204
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Electrochemical Sensors and Biosensors for Identification of Viruses: A Critical Review

, , , , , , , , , , , , & show all

References

  • Paleček, E.; Bartošík, M. Electrochemistry of Nucleic Acids. Chem. Rev. 2012, 112, 3427–3481. DOI: 10.1021/cr200303p.
  • Drummond, T. G.; Hill, M. G.; Barton, J. K. Electrochemical DNA Sensors. Nat. Biotechnol. 2003, 21, 1192–1199. DOI: 10.1038/nbt873.
  • Rosi, N. L.; Mirkin, C. A. Nanostructures in Biodiagnostics. Chem. Rev. 2005, 105, 1547–1562. DOI: 10.1021/cr030067f.
  • Eaton, B. T.; Broder, C. C.; Middleton, D.; Wang, L. F. Hendra and Nipah Viruses: Different and Dangerous. Nat. Rev. Microbiol. 2006, 4, 23–35. DOI: 10.1038/nrmicro1323.
  • Reardon, S. Flu, MERS and Ebola—The Disease Outbreaks Most Frequently Reported. Nature 2023, 614, 205–205. DOI: 10.1038/d41586-023-00196-w.
  • Garry, R. F. Lassa Fever—the Road Ahead. Nat. Rev. Microbiol. 2023, 21, 87–96. DOI: 10.1038/s41579-022-00789-8.
  • Ruiz-Aravena, M.; McKee, C.; Gamble, A.; Lunn, T.; Morris, A.; Snedden, C. E.; Yinda, C. K.; Port, J. R.; Buchholz, D. W.; Yeo, Y. Y.; et al. Ecology, Evolution and Spillover of Coronaviruses from Bats. Nat. Rev. Microbiol. 2022, 20, 299–314. DOI: 10.1038/s41579-021-00652-2.
  • Quick, J.; Loman, N. J.; Duraffour, S.; Simpson, J. T.; Severi, E.; Cowley, L.; Bore, J. A.; Koundouno, R.; Dudas, G.; Mikhail, A.; et al. Real-Time, Portable Genome Sequencing for Ebola Surveillance. Nature 2016, 530, 228–232. DOI: 10.1038/nature16996.
  • Metsky, H. C.; Welch, N. L.; Pillai, P. P.; Haradhvala, N. J.; Rumker, L.; Mantena, S.; Zhang, Y. B.; Yang, D. K.; Ackerman, C. M.; Weller, J.; et al. Designing Sensitive Viral Diagnostics with Machine Learning. Nat. Biotechnol. 2022, 40, 1123–1131. DOI: 10.1038/s41587-022-01213-5.
  • Mendes, B. B.; Conniot, J.; Avital, A.; Yao, D.; Jiang, X.; Zhou, X.; Sharf-Pauker, N.; Xiao, Y.; Adir, O.; Liang, H.; et al. Nanodelivery of Nucleic Acids. Nat. Rev. Meth. Primers 2022, 2, 24.
  • Campuzano, S.; Yáñez‐Sedeño, P.; Pingarrón, J. M. Electrochemical Biosensing for the Diagnosis of Viral Infections and Tropical Diseases. ChemElectroChem 2017, 4, 753–777. DOI: 10.1002/celc.201600805.
  • Bukasov, R.; Dossym, D.; Filchakova, O. Detection of RNA Viruses from Influenza and HIV to Ebola and SARS-CoV-2: A Review. Anal. Method 2020, 13, 34–55.
  • Babaei, A.; Pouremamali, A.; Rafiee, N.; Sohrabi, H.; Mokhtarzadeh, A.; de la Guardia, M. Genosensors as an Alternative Diagnostic Sensing Approaches for Specific Detection of Virus Species: A Review of Common Techniques and Outcomes. Trends Analyt. Chem. 2022, 155, 116686. DOI: 10.1016/j.trac.2022.116686.
  • Hamidi-Asl, E.; Heidari-Khoshkelat, L.; Bakhsh Raoof, J.; Richard, T. P.; Farhad, S.; Ghani, M. A Review on the Recent Achievements on Coronaviruses Recognition Using Electrochemical Detection Methods. Microchem. J. 2022, 178, 107322. DOI: 10.1016/j.microc.2022.107322.
  • Manring, N.; Ahmed, M. M. N.; Tenhoff, N.; Smeltz, J. L.; Pathirathna, P. Recent Advances in Electrochemical Tools for Virus Detection. Anal. Chem. 2022, 94, 7149–7157. DOI: 10.1021/acs.analchem.1c05358.
  • Akarapipad, P.; Bertelson, E.; Pessell, A.; Wang, T. H.; Hsieh, K. W. Emerging Multiplex Nucleic Acid Diagnostic Tests for Combating COVID-19. Biosensors (Basel) 2022, 12(11), 978. DOI: 10.3390/bios12110978.
  • Bhatt, G.; Gupta, S.; Ramanathan, G.; Bhattacharya, S. Integrated DEP Assisted Detection of PCR Products With Metallic Nanoparticle Labels Through Impedance Spectroscopy. IEEE Trans. Nanobioscience. 2022, 21, 502–510. DOI: 10.1109/TNB.2021.3127111.
  • Dkhar, Daphika S, Kumari, Rohini, Mahapatra, Supratim, Kumar, Rahul, Chandra, Pranjal, Divya, Ultrasensitive Aptasensors for the Detection of Viruses Based on Opto-Electrochemical Readout Systems. Biosensors (Basel) 12, (2022):81. DOI: 10.3390/bios12020081.
  • Futane, A.; Narayanamurthy, V.; Jadhav, P.; Srinivasan, A. Aptamer-Based Rapid Diagnosis for Point-of-Care Application. Microfluid. Nanofluidics. 2023, 27, 15. DOI: 10.1007/s10404-022-02622-3.
  • Kumar, P. K. R. Monitoring Intact Viruses Using Aptamers. Biosensors (Basel) 2016, 6(3), 40. DOI: 10.3390/bios6030040.
  • Menon, S.; Mathew, M. R.; Sam, S.; Keerthi, K.; Kumar, K. G. Recent Advances and Challenges in Electrochemical Biosensors for Emerging and Re-Emerging Infectious Diseases. J. Electroanal. Chem. (Lausanne) 2020, 878, 114596. DOI: 10.1016/j.jelechem.2020.114596.
  • Bukkitgar, S. D.; Shetti, N. P.; Aminabhavi, T. M. Electrochemical Investigations for COVID-19 detection-A Comparison with Other Viral Detection Methods. Chem. Eng. J. 2020, 420, 127575. DOI: 10.1016/j.cej.2020.127575.
  • de Eguilaz, M. R.; Cumba, L. R.; Forster, R. J. Electrochemical Detection of Viruses and Antibodies: A Mini Review. Electrochem. Commun. 2020, 116, 106762. DOI: 10.1016/j.elecom.2020.106762.
  • Skládal, P. Advances in Electrochemical Immunosensors for Pathogens. Curr. Opin. Electrochem. 2019, 14, 66–70. DOI: 10.1016/j.coelec.2018.12.010.
  • Mo, Y. M.; Lu, Z. H.; Rughoobur, G.; Patil, P.; Gershenfeld, N.; Akinwande, A. I.; Buchwald, S. L.; Jensen, K. F. Microfluidic Electrochemistry for Single-Electron Transfer Redox-Neutral Reactions. Science 2020, 368, 1352–1357. DOI: 10.1126/science.aba3823.
  • Kumar, S.; Hol, F. J. H.; Pujhari, S.; Ellington, C.; Narayanan, H. V.; Li, H. Q.; Rasgon, J. L.; Prakash, M. A Microfluidic Platform for Highly Parallel Bite by Bite Profiling of Mosquito-Borne Pathogen Transmission. Nat. Commun. 2021, 12, 6018. DOI: 10.1038/s41467-021-26300-0.
  • Butler, D.; Ebrahimi, A. Rapid and Sensitive Detection of Viral Particles by Coupling Redox Cycling and Electrophoretic Enrichment. Biosens. Bioelectron. 2022, 208, 114198. DOI: 10.1016/j.bios.2022.114198.
  • Ju, Y.; Pu, M.; Sun, K.; Song, G.; Geng, J. Nanopore Electrochemistry for Pathogen Detection. Chem. Asian J. 2022, 17, e202200774.
  • Zhang, Y. W.; Chen, X. H.; Wang, C. M.; Chang, H. C.; Guan, X. Y. Nanoparticle-Assisted Detection of Nucleic Acids in a Polymeric Nanopore with a Large Pore Size. Biosens. Bioelectron. 2022, 196, 113697. DOI: 10.1016/j.bios.2021.113697.
  • Wang, Y.; Yan, T. H.; Mei, K. N.; Rao, D. P.; Wu, W. J.; Chen, Y.; Peng, Y. P.; Wang, J. Y.; Wu, S. Q.; Zhang, Q. C. Nanomechanical Assay for Ultrasensitive and Rapid Detection of SARS-CoV-2 Based on Peptide Nucleic Acid. Nano Res. 2023, 16, 1183–1195. DOI: 10.1007/s12274-022-4333-3.
  • Bhardwaj, J.; Ngo, N. D.; Lee, J.; Jang, J. High Enrichment and near Real-Time Quantification of Airborne Viruses Using a Wet-Paper-Based Electrochemical Immunosensor under an Electrostatic Field. J. Hazard. Mater. 2023, 442, 130006. DOI: 10.1016/j.jhazmat.2022.130006.
  • Gargulak, M.; Docekalova, M.; Kepinska, M.; Sehnal, K.; Ofomaja, A. E.; and Milnerowicz, H.; Hosnedlova, B.; Stankova, M.; Fernandez, C.; Hoai, N. V.; et al. 2019 Ieee, 3D-Printed CdTe QDs-Based Sensor for Sensitive Electrochemical Detection of Viral Particles. in IEEE International Conference on Sensors and Nanotechnology, Penang, Malaysia, p. 125.
  • Zhao, Z.; Huang, C. F.; Huang, Z. Y.; Lin, F. J.; He, Q. L.; Tao, D.; Jaffrezic-Renault, N.; Guo, Z. Z. Advancements in Electrochemical Biosensing for Respiratory Virus Detection: A Review. Trend. Anal. Chem. 2021, 139, 116253.
  • Sahoo, J. K.; Hasturk, O.; Falcucci, T.; Kaplan, D. L. Silk Chemistry and Biomedical Material Designs. Nat. Rev. Chem. 2023, 7, 302–318. DOI: 10.1038/s41570-023-00486-x.
  • Chomoucka, J.; Drbohlavova, J.; Huska, D.; Adam, V.; Kizek, R.; Hubalek, J. Magnetic Nanoparticles and Targeted Drug Delivering. Pharmacol. Res. 2010, 62, 144–149. DOI: 10.1016/j.phrs.2010.01.014.
  • Ma, X. L.; Shi, Y. X.; Gao, G. Y.; Zhang, H. X.; Zhao, Q.; Zhi, J. F. Application and Progress of Electrochemical Biosensors for the Detection of Pathogenic Viruses. J. Electroanal. Chem. 2023, 950, 117867. DOI: 10.1016/j.jelechem.2023.117867.
