Yuan, L.; Wang, L.; Agrawalla, B. K.; Park, S.-J.; Zhu, H.; Sivaraman, B.; Peng, J.; Xu, Q.-H.; Chang, Y.-T. Development of Targetable Two-Photon Fluorescent Probes to Image Hypochlorous Acid in Mitochondria and Lysosome in Live Cell and Inflamed Mouse Model. J. Am. Chem. Soc. 2015, 137, 5930–5938. DOI: 10.1021/jacs.5b00042.
  • Liu, C.; Li, Z.; Yu, C.; Chen, Y.; Liu, D.; Zhuang, Z.; Jia, P.; Zhu, H.; Zhang, X.; Yu, Y.; et al. Development of a Concise Rhodamine-Formylhydrazine Type Fluorescent Probe for Highly Specific and Ultrasensitive Tracing of Basal HOCl in Live Cells and Zebrafish. ACS Sens. 2019, 4, 2156–2163. DOI: 10.1021/acssensors.9b01001.
  • Liu, C.; Jia, P.; Wu, L.; Li, Z.; Zhu, H.; Wang, Z.; Deng, S.; Shu, W.; Zhang, X.; Yu, Y.; Zhu, B. Rational Design of a Highly Efficient Two-Photon Fluorescent Probe for Tracking Intracellular Basal Hypochlorous Acid and Its Applications in Identifying Tumor Cells and Tissues. Sensor. Actuat. B-Chem. 2019, 297, 126731. DOI: 10.1016/j.snb.2019.126731.
  • Yao, L.; Song, H.; Yin, C.; Huo, F. An ICT-Switched Fluorescent Probe for Visualizing Lipid and HClO in Lipid Droplets during Ferroptosis. Chem. Commun. (Camb). 2024, 60, 835–838. DOI: 10.1039/d3cc05679a.
  • Pang, Q.; Li, T.; Yin, C.; Ma, K.; Huo, F. Comparing the abundance of HClO in cancer/normal cells and visualizing in vivo using a mitochondria-targeted ultra-fast fluorescent probe. Analyst 2021, 146, 3361–3367.
  • Zeng, C.; Chen, Z.; Yang, M.; Lv, J.; Li, H.; Gao, J.; Yuan, Z. A Hydroxytricyanopyrrole-Based Fluorescent Probe for Sensitive and Selective Detection of Hypochlorous Acid. Molecules 2022, 27, 7237. DOI: 10.3390/molecules27217237.
  • Tang, Y.; Li, Y.; Han, J.; Mao, Y.; Ni, L.; Wang, Y. A Coumarin Based Fluorescent Probe for Rapidly Distinguishing of Hypochlorite and Copper (II) Ion in Organisms. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 208, 299–308. DOI: 10.1016/j.saa.2018.10.019.
  • Feng, H.; Zhang, Z.; Meng, Q.; Jia, H.; Wang, Y.; Zhang, R. Rapid Response Fluorescence Probe Enabled In Vivo Diagnosis and Assessing Treatment Response of Hypochlorous Acid-Mediated Rheumatoid Arthritis. Adv. Sci. 2018, 5, 1800397.
  • Wang, K.; Liu, Y.; Liu, C.; Zhu, H.; Li, X.; Zhang, F.; Gao, N.; Pang, X.; Sheng, W.; Zhu, B. A Simple Pyridine-Based Highly Specific Fluorescent Probe for Tracing Hypochlorous Acid in Lysosomes of Living Cells. New J. Chem. 2021, 45, 14548–14553. DOI: 10.1039/D1NJ02256C.
  • Zhan, Z.; Lei, Q.; Dai, Y.; Wang, D.; Yu, Q.; Lv, Y.; Li, W. Simultaneous Monitoring of HOCl and Viscosity with Drug-Induced Pyroptosis in Live Cells and Acute Lung Injury. Anal. Chem. 2022, 94, 12144–12151. DOI: 10.1021/acs.analchem.2c02235.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.