92
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Advances in Organic Small-Molecule Fluorescent Probes Based on Dicyanoisophorone Derivatives

ORCID Icon, , &

References

  • Wu, D.; Chen, L.; Lee, W.; Ko, G.; Yin, J.; Yoon, J. Recent Progress in the Development of Organic Dye Based near-Infrared Fluorescence Probes for Metal Ions. Coordin Chem. Rev. 2018, 354, 74–97. DOI: 10.1016/j.ccr.2017.06.011.[
  • Pang, Y. D.; Lu, M. J.; Rha, H.; Yang, W. C.; Sharma, A.; Sun, Y.; Kim, J. S. Lighting up Plants with near-Infrared Fluorescence Probes. Sci. China Chem. 2024, 67, 774–787. DOI: 10.1007/s11426-023-1815-9.
  • Yan, L. Q.; Zhang, S. Q.; Xie, Y.; Mu, X. Y.; Zhu, J. B. Recent Progress in the Development of Fluorescent Probes for the Detection of Hydrazine (N2H4). Crit. Rev. Anal. Chem. 2022, 52, 210–229. DOI: 10.1080/10408347.2020.1797464.
  • Quan, W.; Song, W. H.; Zhang, Q.; Huang, H. W.; Lin, W. Y. Advances and Perspectives in Fluorescent Probes for Imaging Hepatopathy-Related Biomarkers. Coordin. Chem. Rev. 2023, 497, 215407. DOI: 10.1016/j.ccr.2023.215407.
  • Chu, H.; Yang, L.; Yu, L.; Kim, J.; Zhou, J.; Li, M.; Kim, J. S. Fluorescent Probes in Public Health and Public Safety. Coordin. Chem. Rev. 2021, 449, 214208. DOI: 10.1016/j.ccr.2021.214208.
  • Memon, S. Q.; Memon, N.; Mallah, A.; Soomro, R.; Khuhawar, M. Y. Schiff Bases as Chelating Reagents for Metal Ions Analysis. CAC. 2014, 10, 393–417. DOI: 10.2174/157341101003140521113731.
  • An, J. M.; Kim, S. H.; Kim, D. Recent Advances in Two-Photon Absorbing Probes Based on a Functionalized Dipolar Naphthalene Platform. Org. Biomol. Chem. 2020, 18, 4288–4297. DOI: 10.1039/d0ob00515k.
  • Prabakaran, G.; David, I.; Nandhakumar, R. A Review on Pyrene Based Chemosensors for the Specific Detection on d-Transition Metal Ions and Their Various Applications. J. Environ. Chem. Eng. 2023, 11, 109701. DOI: 10.1016/j.jece.2023.109701.
  • Majhi, A.; Venkateswarlu, K.; Sasikumar, P. Coumarin Based Fluorescent Probe for Detecting Heavy Metal Ions. J. Fluoresc. 2023, DOI: 10.1007/s10895-023-03372-3.
  • Rajasekar, M. Recent Trends in Rhodamine Derivatives as Fluorescent Probes for Biomaterial Applications. J. Mol. Struct. 2021, 1235, 130232. DOI: 10.1016/j.molstruc.2021.130232.
  • Nguyen, V. N.; Ha, J.; Cho, M.; Li, H. D.; Swamy, K. M. K.; Yoon, J. Recent Developments of BODIPY-Based Colorimetric and Fluorescent Probes for the Detection of Reactive Oxygen/Nitrogen Species and Cancer Diagnosis. Coordin Chem Rev 2021, 439, 213936. DOI: 10.1016/j.ccr.2021.213936.
  • Gai, L. Z.; Liu, Y. F.; Zhou, Z. K.; Lu, H.; Guo, Z. J. BODIPY-Based Probes for Hypoxic Environments. Coordin Chem Rev 2023, 481, 215041. DOI: 10.1016/j.ccr.2023.215041.
  • Yan, M. M.; He, D. M.; Zhang, L. S.; Sun, P. J.; Sun, Y. Q.; Qu, L. B.; Li, Z. H. Explorations into the Meso-Substituted BODIPY-Based Fluorescent Probes for Biomedical Sensing and Imaging. Trac-Trend Anal Chem 2022, 157, 116771. DOI: 10.1016/j.trac.2022.116771.
  • Liu, Q.; Sun, C. Y.; Dai, R. L.; Yan, C. X.; Zhang, Y. T.; Zhu, W. H.; Guo, Z. Q. Engineering High-Performance Dicyanomethylene-4H-Pyran Fluorophores for Biosensing and Phototherapy. Coordin Chem Rev 2024, 503, 215652. DOI: 10.1016/j.ccr.2023.215652.