  • Skalickova, S.; Horky, P.; Mlejnkova, V.; Skladanka, J.; Hosnedlova, B.; Ruttkay-Nedecky, B.; Fernandez, C.; Kizek, R. Theranostic Approach for the Protein Corona of Polysaccharide Nanoparticles. Chem. Rec. 2021, 21, 17–28. DOI: 10.1002/tcr.202000042.
  • Palecek, E. Oscillographic Polarography of Highly Polymerized Deoxyribonucleic Acid. Nature 1960, 188, 656–657.
  • Banas, D.; Aksu, D. A.; Noguera, M. V.; Pay, M.; Hosnedlova, B.; Kizek, R. Electrochemical Study of Quantum Dots-Labeled Oligonucleotide Probes for Detecting Nucleic Acid of African Swine Fever Virus. Chem. Listy. 2020, 114, 778.
  • Banas, D.; Rychly, O.; Salmistraro, S.; Aksu, A. D.; Krzyzankova, M.; Kizek, R.; Ltd, T. Optimization of nucleic acid binding to magnetic particles with the aim of detection of dangerous viruses. 12th International Conference on Nanomaterials—Research and Application (NANOCON), 12, 2020:324.
  • Alhalaili, B.; Popescu, IN.; Kamoun, O.; Alzubi, F.; Alawadhia, S.; Vidu, R. Nanobiosensors for the Detection of Novel Coronavirus 2019-nCoV and Other Pandemic/Epidemic Respiratory Viruses: A Review. Sensors 2020, 20, 6591. DOI: 10.3390/s20226591.
  • Dalal, Anita, Gill, Paramjeet Singh, Narang, Jagriti, Prasad, Minakshi, Mohan, Hari, Ravina, Genosensor for Rapid, Sensitive, Specific Point-of-Care Detection of H1N1 Influenza (Swine Flu). Proces. Biochem., 98, (2020):262, 268. DOI: 10.1016/j.procbio.2020.09.016.
  • Kim, J.; Campbell, A. S.; de Ávila, B. E.-F.; Wang, J. Wearable Biosensors for Healthcare Monitoring. Nat. Biotechnol. 2019, 37, 389–406. DOI: 10.1038/s41587-019-0045-y.
  • Borberg, E.; Granot, E.; Patolsky, F. Ultrafast One-Minute Electronic Detection of SARS-CoV-2 Infection by 3CL(Pro) Enzymatic Activity in Untreated Saliva Samples. Nat. Commun. 2022, 13, 6375. DOI: 10.1038/s41467-022-34074-2.
  • Paleček, E.; Kizek, R.; Havran, L.; Billova, S.; Fojta, M. Electrochemical Enzyme-Linked Immunoassay in a DNA Hybridization Sensor. Anal. Chim. Acta 2002, 469, 73–83. DOI: 10.1016/S0003-2670(01)01605-1.
  • Kizek, R.; Havran, L.; Kubicárová, T.; Yosypchuk, B.; Heyrovský, M. Voltammetry of Two Single-Stranded Isomeric End-labeled -SH Deoxyoligonucleotides on Mercury Electrodes. Talanta 2002, 56, 915–918. DOI: 10.1016/s0039-9140(01)00665-8.
  • Wang, J. Electrochemical Nucleic Acid Biosensors. Anal. Chim. Acta 2002, 469, 63–71. DOI: 10.1016/S0003-2670(01)01399-X.
  • Sempionatto, J. R.; Lasalde-Ramírez, J. A.; Mahato, K.; Wang, J.; Gao, W. Wearable Chemical Sensors for Biomarker Discovery in the Omics Era. Nat. Rev. Chem. 2022, 6, 899–915. DOI: 10.1038/s41570-022-00439-w.
  • Kim, H. E.; Schuck, A.; Lee, S. H.; Lee, Y.; Kang, M.; Kim, Y.-S. Sensitive Electrochemical Biosensor Combined with Isothermal Amplification for Point-of-Care COVID-19 Tests. Biosens. Bioelectron. 2021, 182, 113168. DOI: 10.1016/j.bios.2021.113168.
  • Samson, R.; Navale, G. R.; Dharne, M. S. Biosensors: Frontiers in Rapid Detection of COVID-19. 3 Biotech 2020, 10, 385. DOI: 10.1007/s13205-020-02369-0.
  • Liang, Q.; Huang, Y.; Wang, M.; Kuang, D.; Yang, J.; Yi, Y.; Shi, H.; Li, J.; Yang, J.; Li, G. An Electrochemical Biosensor for SARS-CoV-2 Detection via Its Papain-like Cysteine Protease and the Protease Inhibitor Screening. Chem. Eng. J. 2023, 452, 139646. DOI: 10.1016/j.cej.2022.139646.
  • Hallaj, R.; Mottaghi, M.; Ghafary, Z.; Jalali, F. Ultrasensitive Electrochemical Detection of Hepatitis b Virus Surface Antigen Based on Hybrid Nanomaterials. Microchem. J. 2022, 182, 107958. DOI: 10.1016/j.microc.2022.107958.
  • Zhuang, X.; Yang, X.; Cao, B.; Sun, H.; Lv, X.; Zeng, C.; Li, F.; Qu, B.; Zhou, H. S.; Cui, F.; Zhou, Q. Review—CRISPR/Cas Systems: Endless Possibilities for Electrochemical Nucleic Acid Sensors. J. Electrochem. Soc. 2022, 169, 37522. DOI: 10.1149/1945-7111/ac5cec.
  • Hejazi, M. S.; Pournaghi-Azar, M. H.; Ahour, F. Electrochemical Detection of Short Sequences of Hepatitis C 3a Virus Using a Peptide Nucleic Acid-Assembled Gold Electrode. Anal. Biochem. 2010, 399, 118–124. DOI: 10.1016/j.ab.2009.11.019.
  • Chaibun, T.; Puenpa, J.; Ngamdee, T.; Boonapatcharoen, N.; Athamanolap, P.; O'Mullane, A. P.; Vongpunsawad, S.; Poovorawan, Y.; Lee, S. Y.; Lertanantawong, B. Rapid Electrochemical Detection of Coronavirus SARS-CoV-2. Nat. Commun. 2021, 12, 802. DOI: 10.1038/s41467-021-21121-7.
  • Cancino-Bernardi, J.; Comparetti, E. J.; Ferreira, N. N.; Miranda, R. R.; Tuesta, M. M.; Sampaio, I.; Da Costa, P. I.; Zucolotto, V. A SARS-CoV-2 Impedimetric Biosensor Based on the Immobilization of ACE-2 Receptor-Containing Entire Cell Membranes as the Biorecognition Element. Talanta 2023, 253, 124008. DOI: 10.1016/j.talanta.2022.124008.
  • Ji, D. Z.; Guo, M. Q.; Wu, Y. E.; Liu, W. T.; Luo, S.; Wang, X. J.; Kang, H.; Chen, Y. H.; Dai, C. H.; Kong, D. R.; et al. Electrochemical Detection of a Few Copies of Unamplified SARS-CoV-2 Nucleic Acids by a Self-Actuated Molecular System. J. Am. Chem. Soc. 2022, 144, 13526–13537. DOI: 10.1021/jacs.2c02884.
  • Tripathy, S.; Agarkar, T.; Talukdar, A.; Sengupta, M.; Kumar, A.; Ghosh, S. Evaluation of Indirect Sequence-Specific Magneto-Extraction-Aided LAMP for Fluorescence and Electrochemical SARS-CoV-2 Nucleic Acid Detection. Talanta 2023, 252, 123809. DOI: 10.1016/j.talanta.2022.123809.
  • Ciftci, S.; Cánovas, R.; Neumann, F.; Paulraj, T.; Nilsson, M.; Crespo, G. A.; Madaboosi, N. The Sweet Detection of Rolling Circle Amplification: Glucose-Based Electrochemical Genosensor for the Detection of Viral Nucleic Acid. Biosens. Bioelectron. 2020, 151, 112002. DOI: 10.1016/j.bios.2019.112002.
  • Lee, Y.; Choi, J.; Han, H.-K.; Park, S.; Park, S. Y.; Park, C.; Baek, C.; Lee, T.; Min, J. Fabrication of Ultrasensitive Electrochemical Biosensor for Dengue Fever Viral RNA Based on CRISPR/Cpf1 Reaction. Sens. Actuat. B–Chem. 2021, 326, 128677.
  • Awan, M.; Rauf, S.; Abbas, A.; Nawaz, M. H.; Yang, C.; Shahid, S. A.; Amin, N.; Hayat, A. A Sandwich Electrochemical Immunosensor Based on Antibody Functionalized-Silver Nanoparticles (Ab-Ag NPs) for the Detection of Dengue Biomarker Protein NS1. J. Mol. Liq. 2020, 317, 114014. DOI: 10.1016/j.molliq.2020.114014.
  • Rashid, S.; Nawaz, M. H.; Marty, J. L.; Hayat, A. Label Free Ultrasensitive Detection of NS1 Based on Electrochemical Aptasensor Using Polyethyleneimine Aggregated AuNPs. Microchem. J. 2020, 158, 105285. DOI: 10.1016/j.microc.2020.105285.
  • Garrote, B. L.; Santos, A.; Bueno, P. R. Label-Free Capacitive Assaying of Biomarkers for Molecular Diagnostics. Nat. Prot. 2020, 15(12), 3879–3893.
  • Singhal, C.; Shukla, S. K.; Jain, A.; Pundir, C.; Khanuja, M.; Narang, J.; Shetti, N. P. Electrochemical Multiplexed Paper Nanosensor for Specific Dengue Serotype Detection Predicting Pervasiveness of DHF/DSS. ACS Biomater. Sci. Eng. 2020, 6, 5886–5894. DOI: 10.1021/acsbiomaterials.0c00976.
  • Wu, C.-C.; Yen, H.-Y.; Lai, L.-T.; Perng, G.-C.; Lee, C.-R.; Wu, S.-J. A Label-Free Impedimetric Genosensor for the Nucleic Acid Amplification-Free Detection of Extracted RNA of Dengue Virus. Sensors 2020, 20, 3728. DOI: 10.3390/s20133728.
  • Palomar, Q.; Xu, X. X.; Gondran, C.; Holzinger, M.; Cosnier, S.; Zhang, Z. Voltammetric Sensing of Recombinant Viral Dengue Virus 2 NS1 Based on Au Nanoparticle-Decorated Multiwalled Carbon Nanotube Composites. Microchim. Acta 2020, 187, 10. DOI: 10.1007/s00604-020-04339-y.
  • Kang, S. J.; Kim, S.; Lee, K.; Shin, I. S.; Kim, Y. R. Tunable Electrochemical Grafting of Diazonium for Highly Sensitive Impedimetric DNA Sensor. J. Electrochem. Soc. 2020, 167, 87504. DOI: 10.1149/1945-7111/ab8ce8.
  • Yin, Z.; Ramshani, Z.; Waggoner, J. J.; Pinsky, B. A.; Senapati, S.; Chang, H. C. A Non-Optical Multiplexed PCR Diagnostic Platform for Serotype-Specific Detection of Dengue Virus. Sens. Actuator B–Chem. 2020, 310, 10.
  • Dutta, R.; Thangapandi, K.; Mondal, S.; Nanda, A.; Bose, S.; Sanyal, S.; Jana, S. K.; Ghorai, S. Polyaniline Based Electrochemical Sensor for the Detection of Dengue Virus Infection. Avicenna J. Med. Biotechnol. 2020, 12, 77.
  • Cecchetto, J.; Santos, A.; Mondini, A.; Cilli, E. M.; Bueno, P. R. Serological Point-of-Care and Label-Free Capacitive Diagnosis of Dengue Virus Infection. Biosens. Bioelectron. 2020, 151, 111972. DOI: 10.1016/j.bios.2019.111972.
  • Santos, C. D.; Santos, P. C. M.; Rocha, K. L. S.; Thomasini, R. L.; de Oliveira, D. B.; Franco, D. L.; Ferreira, L. F. A New Tool for Dengue Virus Diagnosis: Optimization and Detection of anti-NS1 Antibodies in Serum Samples by Impedimetric Transducers. Microchem. J. 2020, 154, 104544. DOI: 10.1016/j.microc.2019.104544.
  • Arshad, R.; Rhouati, A.; Hayat, A.; Nawaz, M. H.; Yameen, M. A.; Mujahid, A.; Latif, U. MIP-Based Impedimetric Sensor for Detecting Dengue Fever Biomarker. Appl. Biochem. Biotechnol. 2020, 191, 1384–1394. DOI: 10.1007/s12010-020-03285-y.
  • Kanagavalli, P.; Veerapandian, M. Opto-Electrochemical Functionality of Ru(II)-Reinforced Graphene Oxide Nanosheets for Immunosensing of Dengue Virus Non-Structural 1 Protein. Biosens. Bioelectron. 2020, 150, 111878. DOI: 10.1016/j.bios.2019.111878.
  • Siew, Q. Y.; Pang, E. L.; Loh, H.-S.; Tan, M. T. T. Highly Sensitive and Specific Graphene/TiO2 Impedimetric Immunosensor Based on Plant-Derived Tetravalent Envelope Glycoprotein Domain III (EDIII) Probe Antigen for Dengue Diagnosis. Biosens. Bioelectron. 2020, 176, 112895. DOI: 10.1016/j.bios.2020.112895.
  • Sangili, A.; Kalyani, T.; Chen, S.-M.; Rajendran, K.; Jana, S. K. Label-Free Electrochemical Immunosensor Based on l-Cysteine-Functionalized AuNP on Reduced Graphene Oxide for the Detection of Dengue Virus E-Protein in Dengue Blood Serum. Composit. B Eng. 2022, 238, 109876. DOI: 10.1016/j.compositesb.2022.109876.
  • Rashid, J. I. A.; Yusof, N. A.; Abdullah, J.; Shueb, R. H. Strategies in the Optimization of DNA Hybridization Conditions and Its Role in Electrochemical Detection of Dengue Virus (DENV) Using Response Surface Methodology (RSM). RSC Adv. 2023, 13, 18748–18759. DOI: 10.1039/d3ra00216k.
  • Kim, S. M.; Kim, J.; Noh, S.; Sohn, H.; Lee, T. Recent Development of Aptasensor for Influenza Virus Detection. Biochip J. 2020, 14, 327–339. DOI: 10.1007/s13206-020-4401-2.
  • Wędrowska, E.; Wandtke, T.; Piskorska, E.; Kopiński, P. The Latest Achievements in the Construction of Influenza Virus Detection Aptasensors. Viruses 2020, 12, 1365. DOI: 10.3390/v12121365.
  • Roberts, A.; Chauhan, N.; Islam, S.; Mahari, S.; Ghawri, B.; Gandham, R. K.; Majumdar, S. S.; Ghosh, A.; Gandhi, S. Graphene Functionalized Field-Effect Transistors for Ultrasensitive Detection of Japanese Encephalitis and Avian Influenza Virus. Sci. Rep. 2020, 10, 14546. DOI: 10.1038/s41598-020-71591-w.
  • Bhardwaj, J.; Kim, M.-W.; Jang, J. Rapid Airborne Influenza Virus Quantification Using an Antibody-Based Electrochemical Paper Sensor and Electrostatic Particle Concentrator. Environ. Sci. Technol. 2020, 54, 10700–10712. DOI: 10.1021/acs.est.0c00441.
  • Lee, I.; Kim, S. E.; Lee, J.; Woo, D. H.; Lee, S.; Pyo, H.; Song, C. S.; Lee, J. A Self-Calibrating Electrochemical Aptasensing Platform: Correcting External Interference Errors for the Reliable and Stable Detection of Avian Influenza Viruses. Biosens. Bioelectron. 2020, 152, 112010. DOI: 10.1016/j.bios.2020.112010.
  • Joshi, S. R.; Sharma, A.; Kim, G. H.; Jang, J. Low Cost Synthesis of Reduced Graphene Oxide Using Biopolymer for Influenza Virus Sensor. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020, 108, 9.
  • Luo, F. W.; Long, C.; Wu, Z.; Xiong, H. Y.; Chen, M. M.; Zhang, X. H.; Wen, W.; Wang, S. F. Functional Silica Nanospheres for Sensitive Detection of H9N2 Avian Influenza Virus Based on Immunomagnetic Separation. Sens. Actuator B–Chem. 2020, 310, 8.
  • Matsubara, T.; Ujie, M.; Yamamoto, T.; Einaga, Y.; Daidoji, T.; Nakaya, T.; Sato, T. Avian Influenza Virus Detection by Optimized Peptide Termination on a Boron-Doped Diamond Electrode. ACS Sens. 2020, 5, 431–439. DOI: 10.1021/acssensors.9b02126.
  • Dunajová, A. A.; Gál, M.; Tomčíková, K.; Sokolová, R.; Kolivoška, V.; Vaněčková, E.; Kielar, F.; Kostolanský, F.; Varečková, E.; Naumowicz, M. Ultrasensitive Impedimetric Imunosensor for Influenza A Detection. J. Electroanal. Chem. 2020, 858, 113813. DOI: 10.1016/j.jelechem.2019.113813.
  • Kim, J. H.; Shin, J. H.; Cho, C. H.; Hwang, J.; Kweon, D.-H.; Park, T. J.; Choi, C.-H.; Park, J. P. Dual Synergistic Response for the Electrochemical Detection of H1N1 Virus and Viral Proteins Using High Affinity Peptide Receptors. Talanta 2022, 248, 123613. DOI: 10.1016/j.talanta.2022.123613.
  • Reddy, Y. V. M.; Shin, J. H.; Hwang, J.; Kweon, D.-H.; Choi, C.-H.; Park, K.; Kim, S.-K.; Madhavi, G.; Yi, H.; Park, J. P. Fine-Tuning of MXene-Nickel Oxide-Reduced Graphene Oxide Nanocomposite Bioelectrode: Sensor for the Detection of Influenza Virus and Viral Protein. Biosens. Bioelectron. 2022, 214, 114511. DOI: 10.1016/j.bios.2022.114511.
  • Lee, W. I.; Subramanian, A.; Mueller, S.; Levon, K.; Nam, C. Y.; Rafailovich, M. H. Potentiometric Biosensors Based on Molecular-Imprinted Self-Assembled Monolayer Films for Rapid Detection of Influenza A Virus and SARS-CoV-2 Spike Protein. ACS Appl. Nano Mater. 2022, 5, 5045–5055. DOI: 10.1021/acsanm.2c00068.
  • Huang, J. L.; Xie, Z. X.; Li, M.; Luo, S. S.; Deng, X. W.; Xie, L. J.; Fan, Q.; Zeng, T. T.; Zhang, Y. F.; Zhang, M. X.; et al. An Enzyme-Free Sandwich Amperometry-Type Immunosensor Based on Au/Pt Nanoparticle-Functionalized Graphene for the Rapid Detection of Avian Influenza Virus H9 Subtype. Nanoscale Res. Let. 2022, 17, 110.
  • Lee, D.; Bhardwaj, J.; Jang, J. Paper Based Electrochemical Immunosensor for Label-Free Detection of Multiple Avian Influenza Virus Antigens Using Flexible Screen-Printed Carbon Nanotube-Polydimethylsiloxane Electrodes. Sci. Rep. 2022, 12, 2311. DOI: 10.1038/s41598-022-06101-1.
  • Yang, Y.-J.; Bai, Y.-Y.; Huangfu, Y.-Y.; Yang, X.-Y.; Tian, Y.-S.; Zhang, Z.-L. Single-Nanoparticle Collision Electrochemistry Biosensor Based on an Electrocatalytic Strategy for Highly Sensitive and Specific Detection of H7N9 Avian Influenza Virus. Anal. Chem. 2022, 94, 8392–8398. DOI: 10.1021/acs.analchem.2c00913.
  • Lim, R. R. X.; Bonanni, A. The Potential of Electrochemistry for the Detection of Coronavirus-Induced Infections. Trend Anal. Chem. 2020, 133, 116081.
  • Taha, B. A.; Al Mashhadany, Y.; Hafiz Mokhtar, M. H.; Dzulkefly Bin Zan, M. S.; Arsad, N. An Analysis Review of Detection Coronavirus Disease 2019 (COVID-19) Based on Biosensor Application. Sensors 2020, 20, 6764. DOI: 10.3390/s20236764.
  • Kumar, N.; Shetti, N. P.; Jagannath, S.; Aminabhavi, T. M. Electrochemical Sensors for the Detection of SARS-CoV-2 Virus. Chem. Eng. J. 2022, 430, 132966. DOI: 10.1016/j.cej.2021.132966.
  • Zambry, N. S.; Obande, G. A.; Khalid, M. F.; Bustami, Y.; Hamzah, H. H.; Awang, M. S.; Aziah, I.; Manaf, A. A. Utilizing Electrochemical-Based Sensing Approaches for the Detection of SARS-CoV-2 in Clinical Samples: A Review. Biosensors (Basel) 2022, 12, 473. DOI: 10.3390/bios12070473.
  • Guo, K.; Wustoni, S.; Koklu, A.; Díaz-Galicia, E.; Moser, M.; Hama, A.; Alqahtani, A. A.; Ahmad, A. N.; Alhamlan, F. S.; Shuaib, M.; et al. Rapid Single-Molecule Detection of COVID-19 and MERS Antigens via Nanobody-Functionalized Organic Electrochemical Transistors. Nat. Biomed. Eng. 2021, 5, 666–677. DOI: 10.1038/s41551-021-00734-9.
  • Antiochia, R. Electrochemical Biosensors for SARS-CoV-2 Detection: Voltametric or Impedimetric Transduction? Bioelectrochemistry 2022, 147, 108190. DOI: 10.1016/j.bioelechem.2022.108190.
  • Ayala-Charca, G.; Salahandish, R.; Khalghollah, M.; Sadighbayan, D.; Haghayegh, F.; Sanati-Nezhad, A.; Ghafar-Zadeh, E. A Low-Cost Handheld Impedimetric Biosensing System for Rapid Diagnostics of SARS-CoV-2 Infections. IEEE Sens. J. 2022, 22, 15673–15682. DOI: 10.1109/JSEN.2022.3181580.
  • Laghrib, F.; Saqrane, S.; El Bouabi, Y.; Farahi, A.; Bakasse, M.; Lahrich, S.; El Mhammedi, M. A. Current Progress on COVID-19 Related to Biosensing Technologies: New Opportunity for Detection and Monitoring of Viruses. Microchem. J. 2021, 160, 105606. DOI: 10.1016/j.microc.2020.105606.
  • Xi, H.; Juhas, M.; Zhang, Y. G-Quadruplex Based Biosensor: A Potential Tool for SARS-CoV-2 Detection. Biosens. Bioelectron. 2020, 167, 112494. DOI: 10.1016/j.bios.2020.112494.
  • Asif, M.; Ajmal, M.; Ashraf, G.; Muhammad, N.; Aziz, A.; Iftikhar, T.; Wang, J.; Liu, H. The Role of Biosensors in Coronavirus Disease-2019 Outbreak. Curr. Opin. Electrochem. 2020, 23, 174–184. DOI: 10.1016/j.coelec.2020.08.011.
  • Layqah, L. A.; Eissa, S. An Electrochemical Immunosensor for the Corona Virus Associated with the Middle East Respiratory Syndrome Using an Array of Gold Nanoparticle-Modified Carbon Electrodes. Microchim. Acta 2019, 186, 224. DOI: 10.1007/s00604-019-3345-5.
  • Fabiani, L.; Saroglia, M.; Galatà, G.; De Santis, R.; Fillo, S.; Luca, V.; Faggioni, G.; D'Amore, N.; Regalbuto, E.; Salvatori, P.; et al. Magnetic Beads Combined with Carbon Black-Based Screen-Printed Electrodes for COVID-19: A Reliable and Miniaturized Electrochemical Immunosensor for SARS-CoV-2 Detection in Saliva. Biosens. Bioelectron. 2021, 171, 112686. DOI: 10.1016/j.bios.2020.112686.
  • Hashemi, S. A.; Golab Behbahan, N. G.; Bahrani, S.; Mousavi, S. M.; Gholami, A.; Ramakrishna, S.; Firoozsani, M.; Moghadami, M.; Lankarani, K. B.; Omidifar, N. Ultra-Sensitive Viral Glycoprotein Detection NanoSystem toward Accurate Tracing SARS-CoV-2 in Biological/Non-Biological Media. Biosens. Bioelectron. 2021, 171, 112731. DOI: 10.1016/j.bios.2020.112731.
  • Alafeef, M.; Dighe, K.; Moitra, P.; Pan, D. Rapid, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip. ACS Nano. 2020, 14, 17028–17045. DOI: 10.1021/acsnano.0c06392.
  • Vadlamani, B. S.; Uppal, T.; Verma, S. C.; Misra, M. Functionalized TiO2 Nanotube-Based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2. Sensors 2020, 20, 5871. DOI: 10.3390/s20205871.
  • Mojsoska, B.; Larsen, S.; Olsen, D. A.; Madsen, J. S.; Brandslund, I.; Alatraktchi, F. A. a Rapid SARS-CoV-2 Detection Using Electrochemical Immunosensor. Sensors 2021, 21, 390. DOI: 10.3390/s21020390.
  • Eissa, S.; Zourob, M. Development of a Low-Cost Cotton-Tipped Electrochemical Immunosensor for the Detection of SARS-CoV-2. Anal. Chem. 2020, 93, 1826–1833. DOI: 10.1021/acs.analchem.0c04719.
  • Mattioli, I. A.; Castro, K. R.; Macedo, L. J. A.; Sedenho, G. C.; Oliveira, M. N.; Todeschini, I.; Vitale, P. M.; Ferreira, S. C.; Manuli, E. R.; Pereira, G. M.; et al. Graphene-Based Hybrid Electrical-Electrochemical Point-of-Care Device for Serologic COVID-19 Diagnosis. Biosens. Bioelectron. 2022, 199, 113866. DOI: 10.1016/j.bios.2021.113866.
  • Zeng, R.; Qiu, M.; Wan, Q.; Huang, Z.; Liu, X.; Tang, D.; Knopp, D. Smartphone-Based Electrochemical Immunoassay for Point-of-Care Detection of SARS-CoV-2 Nucleocapsid Protein. Anal. Chem. 2022, 94, 15155–15161. DOI: 10.1021/acs.analchem.2c03606.
  • Sadique, M. A.; Yadav, S.; Khare, V.; Khan, R.; Tripathi, G. K.; Khare, P. S. Functionalized Titanium Dioxide Nanoparticle-Based Electrochemical Immunosensor for Detection of SARS-CoV-2 Antibody. Diagnostics 2022, 12, 2612. DOI: 10.3390/diagnostics12112612.
  • Kurmangali, A.; Dukenbayev, K.; Kanayeva, D. Sensitive Detection of SARS-CoV-2 Variants Using an Electrochemical Impedance Spectroscopy Based Aptasensor. Int. J. Mol. Sci. 2022, 23, 13138.
  • Martins, G.; Gogola, J. L.; Budni, L. H.; Papi, M. A.; Bom, M. A. T.; Budel, M. L. T.; de Souza, E. M.; Müller-Santos, M.; Beirão, B. C. B.; Banks, C. E.; et al. Novel Approach Based on GQD-PHB as Anchoring Platform for the Development of SARS-CoV-2 Electrochemical Immunosensor. Anal. Chim. Acta. 2022, 1232, 340442. DOI: 10.1016/j.aca.2022.340442.
  • Yousefi, H.; Mahmud, A.; Chang, D.; Das, J.; Gomis, S.; Chen, J. B.; Wang, H.; Been, T.; Yip, L.; Coomes, E.; et al. Detection of SARS-CoV-2 Viral Particles Using Direct, Reagent-Free Electrochemical Sensing. J. Am. Chem. Soc. 2021, 143, 1722–1727. DOI: 10.1021/jacs.0c10810.
  • Ahuja, S.; Kumar, M. S.; Nandeshwar, R.; Kondabagil, K.; Tallur, S. Longer Amplicons Provide Better Sensitivity for Electrochemical Sensing of Viral Nucleic Acid in Water Samples Using PCB Electrodes. Sci. Rep. 2022, 12, 8814. DOI: 10.1038/s41598-022-12818-w.
  • Dey, R.; Dlusskaya, E.; Ashbolt, N. J. SARS-CoV-2 Surrogate (Phi6) Environmental Persistence within Free-Living Amoebae. J. Water Health. 2022, 20, 83–91. DOI: 10.2166/wh.2021.167.
  • Fedorenko, A.; Grinberg, M.; Orevi, T.; Kashtan, N. Survival of the Enveloped Bacteriophage Phi6 (a Surrogate for SARS-CoV-2) in Evaporated Saliva Microdroplets Deposited on Glass Surfaces. Sci. Rep. 2020, 10, 22419. DOI: 10.1038/s41598-020-79625-z.
  • Mehmandoust, M.; Gumus, Z. P.; Soylak, M.; Erk, N. Electrochemical Immunosensor for Rapid and Highly Sensitive Detection of SARS-CoV-2 Antigen in the Nasal Sample. Talanta 2022, 240, 123211. DOI: 10.1016/j.talanta.2022.123211.
  • Ayankojo, A. G.; Boroznjak, R.; Reut, J.; Öpik, A.; Syritski, V. Molecularly Imprinted Polymer Based Electrochemical Sensor for Quantitative Detection of SARS-CoV-2 Spike Protein. Sens. Actuators. B Chem. 2022, 353, 131160. DOI: 10.1016/j.snb.2021.131160.
  • Najjar, D.; Rainbow, J.; Timilsina, S. S.; Jolly, P.; de Puig, H.; Yafia, M.; Durr, N.; Sallum, H.; Alter, G.; Li, J. Z. Lab-on-a-chip multiplexed electrochemical sensor enables simultaneous detection of SARS-CoV-2 RNA and host antibodies. medRxiv, 2022:2021.09. 01.21262387.
  • Najjar, D.; Rainbow, J.; Timilsina, S. S.; Jolly, P.; de Puig, H.; Yafia, M.; Durr, N.; Sallum, H.; Alter, G.; Li, J. Z.; et al. A Lab-on-a-Chip for the Concurrent Electrochemical Detection of SARS-CoV-2 RNA and anti-SARS-CoV-2 Antibodies in Saliva and Plasma. Nat. Biomed. Eng. 2022, 6, 968–978. DOI: 10.1038/s41551-022-00919-w.
  • Białobrzeska, W.; Ficek, M.; Dec, B.; Osella, S.; Trzaskowski, B.; Jaramillo-Botero, A.; Pierpaoli, M.; Rycewicz, M.; Dashkevich, Y.; Łęga, T.; et al. Performance of Electrochemical Immunoassays for Clinical Diagnostics of SARS-CoV-2 Based on Selective Nucleocapsid N Protein Detection: Boron-Doped Diamond, Gold and Glassy Carbon Evaluation. Biosens. Bioelectron. 2022, 209, 114222. DOI: 10.1016/j.bios.2022.114222.
  • Kim, S. Y.; Lee, J. C.; Seo, G.; Woo, J. H.; Lee, M.; Nam, J.; Sim, J. Y.; Kim, H. R.; Park, E. C.; Park, S. Computational Method-Based Optimization of Carbon Nanotube Thin-Film Immunosensor for Rapid Detection of SARS-CoV-2 Virus. Small Sci. 2022, 2, 2100111.
  • Jaewjaroenwattana, J.; Phoolcharoen, W.; Pasomsub, E.; Teengam, P.; Chailapakul, O. Electrochemical Paper-Based Antigen Sensing Platform Using Plant-Derived Monoclonal Antibody for Detecting SARS-CoV-2. Talanta 2023, 251, 123783. DOI: 10.1016/j.talanta.2022.123783.
  • Zhai, Q. F.; Wang, X. C.; Hu, C. G.; Zhu, L.; Zhang, C. H.; Dai, L. M. Label-Free Electrochemical Immunosensor for Highly Sensitive COVID-19 Spike Protein Detection. Sens. Act. Rep. 2022, 4, 100124.
  • Salahandish, R.; Jalali, P.; Tabrizi, H. O.; Hyun, J. E.; Haghayegh, F.; Khalghollah, M.; Zare, A.; Berenger, B. M.; Niu, Y. D.; Ghafar-Zadeh, E.; Sanati-Nezhad, A. A Compact, Low-Cost, and Binary Sensing (BiSense) Platform for Noise-Free and Self-Validated Impedimetric Detection of COVID-19 Infected Patients. Biosens. Bioelectron. 2022, 213, 114459. DOI: 10.1016/j.bios.2022.114459.
  • Shahdeo, D.; Roberts, A.; Archana, G. J.; Shrikrishna, N. S.; Mahari, S.; Nagamani, K.; Gandhi, S. Label Free Detection of SARS CoV-2 Receptor Binding Domain (RBD) Protein by Fabrication of Gold Nanorods Deposited on Electrochemical Immunosensor (GDEI). Biosens. Bioelectron. 2022, 212, 114406. DOI: 10.1016/j.bios.2022.114406.
  • Kowalczyk, A.; Kasprzak, A.; Ruzycka-Ayoush, M.; Podsiad, E.; Demkow, U.; Grudzinski, I. P.; Nowicka, A. M. Ultrasensitive Voltammetric Detection of SARS-CoV-2 in Clinical Samples. Sens. Actuat. B-Chem. 2022, 371, 132539.
  • Saxena, A.; Rai, P.; Mehrotra, S.; Baby, S.; Singh, S.; Srivastava, V.; Priya, S.; Sharma, S. K. Development and Clinical Validation of RT-LAMP-Based Lateral-Flow Devices and Electrochemical Sensor for Detecting Multigene Targets in SARS-CoV-2. Int. J. Mol. Sci 2022, 23, 13105.
  • Pina-Coronado, C.; Martinez-Sobrino, A.; Gutierrez-Galvez, L.; Del Cano, R.; Martinez-Perinan, E.; Garcia-Nieto, D.; Rodriguez-Pena, M.; Luna, M.; Milan-Rois, P.; Castellanos, M.; et al. Methylene Blue Functionalized Carbon Nanodots Combined with Different Shape Gold Nanostructures for Sensitive and Selective SARS-CoV-2 Sensing. Sens. Act. B Chem. 2022, 369, 132217.
  • Ramírez-Chavarría, R. G.; Castillo-Villanueva, E.; Alvarez-Serna, B. E.; Carrillo-Reyes, J.; Ramírez-Zamora, R. M.; Buitrón, G.; Alvarez-Icaza, L. Loop-Mediated Isothermal Amplification-Based Electrochemical Sensor for Detecting SARS-CoV-2 in Wastewater Samples. J. Environ. Chem. Eng. 2022, 10, 107488. DOI: 10.1016/j.jece.2022.107488.
  • Rahmati, Z.; Roushani, M. SARS-CoV-2 Virus Label-Free Electrochemical Nanohybrid MIP-Aptasensor Based on Ni3 (BTC) 2 MOF as a High-Performance Surface Substrate. Microchim. Acta 2022, 189, 1. DOI: 10.1007/s00604-022-05357-8.
  • Lu, F.; Gecgel, O.; Ramanujam, A.; Botte, G. G. SARS-CoV-2 Surveillance in Indoor Air Using Electrochemical Sensor for Continuous Monitoring and Real-Time Alerts. Biosensors (Basel) 2022, 12, 523. DOI: 10.3390/bios12070523.
  • Li, Q.; Li, Y.; Gao, Q.; Jiang, C.; Tian, Q.; Ma, C.; Shi, C. Real-Time Monitoring of Isothermal Nucleic Acid Amplification on a Smartphone by Using a Portable Electrochemical Device for Home-Testing of SARS-CoV-2. Anal. Chim. Acta. 2022, 1229, 340343. DOI: 10.1016/j.aca.2022.340343.
  • Agarkar, T.; Tripathy, S.; Chawla, V.; Sengupta, M.; Ghosh, S.; Kumar, A. A Batch Processed Titanium-Vanadium Oxide Nanocomposite Based Solid-State Electrochemical Sensor for Zeptomolar Nucleic Acid Detection. Anal. Meth. 2022, 14, 4495–4513.
  • Deng, Y.; Peng, Y.; Wang, L.; Wang, M.; Zhou, T.; Xiang, L.; Li, J.; Yang, J.; Li, G. Target-Triggered Cascade Signal Amplification for Sensitive Electrochemical Detection of SARS-CoV-2 with Clinical Application. Anal. Chim. Acta. 2022, 1208, 339846. DOI: 10.1016/j.aca.2022.339846.
  • Amouzadeh Tabrizi, M.; Acedo, P. An Electrochemical Membrane-Based Aptasensor for Detection of Severe Acute Respiratory Syndrome Coronavirus-2 Receptor-Binding Domain. Appl. Surf. Sci. 2022, 598, 153867. DOI: 10.1016/j.apsusc.2022.153867.
  • Liu, N.; Liu, R.; Zhang, J. CRISPR-Cas12a-Mediated Label-Free Electrochemical Aptamer-Based Sensor for SARS-CoV-2 Antigen Detection. Bioelectrochemistry 2022, 146, 108105. DOI: 10.1016/j.bioelechem.2022.108105.
  • Wu, L. A.; Wang, X. J.; Wu, C. Y.; Cao, X. Z.; Tang, T. S.; Huang, H.; Huang, X. X. Ultrasensitive SARS-CoV-2 Diagnosis by CRISPR-Based Screen-Printed Carbon Electrode. Anal. Chim. Acta. 2022, 1221, 340120. DOI: 10.1016/j.aca.2022.340120.
  • Cajigas, S.; Alzate, D.; Fernández, M.; Muskus, C.; Orozco, J. Electrochemical Genosensor for the Specific Detection of SARS-CoV-2. Talanta 2022, 245, 123482. DOI: 10.1016/j.talanta.2022.123482.
  • Ang, W. L.; Lim, R. R. X.; Ambrosi, A.; Bonanni, A. Rapid Electrochemical Detection of COVID-19 Genomic Sequence with Dual-Function Graphene Nanocolloids Based Biosensor. FlatChem 2022, 32, 100336. DOI: 10.1016/j.flatc.2022.100336.
  • Yang, B.; Zeng, X. W.; Zhang, J.; Kong, J. L.; Fang, X. E. Accurate Identification of SARS-CoV-2 Variant Delta Using Graphene/CRISPR-dCas9 Electrochemical Biosensor. Talanta 2022, 249, 123687. DOI: 10.1016/j.talanta.2022.123687.
  • Hatamluyi, B.; Rezayi, M.; Amel Jamehdar, S.; Rizi, K. S.; Mojarrad, M.; Meshkat, Z.; Choobin, H.; Soleimanpour, S.; Boroushaki, M. T. Sensitive and Specific Clinically Diagnosis of SARS-CoV-2 Employing a Novel Biosensor Based on Boron Nitride Quantum Dots/Flower-like Gold Nanostructures Signal Amplification. Biosens. Bioelectron. 2022, 207, 114209. DOI: 10.1016/j.bios.2022.114209.
  • Zhao, H.; Liu, F.; Xie, W.; Zhou, T.-C.; OuYang, J.; Jin, L.; Li, H.; Zhao, C.-Y.; Zhang, L.; Wei, J.; et al. Ultrasensitive Supersandwich-Type Electrochemical Sensor for SARS-CoV-2 from the Infected COVID-19 Patients Using a Smartphone. Sens. Actuators. B Chem. 2021, 327, 128899. DOI: 10.1016/j.snb.2020.128899.
  • Cui, J.; Kan, L.; Cheng, F.; Liu, J. M.; He, L. H.; Xue, Y. L.; Fang, S. M.; Zhang, Z. H. Construction of bifunctional electrochemical biosensors for the sensitive detection of the SARS-CoV-2 N-gene based on porphyrin porous organic polymers. Dalton Transactions, 2022, 5, 2094–2104. DOI:10.1039/d1dt03869a
  • Stiene, M.; Bilitewski, U. Electrochemical Detection of African Swine Fever Virus in Pig Serum with a Competitive Separation Flow Injection Analysis-Immunoassay. Analyst 1997, 122, 155–159. DOI: 10.1039/a607084a.
  • Stiene, M.; Bilitewski, U. Electrochemical Characterization of Screen-Printed Carbonaceous Electrodes for the Determination of Peroxidase Activity in Novel Screen-Printed Flow-through Modules. Anal. Bioanal. Chem. 2002, 372, 240–247. DOI: 10.1007/s00216-001-1208-4.
  • Biagetti, M.; Cuccioloni, M.; Bonfili, L.; Cecarini, V.; Sebastiani, C.; Curcio, L.; Giammarioli, M.; De Mia, G. M.; Eleuteri, A. M.; Angeletti, M. Chimeric DNA/LNA-Based Biosensor for the Rapid Detection of African Swine Fever Virus. Talanta 2018, 184, 35–41. DOI: 10.1016/j.talanta.2018.02.095.
  • Yuan, R.; Wei, J.; Geng, R.; Li, B.; Xiong, W.; Fang, X.; Wang, K. Sensitive Detection of African Swine Fever Virus p54 Based on in-Situ Amplification of Disposable Electrochemical Sensor Chip. Sens. Act. B Chem. 2023, 380, 133363. DOI: 10.1016/j.snb.2023.133363.
  • Challhua, R.; Akashi, L.; Zuñiga, J.; Beatriz de Carvalho Ruthner Batista, H.; Moratelli, R.; Champi, A. Portable Reduced Graphene Oxide Biosensor for Detection of Rabies Virus in Bats Using Nasopharyngeal Swab Samples. Biosens. Bioelectron. 2023, 232, 115291. DOI: 10.1016/j.bios.2023.115291.
  • Huang, J. Y.; Meng, J.; Chen, S. H.; Zhang, S. Y.; Liu, T.; Li, C.; Wang, F. A Soft Metal-Polyphenol Capsule-Based Ultrasensitive Immunoassay for Electrochemical Detection of Epstein-Barr (EB) Virus Infection. Biosens. Bioelectron. 2020, 164, 7.
  • Yu, M.; Liu, M.; Li, Y. Point-of-Care Based Electrochemical Immunoassay for Epstein-Barr Virus Detection. J. Anal. Meth. Chem 2022, 2022, 1–8. (). DOI: 10.1155/2022/5711384.
  • Cajigas, S.; Alzate, D.; Orozco, J. Gold Nanoparticle/DNA-Based Nanobioconjugate for Electrochemical Detection of Zika Virus. Microchim. Acta 2020, 187, 594. DOI: 10.1007/s00604-020-04568-1.
  • Dolai, S.; Tabib-Azar, M. Whole Virus Detection Using Aptamers and Paper-Based Sensor Potentiometry. Med. Dev. Sens. 2020, 3, e10112.
  • Alzate, D.; Cajigas, S.; Robledo, S.; Muskus, C.; Orozco, J. Genosensors for Differential Detection of Zika Virus. Talanta 2020, 210, 120648. DOI: 10.1016/j.talanta.2019.120648.
  • Sampaio, I.; Quatroni, F. D.; Costa, J. N. Y.; Zucolotto, V. Electrochemical Detection of Zika and Dengue Infections Using a Single Chip. Biosens. Bioelectron. 2022, 216, 114630. DOI: 10.1016/j.bios.2022.114630.
  • Nasrin, F.; Khoris, I. M.; Chowdhury, A. D.; Muttaqein, S. E.; Park, E. Y. Development of Disposable Electrode for the Detection of Mosquito-Borne Viruses. Biotechnol. J. 2023, 18, 2300125.
  • Farzin, L.; Shamsipur, M.; Samandari, L.; Sheibani, S. HIV Biosensors for Early Diagnosis of Infection: The Intertwine of Nanotechnology with Sensing Strategies. Talanta 2020, 206, 120201. DOI: 10.1016/j.talanta.2019.120201.
  • Mozhgani, S. H.; Kermani, H. A.; Norouzi, M.; Arabi, M.; Soltani, S. Nanotechnology Based Strategies for HIV-1 and HTLV-1 Retroviruses Gene Detection. Heliyon 2020, 6, e04048. DOI: 10.1016/j.heliyon.2020.e04048.
  • Nandi, S.; Mondal, A.; Roberts, A.; Gandhi, S. Biosensor Platforms for Rapid HIV Detection. Adv. Clin. Chem. 2020, 98, 1.
  • Tamayo, A. I. B.; Rizo, L. S. L.; de Armas, M. B.; Ferreira, A. A. P.; Manzani, D.; Yamanaka, H.; Guas, A. M. E. Biotin Self-Assembled Monolayer for Impedimetric Genosensor for Direct Detection of HIV-1. Microchem. J. 2020, 153, 104462. DOI: 10.1016/j.microc.2019.104462.
  • Li, J. W.; Jin, X. Y.; Feng, M. M.; Huang, S.; Feng, J. R. Ultrasensitive and Highly Selective Electrochemical Biosensor for HIV Gene Detection Based on Amino-Reduced Graphene Oxide and Beta-Cyclodextrin Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2020, 15, 2727–2738. DOI: 10.20964/2020.03.62.
  • Yeter, E. Ç.; Şahin, S.; Caglayan, M. O.; Üstündağ, Z. An Electrochemical Label-Free DNA Impedimetric Sensor with AuNP-Modified Glass Fiber/Carbonaceous Electrode for the Detection of HIV-1 DNA. Chem. Zvesti. 2021, 75, 77–87. DOI: 10.1007/s11696-020-01280-5.
  • Shamsipur, M.; Samandari, L.; Farzin, L.; Besharati-Seidani, A. Development of an Ultrasensitive Electrochemical Genosensor for Detection of HIV-1 Pol Gene Using a Gold Nanoparticles Coated Carbon Paste Electrode Impregnated with Lead Ion-Imprinted Polymer Nanomaterials as a Novel Electrochemical Probe. Microchem. J. 2021, 160, 105714. DOI: 10.1016/j.microc.2020.105714.
  • Fani, M.; Rezayi, M.; Pourianfar, H. R.; Meshkat, Z.; Makvandi, M.; Gholami, M.; Rezaee, S. A. Rapid and Label-Free Electrochemical DNA Biosensor Based on a Facile One-Step Electrochemical Synthesis of rGO-PPy-(L-Cys)-AuNPs Nanocomposite for the HTLV-1 Oligonucleotide Detection. Biotechnol. Appl. Biochem. 2021, 68, 626–635. DOI: 10.1002/bab.1973.
  • Fani, M.; Rezayi, M.; Meshkat, Z.; Rezaee, S. A.; Makvandi, M.; Angali, K. A. A Novel Electrochemical DNA Biosensor Based on a Gold Nanoparticles-Reduced Graphene Oxide-Polypyrrole Nanocomposite to Detect Human T-Lymphotropic Virus-1. IEEE Sensors J. 2020, 20, 10625–10632. DOI: 10.1109/JSEN.2020.2993274.
  • Al-Douri, Y.; Gherab, K.; Batoo, K. M.; Raslan, E. H. Detecting the DNA of Dengue Serotype 2 Using Aluminium Nanoparticle Doped Zinc Oxide Nanostructure: Synthesis, Analysis and Characterization. J. Mater. Res. Technol.–JMRT 2020, 9, 5515–5523. DOI: 10.1016/j.jmrt.2020.03.076.
  • Yan, X. S.; Li, H. K.; Yin, T. Y.; Jie, G. F.; Zhou, H. Photoelectrochemical Biosensing Platform Based on in Situ Generated Ultrathin Covalent Organic Framework Film and AgInS2 QDs for Dual Target Detection of HIV and CEA. Biosens. Bioelectron. 2022, 217, 114694. DOI: 10.1016/j.bios.2022.114694.
  • Chittuam, K.; Jampasa, S.; Vilaivan, T.; Tangkijvanich, P.; Chuaypen, N.; Avihingsanon, A.; Sain, M.; Panraksa, Y.; Chailapakul, O. Electrochemical Capillary-Driven Microfluidic DNA Sensor for HIV-1 and HCV Coinfection Analysis. Anal. Chim. Acta. 2023, 1265, 341257. DOI: 10.1016/j.aca.2023.341257.
  • Li, Z. Y.; Uno, N.; Ding, X.; Avery, L.; Banach, D.; Liu, C. C. Bioinspired CRISPR-Mediated Cascade Reaction Biosensor for Molecular Detection of HIV Using a Glucose Meter. ACS Nano. 2023, 17, 3966–3975. DOI: 10.1021/acsnano.2c12754.
  • Avelino, K.; Oliveira, L. S.; Lucena-Silva, N.; de Melo, C. P.; Andrade, C. A. S.; Oliveira, M. D. L. Metal-Polymer Hybrid Nanomaterial for Impedimetric Detection of Human Papillomavirus in Cervical Specimens. J. Pharm. Biomed. Anal. 2020, 185, 113249. DOI: 10.1016/j.jpba.2020.113249.
  • Nie, Y. X.; Zhang, X.; Zhang, Q.; Liang, Z. H.; Ma, Q.; Su, X. G. A Novel High Efficient Electrochemiluminescence Sensor Based on Reductive Cu(I) particles Catalyzed Zn-Doped MoS2 QDs for HPV 16 DNA Determination. Biosens. Bioelectron. 2020, 160, 112217. DOI: 10.1016/j.bios.2020.112217.
  • Farzin, L.; Sadjadi, S.; Shamsipur, M.; Sheibani, S. Electrochemical Genosensor Based on Carbon Nanotube/Amine-Ionic Liquid Functionalized Reduced Graphene Oxide Nanoplatform for Detection of Human Papillomavirus (HPV16)-Related Head and Neck Cancer. J. Pharm. Biomed. Anal. 2020, 179, 112989. DOI: 10.1016/j.jpba.2019.112989.
  • Mahmoodi, P.; Rezayi, M.; Rasouli, E.; Avan, A.; Gholami, M.; Mobarhan, M. G.; Karimi, E.; Alias, Y. Early-Stage Cervical Cancer Diagnosis Based on an Ultra-Sensitive Electrochemical DNA Nanobiosensor for HPV-18 Detection in Real Samples. J. Nanobiotechnol. 2020, 18, 12. DOI: 10.1186/s12951-020-0577-9.
  • Ganganboina, A. B.; Chowdhury, A. D.; Khoris, I. M.; Doong, R.-A.; Li, T.-C.; Hara, T.; Abe, F.; Suzuki, T.; Park, E. Y. Hollow Magnetic-Fluorescent Nanoparticles for Dual-Modality Virus Detection. Biosens. Bioelectron. 2020, 170, 112680. DOI: 10.1016/j.bios.2020.112680.
  • Ngo, D. B.; Chaibun, T.; Yin, L. S.; Lertanantawong, B.; Surareungchai, W. Electrochemical DNA Detection of Hepatitis E Virus Genotype 3 Using PbS Quantum Dot Labelling. Anal. Bioanal. Chem. 2020, 413, 1027–1037. DOI: 10.1007/s00216-020-03061-1.
  • Ngamdee, T.; Yin, L. S.; Vongpunsawad, S.; Poovorawan, Y.; Surareungchai, W.; Lertanantawong, B. Target Induced-DNA Strand Displacement Reaction Using Gold Nanoparticle Labeling for Hepatitis E Virus Detection. Anal. Chim. Acta. 2020, 1134, 10–17. DOI: 10.1016/j.aca.2020.08.018.
  • Alzate, D.; Lopez-Osorio, M. C.; Cortés-Mancera, F.; Navas, M.-C.; Orozco, J. Detection of Hepatitis E Virus Genotype 3 in Wastewater by an Electrochemical Genosensor. Anal. Chim. Acta. 2022, 1221, 340121. DOI: 10.1016/j.aca.2022.340121.
  • Lin, X.; Lian, X.; Luo, B.; Huang, X.-C. A Highly Sensitive and Stable Electrochemical HBV DNA Biosensor Based on ErGO-Supported Cu-MOF. Inorg. Chem. Commun. 2020, 119, 108095. DOI: 10.1016/j.inoche.2020.108095.
  • Mohsin, D. H.; Mashkour, M. S.; Fatemi, F. Design of Aptamer-Based Sensing Platform Using Gold Nanoparticles Functionalized Reduced Graphene Oxide for Ultrasensitive Detection of Hepatitis B Virus. Chem. Pap. 2020, 75, 279–295. DOI: 10.1007/s11696-020-01292-1.
  • Srisomwat, C.; Teengam, P.; Chuaypen, N.; Tangkijvanich, P.; Vilaivan, T.; Chailapakul, O. Pop-up Paper Electrochemical Device for Label -Free Hepatitis B Virus DNA Detection. Sens. Actuator B-Chem. 2020, 316, 8.
  • Upan, J.; Banet, P.; Aubert, P. H.; Ounnunkad, K.; Jakmunee, J. Sequential Injection-Differential Pulse Voltammetric Immunosensor for Hepatitis B Surface Antigen Using the Modified Screen-Printed Carbon Electrode. Electrochim. Acta 2020, 349, 136335. DOI: 10.1016/j.electacta.2020.136335.
  • Sheta, S. M.; El-Sheikh, S. M.; Osman, D. I.; Salem, A. M.; Ali, O. I.; Harraz, F. A.; Shousha, W. G.; Shoeib, M. A.; Shawky, S. M.; Dionysiou, D. D. A Novel HCV Electrochemical Biosensor Based on a Polyaniline@Ni-MOF Nanocomposite. Dalton Trans. 2020, 49, 8918–8926. DOI: 10.1039/d0dt01408g.
  • Zhao, F. J.; Bai, Y.; Cao, L. L.; Han, G. C.; Fang, C.; Wei, S. S.; Chen, Z. C. New Electrochemical DNA Sensor Based on Nanoflowers of Cu-3(PO4)(2)-BSA-GO for Hepatitis B Virus DNA Detection. J. Electroanal. Chem. 2020, 867, 7.
  • Shariati, M.; Sadeghi, M. Ultrasensitive DNA Biosensor for Hepatitis B Virus Detection Based on Tin-Doped WO3/In(2)O(3)Heterojunction Nanowire Photoelectrode under Laser Amplification. Anal. Bioanal. Chem. 2020, 412, 5367–5377. DOI: 10.1007/s00216-020-02752-z.
  • Tan, Z. L.; Cao, L. L.; He, X. X.; Dong, H.; Liu, Q.; Zhao, P. P.; Li, Y. Y.; Zhang, D. P.; Ma, W. S. A Label-Free Immunosensor for the Sensitive Detection of Hepatitis B e Antigen Based on PdCu Tripod Functionalized Porous Graphene Nanoenzymes. Bioelectrochemistry 2020, 133, 107461. DOI: 10.1016/j.bioelechem.2020.107461.
  • Qian, X. C.; Tan, S.; Li, Z.; Qu, Q.; Li, L.; Yang, L. A Robust Host-Guest Interaction Controlled Probe Immobilization Strategy for the Ultrasensitive Detection of HBV DNA Using Hollow HP5-Au/CoS Nanobox as Biosensing Platform. Biosens. Bioelectron. 2020, 153, 112051. DOI: 10.1016/j.bios.2020.112051.
  • Jiang, P.; Li, Y. F.; Ju, T.; Cheng, W. B.; Xu, J. H.; Han, K. Ultrasensitive Detection of Hepatitis C Virus DNA Subtypes Based on Cucurbituril and Graphene Oxide Nano-Composite. Chem. Res. Chin. Univ. 2020, 36, 307–312. DOI: 10.1007/s40242-020-9111-8.
  • Wei, S. S.; Xiao, H. L.; Cao, L. L.; Chen, Z. C. A Label-Free Immunosensor Based on Graphene Oxide/Fe3O4/Prussian Blue Nanocomposites for the Electrochemical Determination of HBsAg. Biosensors (Basel) 2020, 10, 12. DOI: 10.3390/bios10030024.
  • Akkapinyo, C.; Khownarumit, P.; Waraho-Zhmayev, D.; Poo-Arporn, R. P. Development of a Multiplex Immunochromatographic Strip Test and Ultrasensitive Electrochemical Immunosensor for Hepatitis B Virus Screening. Anal. Chim. Acta. 2020, 1095, 162–171. DOI: 10.1016/j.aca.2019.10.016.
  • Srisomwat, C.; Yakoh, A.; Chuaypen, N.; Tangkijvanich, P.; Vilaivan, T.; Chailapakul, O. Amplification-Free DNA Sensor for the One-Step Detection of the Hepatitis B Virus Using an Automated Paper-Based Lateral Flow Electrochemical Device. Anal. Chem. 2020, 93, 2879–2887. DOI: 10.1021/acs.analchem.0c04283.
  • Chowdhury, A. D.; Takemura, K.; Li, T. C.; Suzuki, T.; Park, E. Y. Electrical Pulse-Induced Electrochemical Biosensor for Hepatitis E Virus Detection. Nat. Commun. 2019, 10, 3737. DOI: 10.1038/s41467-019-11644-5.
  • Antipchik, M.; Reut, J.; Ayankojo, A. G.; Öpik, A.; Syritski, V. MIP-Based Electrochemical Sensor for Direct Detection of Hepatitis C Virus via E2 Envelope Protein. Talanta 2022, 250, 123737. DOI: 10.1016/j.talanta.2022.123737.
  • Heidari, M.; Ghaffarinejad, A.; Omidinia, E. Screening of Hepatitis B Virus DNA in the Serum Sample by a New Sensitive Electrochemical Genosensor-Based Pd-Al LDH Substrate. J. Solid State Electrochem. 2022, 26, 1445–1454. DOI: 10.1007/s10008-022-05176-0.
  • Walters, F.; Burwell, G.; Mitchell, J. J.; Ali, M. M.; Ahmadi, E. D.; Mostert, A. B.; Jenkins, C. A.; Rozhko, S.; Kazakova, O.; Guy, O. J. A Rapid Graphene Sensor Platform for the Detection of Viral Proteins in Low Volume Samples. Adv. Nanobiomed. Res. 2022, 2, 2100140.
  • Guo, J.; Liu, D.; Yang, Z.; Weng, W.; Chan, E. W. C.; Zeng, Z.; Wong, K.-Y.; Lin, P.; Chen, S. A Photoelectrochemical Biosensor for Rapid and Ultrasensitive Norovirus Detection. Bioelectrochemistry 2020, 136, 107591. DOI: 10.1016/j.bioelechem.2020.107591.
  • Baek, S. H.; Park, C. Y.; Nguyen, T. P.; Kim, M. W.; Park, J. P.; Choi, C.; Kim, S. Y.; Kailasa, S. K.; Park, T. J. Novel Peptides Functionalized Gold Nanoparticles Decorated Tungsten Disulfide Nanoflowers as the Electrochemical Sensing Platforms for the Norovirus in an Oyster. Food Cont. 2020, 114, 7.
  • Ganganboina, A. B.; Chowdhury, A. D.; Khoris, I. M.; Nasrin, F.; Takemura, K.; Hara, T.; Abe, F.; Suzuki, T.; Park, E. Y. Dual Modality Sensor Using Liposome-Based Signal Amplification Technique for Ultrasensitive Norovirus Detection. Biosens. Bioelectron. 2020, 157, 112169. DOI: 10.1016/j.bios.2020.112169.
  • Nasrin, F.; Khoris, I. M.; Chowdhury, A. D.; Boonyakida, J.; Park, E. Y. Impedimetric Biosensor of Norovirus with Low Variance Using Simple Bioconjugation on Conductive polymer-Au Nanocomposite. Sens. Act. B Chem. 2022, 369, 132390.
  • Martins, G.; Gogola, J. L.; Budni, L. H.; Janegitz, B. C.; Marcolino-Junior, L. H.; Bergamini, M. F. 3D-Printed Electrode as a New Platform for Electrochemical Immunosensors for Virus Detection. Anal. Chim. Acta. 2021, 1147, 30–37. DOI: 10.1016/j.aca.2020.12.014.
  • Kalinke, C.; Crapnell, R. D.; Sigley, E.; Whittingham, M. J.; de Oliveira, P. R.; Brazaca, L. C.; Janegitz, B. C.; Bonacin, J. A.; Banks, C. E. Recycled Additive Manufacturing Feedstocks with Carboxylated Multi-Walled Carbon Nanotubes toward the Detection of Yellow Fever Virus cDNA. Chem. Eng. J. 2023, 467, 143513. DOI: 10.1016/j.cej.2023.143513.
  • Takemura, K.; Satoh, J.; Boonyakida, J.; Park, S.; Chowdhury, A. D.; Park, E. Y. Electrochemical Detection of White Spot Syndrome Virus with a Silicone Rubber Disposable Electrode Composed of Graphene Quantum Dots and Gold Nanoparticle-Embedded Polyaniline Nanowires. J. Nanobiotechnology. 2020, 18, 152. DOI: 10.1186/s12951-020-00712-4.
  • Vakili, S. N.; Rezayi, M.; Chahkandi, M.; Meshkat, Z.; Fani, M.; Moattari, A. A Novel Electrochemical DNA Biosensor Based on Hydroxyapatite Nanoparticles to Detect BK Polyomavirus in the Urine Samples of Transplant Patients. IEEE Sensors J. 2020, 20, 12088–12095. DOI: 10.1109/JSEN.2020.2982948.
  • Roberts, A.; Mahari, S.; Gandhi, S. Signal Enhancing Gold Nanorods (GNR) and Antibody Modified Electrochemical Nanosensor for Ultrasensitive Detection of Japanese Encephalitis Virus (JEV) Secretory Non-Structural 1 (NS1) Biomarker. J. Electroanal. Chem. 2022, 919, 116563. DOI: 10.1016/j.jelechem.2022.116563.
  • Białobrzeska, W.; Firganek, D.; Czerkies, M.; Lipniacki, T.; Skwarecka, M.; Dziąbowska, K.; Cebula, Z.; Malinowska, N.; Bigus, D.; Bięga, E.; et al. Electrochemical Immunosensors Based on Screen-Printed Gold and Glassy Carbon Electrodes: Comparison of Performance for Respiratory Syncytial Virus Detection. Biosensors (Basel) 2020, 10, 175. DOI: 10.3390/bios10110175.
  • Roberts, A.; Dhanze, H.; Sharma, G. T.; Gandhi, S. Point-of-Care Detection of Japanese Encephalitis Virus Biomarker in Clinical Samples Using a Portable Smartphone-Enabled Electrochemical "Sensit" Device. Bioeng. Transl. Med. 2023, 8, e10506. DOI: 10.1002/btm2.10506.
  • Khristunova, E. P.; Dorozhko, E. V.; Korotkova, E. I.; Kratochvil, B. Investigation OF Electrochemical Properties of Silver Nanoparticles Conjugated WITH Antibodies TO Tick-Borne Encephalitis FOR Development of Electrochemical Immunosensor. IVKKT. 2020, 63, 28–33. DOI: 10.6060/ivkkt.20206304.6160.
  • Khristunova, E.; Barek, J.; Kratochvil, B.; Korotkova, E.; Dorozhko, E.; Vyskocil, V. Electrochemical Immunoassay for the Detection of Antibodies to Tick-Borne Encephalitis Virus by Using Various Types of Bioconjugates Based on Silver Nanoparticles. Bioelectrochemistry 2020, 135, 107576. DOI: 10.1016/j.bioelechem.2020.107576.
  • Khristunova, E.; Barek, J.; Kratochvil, B.; Korotkova, E.; Dorozhko, E.; Vyskocil, V. Comparison of Two Immunoanalytical Methods for Determination of Antibodies to Tick-Borne Encephalitis Virus. Chem. Listy. 2020, 114, 618.
  • Ivanov, A. S.; Nikolaev, K. G.; Stekolshchikova, A. A.; Tesfatsion, W. T.; Yurchenko, S. O.; Novoselov, K. S.; Andreeva, D. V.; Rubtsova, M. Y.; Vorovitch, M. F.; Ishmukhametov, A. A.; et al. Tick-Borne Encephalitis Electrochemical Detection by Multilayer Perceptron on Liquid-Metal Interface. ACS Appl. Bio Mater. 2020, 3, 7352–7356. DOI: 10.1021/acsabm.0c00954.
  • Mayall, R. M.; Smith, C. A.; Hyla, A. S.; Lee, D. S.; Crudden, C. M.; Birss, V. I. Ultrasensitive and Label-Free Detection of the Measles Virus Using an N-Heterocyclic Carbene-Based Electrochemical Biosensor. ACS Sens. 2020, 5, 2747–2752. DOI: 10.1021/acssensors.0c01250.
  • Nasrin, F.; Chowdhury, A. D.; Ganganboina, A. B.; Achadu, O. J.; Hossain, F.; Yamazaki, M.; Park, E. Y. Fluorescent and Electrochemical Dual-Mode Detection of Chikungunya Virus E1 Protein Using Fluorophore-Embedded and Redox Probe-Encapsulated Liposomes. Mikrochim. Acta 2020, 187, 674.
  • Huang, J.; Xie, Z.; Huang, Y.; Xie, L.; Luo, S.; Fan, Q.; Zeng, T.; Zhang, Y.; Wang, S.; Zhang, M.; et al. Electrochemical Immunosensor with Cu(I)/Cu(II)-Chitosan-Graphene Nanocomposite-Based Signal Amplification for the Detection of Newcastle Disease Virus. Sci. Rep. 2020, 10, 13869. DOI: 10.1038/s41598-020-70877-3.
  • Ghazizadeh, E.; Moosavifard, S. E.; Daneshmand, N.; Kaverlavani, S. K. Impediometric Electrochemical Sensor Based on The Inspiration of Carnation Italian Ringspot Virus Structure to Detect an Attommolar of miR. Sci. Rep. 2020, 10, 9645. DOI: 10.1038/s41598-020-66393-z.
  • Garcia, L. F.; Rodrigues, E. S. B.; Souza, G. R. L. d.; Wastowski, I. J.; de Oliveira, F. M.; dos Santos, W. T. P.; Gil, E. D. Impedimetric Biosensor for Bovine Herpesvirus Type 1-Antigen Detection. Electroanalysis 2020, 32, 1100–1106. DOI: 10.1002/elan.201900606.
  • Victorious, A.; Zhang, Z.; Chang, D.; Maclachlan, R.; Pandey, R.; Xia, J.; Gu, J.; Hoare, T.; Soleymani, L.; Li, Y. A DNA Barcode‐Based Aptasensor Enables Rapid Testing of Porcine Epidemic Diarrhea Viruses in Swine Saliva Using Electrochemical Readout. Ang. Chem. 2022, 134, e202204252.
  • Toldrà, A.; Furones, M. D.; O'Sullivan, C. K.; Campàs, M. Detection of Isothermally Amplified Ostreid Herpesvirus 1 DNA in Pacific Oyster (Crassostrea Gigas) Using a Miniaturised Electrochemical Biosensor. Talanta 2020, 207, 120308. DOI: 10.1016/j.talanta.2019.120308.
  • Jeger, M. J. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. Plants 2020, 9, 1768. DOI: 10.3390/plants9121768.
  • Konwarh, R.; Sharma, P. L. Nanosensor Platforms for Surveillance of Plant Pathogens and Phytometabolites/Analytes Vis-a-Vis Plant Health Status. In Nanomaterials for Agriculture and Forestry Applications; Husen, A., Jawaid, M., Eds.; Elsevier 2020, 357–385.
  • Majumder, S.; Bhattacharya, B.; Singh, P. K.; Johari, S.; Singh, B.; Rahman, R. Impedimetric Detection of Banana Bunchy Top Virus Using CdSe Quantum Dots for Signal Amplification. SN Appl. Sci. 2020, 2, 638. DOI: 10.1007/s42452-020-2345-8.
  • Wang, W.-J.; Lee, C.-H.; Li, C.-W.; Liao, S.; Jan, F.-J.; Wang, G.-J. Orchid Virus Detection from Orchid Leaves Using Micro/Nano Hybrid-Structured Immuno-Electrochemical Biosensor. J. Electrochem. Soc. 2020, 167, 27530. DOI: 10.1149/1945-7111/ab6b09.
  • Ye, Y. K.; Mao, S.; He, S. D.; Xu, X.; Cao, X. D.; Wei, Z. J.; Gunasekaran, S. Ultrasensitive Electrochemical Genosensor for Detection of CaMV35S Gene with Fe3O4-Au@Ag Nanoprobe. Talanta 2020, 206, 120205. DOI: 10.1016/j.talanta.2019.120205.
  • Ang, W. L.; Seah, X. Y.; Koh, P. C.; Caroline, C.; Bonanni, A. Electrochemical Polymerase Chain Reaction Using Electroactive Graphene Oxide Nanoparticles as Detection Labels. ACS Appl. Nano Mater. 2020, 3, 5489–5498. DOI: 10.1021/acsanm.0c00797.
  • Guo, J. W.; Lin, Y.; Wang, Q. Development of Nanotubes Coated with Platinum Nanodendrites Using a Virus as a Template. Nanotechnology 2020, 31, 15502. DOI: 10.1088/1361-6528/ab4448.
  • Haji-Hashemi, H.; Safarnejad, M. R.; Norouzi, P.; Ebrahimi, M.; Shahmirzaie, M.; Ganjali, M. R. Simple and Effective Label Free Electrochemical Immunosensor for Fig Mosaic Virus Detection. Anal. Biochem. 2019, 566, 102–106. DOI: 10.1016/j.ab.2018.11.017.
  • Zhang, Y.; Li, P.; Hou, M.; Chen, L.; Wang, J.; Yang, H.; Feng, W. An Electrochemical Biosensor Based on ARGET ATRP with DSN-Assisted Target Recycling for Sensitive Detection of Tobacco Mosaic Virus RNA. Bioelectrochemistry 2022, 144, 108037. DOI: 10.1016/j.bioelechem.2021.108037.
  • Weng, X. X.; Li, C.; Chen, C. Q.; Wang, G.; Xia, C. H.; Zheng, L. Y. A Microfluidic Device for Tobacco Ringspot Virus Detection by Electrochemical Impedance Spectroscopy. Micromachines. (Basel) 2023, 14, 1118. DOI: 10.3390/mi14061118.
  • Li, N. T.; Wang, X. J.; Tibbs, J.; Che, C. Y.; Peinetti, A. S.; Zhao, B.; Liu, L. Y.; Barya, P.; Cooper, L.; Rong, L. J.; et al. Label-Free Digital Detection of Intact Virions by Enhanced Scattering Microscopy. J. Am. Chem. Soc. 2022, 144, 1498–1502. DOI: 10.1021/jacs.1c09579.
  • Lapizco-Encinas, B. H.; Zhang, Y. V. Microfluidic Systems in Clinical Diagnosis. Electrophoresis 2023, 44, 217–245. DOI: 10.1002/elps.202200150.
  • Li, Y. T.; Linster, M.; Mendenhall, I. H.; Su, Y. C. F.; Smith, G. J. D. Avian Influenza Viruses in Humans: Lessons from past Outbreaks. Br. Med. Bull. 2019, 132, 81–95. DOI: 10.1093/bmb/ldz036.
  • Furmaga, J.; Kowalczyk, M.; Zapolski, T.; Furmaga, O.; Krakowski, L.; Rudzki, G.; Jaroszyński, A.; Jakubczak, A. BK Polyomavirus—Biology, Genomic Variation and Diagnosis. Viruses 2021, 13, 1502. DOI: 10.3390/v13081502.
  • Studdert, M. J. Bovine Herpesvirus (Herpesviridae). In Encyclopedia of Virology, Second Edition; A. Granoff and R. G. Webster, Eds.; Oxford: Elsevier, 1999, p. 180.
  • Kiambi, R. G.; Baumann, M. M.; Lockhart, B. E. A New Disease of Epimedium Caused by Carnation Ringspot Virus. Plant Healt. Prog. 2018, 19, 329–331. DOI: 10.1094/PHP-09-18-0051-BR.
  • Bak, A.; Emerson, J. B. Cauliflower Mosaic Virus (CaMV) Biology, Management, and Relevance to GM Plant Detection for Sustainable Organic Agriculture. Front. Sust. Food Syst. 2020, 4, 21.
  • de Lima Cavalcanti, T. Y. V.; Pereira, M. R.; de Paula, S. O.; Franca, R. F. O. A Review on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development. Viruses 2022, 14, 969. DOI: 10.3390/v14050969.
  • Khalafallah, M. T.; Aboshady, O. A.; Moawed, S. A.; Ramadan, M. S. Ebola Virus Disease: Essential Clinical Knowledge. Avicenna J. Med. 2017, 7, 96–102. DOI: 10.4103/ajm.AJM_150_16.
  • Liang, T. J. Hepatitis B: The Virus and Disease. Hepatology 2009, 49, S13–S21. DOI: 10.1002/hep.22881.
  • Modi, A. A.; Liang, T. J. Hepatitis C: A Clinical Review. Oral Dis. 2008, 14, 10–14. DOI: 10.1111/j.1601-0825.2007.01419.x.
  • Fang, L.; Zhang, J.; Chen, H.; Lv, F.; Yu, Y.; Du, X. Epidemiological Characteristics and Clinical Manifestations of Hepatitis E in a Tertiary Hospital in China: A Retrospective Study. Front. Microbiol. 2021, 12, 831968. DOI: 10.3389/fmicb.2021.831968.
  • Costa, D. T.; Santos, A. L.; Castro, N. M.; Siqueira, I. C.; Carvalho Filho, E. M.; Glesby, M. J. Neurological Symptoms and Signs in HTLV-1 Patients with Overactive Bladder Syndrome. Arq. Neuropsiquiatr. 2012, 70, 252–256. DOI: 10.1590/s0004-282x2012000400005.
  • Yang, Y.; Yang, D.; Shao, Y.; Li, Y.; Chen, X.; Xu, Y.; Miao, J. A Label-Free Electrochemical Assay for Coronavirus IBV H120 Strain Quantification Based on Equivalent Substitution Effect and AuNPs-Assisted Signal Amplification. Microchim. Acta 2020, 187, 624. DOI: 10.1007/s00604-020-04582-3.
  • Abd El Wahed, A.; Weidmann, M.; Hufert, F. T. Diagnostics-in-a-Suitcase: Development of a Portable and Rapid Assay for the Detection of the Emerging Avian Influenza A (H7N9) Virus. J. Clin. Virol. 2015, 69, 16–21. DOI: 10.1016/j.jcv.2015.05.004.
  • Mulvey, P.; Duong, V.; Boyer, S.; Burgess, G.; Williams, D. T.; Dussart, P.; Horwood, P. F. The Ecology and Evolution of Japanese Encephalitis Virus. Pathogens 2021, 10, 1534. DOI: 10.3390/pathogens10121534.
  • Rota, P. A.; Moss, W. J.; Takeda, M.; de Swart, R. L.; Thompson, K. M.; Goodson, J. L. Measles. Nat. Rev. Dis. Primers. 2016, 2, 16049. DOI: 10.1038/nrdp.2016.49.
  • Dzogbema, K.; Talaki, E.; Batawui, K.; Dao, B. Review on Newcastle Disease in Poultry. Int. J. Bio. Chem. Sci. 2021, 15, 773–789. DOI: 10.4314/ijbcs.v15i2.29.
  • Robilotti, E.; Deresinski, S.; Pinsky, B. A. Norovirus. Clin. Microbiol. Rev. 2015, 28, 134–164. DOI: 10.1128/CMR.00075-14.
  • Engelmann, J.; Hamacher, J. Plant Virus Diseases: Ornamental Plants. In Encyclopedia of Virology, Third Edition; B. W. J. Mahy and M. H. V. Van Regenmortel, Eds.; Oxford: Academic Press, 2008, p. 207
  • Song, D.; Moon, H.; Kang, B. Porcine Epidemic Diarrhea: A Review of Current Epidemiology and Available Vaccines. Clin. Exp. Vaccine Res. 2015, 4, 166–176. DOI: 10.7774/cevr.2015.4.2.166.
  • Kaler, J.; Hussain, A.; Patel, K.; Hernandez, T.; Ray, S. Respiratory Syncytial Virus: A Comprehensive Review of Transmission, Pathophysiology, and Manifestation. Cureus 2023, 15, e36342. DOI: 10.7759/cureus.36342.
  • Chen, P. H.; Huang, C. C.; Wu, C. C.; Chen, P. H.; Tripathi, A.; Wang, Y. L. Saliva-Based COVID-19 Detection: A Rapid Antigen Test of SARS-CoV-2 Nucleocapsid Protein Using an Electrical-Double-Layer Gated Field-Effect Transistor-Based Biosensing System. Sens. Act. B Chem. 2022, 357, 131415.
  • Rifkind, D.; Freeman, G. L. 11—Tobacco Mosaic Virus. In The Nobel Prize Winning Discoveries in Infectious Diseases; D. Rifkind and G. L. Freeman, Eds.; London: Academic Press, 2005, p. 81.
  • Xu, J. T.; Zhao, C.; Chau, Y.; Lee, Y. K. The Synergy of Chemical Immobilization and Electrical Orientation of T4 Bacteriophage on a Micro Electrochemical Sensor for Low-Level Viable Bacteria Detection via Differential Pulse Voltammetry. Biosens. Bioelectron. 2020, 151, 111914. DOI: 10.1016/j.bios.2019.111914.
  • Sánchez-Paz, A. White Spot Syndrome Virus: An Overview on an Emergent Concern. Vet. Res. 2010, 41, 43. DOI: 10.1051/vetres/2010015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.