  • Luo, X. Z.; Cheng, Z. Y.; Wang, R.; Yu, F. B. Indication of Dynamic Peroxynitrite Fluctuations in the Rat Epilepsy Model with a near-Infrared Two-Photon Fluorescent Probe. Anal. Chem. 2021, 93, 2490–2499. DOI: 10.1021/acs.analchem.0c04529.
  • Sun, C. L.; Du, W.; Wang, B. Q.; Dong, B.; Wang, B. G. Research Progress of near-Infrared Fluorescence Probes Based on Indole Heptamethine Cyanine Dyes in Vivo and in Vitro. BMC Chem. 2020, 14, 21. DOI: 10.1186/s13065-020-00677-3.
  • Fei, G. Q.; Ma, S. Y.; Wang, C.; Chen, T.; Li, Y. L.; Liu, Y. X.; Tang, B.; James, T. D.; Chen, G. Imaging Strategies Using Cyanine Probes and Materials for Biomedical Visualization of Live Animals. Coordin Chem Rev 2021, 447, 214134. DOI: 10.1016/j.ccr.2021.214134.
  • Ma, X. Y.; Shi, L.; Zhang, B. Y.; Liu, L.; Fu, Y.; Zhang, X. F. Recent Advances in Bioprobes and Biolabels Based on Cyanine Dyes. Anal. Bioanal. Chem. 2022, 414, 4551–4573. DOI: 10.1007/s00216-022-03995-8.
  • Sun, P. J.; Cui, Y. L.; Yang, J. L.; Wu, T.; Zhang, J. L.; Zhou, Y. M. A Cyanine Derivative-Based NIR Fluorescent Probe for Hydrogen Sulfide Bioimaging and Food Spoilage Monitoring. Dyes Pigments 2023, 219, 111644. DOI: 10.1016/j.dyepig.2023.111644.
  • Liu, Y. X.; Lu, X. M.; Zhou, W.; Fan, Q. L. Molecular Engineering of a Commercially Available NIR-II Fluorescent Cyanine Dye for Improved Tumor Targeting and Imaging. New J. Chem. 2023, 47, 20088–20094. DOI: 10.1039/D3NJ03868H.
  • Qian, M.; Zhang, L. W.; Wang, J. Y. A NIR Fluorescent Sensor for Biothiols Based on a Dicyanoisophorone Derivative with a Large Stokes Shift and High Quantum Yield. New J. Chem. 2019, 43, 9614–9622. DOI: 10.1039/C9NJ01643K.
  • Zhang, S. Q.; Chen, D. W.; Yan, L. Q.; Xie, Y.; Mu, X. Y.; Zhu, J. B. A near-Infrared Fluorescence Probe for Hydrazine Based on Dicyanoisophorone. Microchem. J. 2020, 157, 105066. DOI: 10.1016/j.microc.2020.105066.
  • Wu, C. Y.; Ni, Z. Q.; Li, P. J.; Li, Y. Q.; Pang, X.; Xie, R. H.; Zhou, Z. L.; Li, H. T.; Zhang, Y. Y. A near-Infrared Fluorescent Probe for Monitoring and Imaging of β-Galactosidase in Living Cells. Talanta 2020, 219, 121307. DOI: 10.1016/j.talanta.2020.121307.
  • Liu, T.; Yan, Q. L.; Feng, L.; Ma, X. C.; Tian, X. G.; Yu, Z. L.; Ning, J.; Huo, X. K.; Sun, C. P.; Wang, C.; et al. Isolation of γ-Glutamyl-Transferase Rich-Bacteria from Mouse Gut by a near-Infrared Fluorescent Probe with Large Stokes Shift. Anal. Chem. 2018, 90, 9921–9928. DOI: 10.1021/acs.analchem.8b02118.
  • Wei, X. Z.; Hao, M. J.; Hu, X. X.; Song, Z. L.; Wang, Y.; Sun, R. H.; Zhang, J.; Yan, M.; Ding, B. Y.; Yu, J. H. A near-Infrared Fluorescent Probe with Large Stokes Shift for Accurate Detection of β-Glucuronidase in Living Cells and Mouse Models. Sensor Actuat B-Chem 2021, 326, 128849. DOI: 10.1016/j.snb.2020.128849.
  • Duan, C.; Zhang, J. F.; Hu, Y. B.; Zeng, L. T.; Su, D. D.; Bao, G. M. A Distinctive near-Infrared Fluorescence Turn-on Probe for Rapid, Sensitive and Chromogenic Detection of Sulfite in Food. Dyes Pigments 2019, 162, 459–465. DOI: 10.1016/j.dyepig.2018.10.057.
  • Zeng, L. T.; Chen, T. H.; Chen, B. Q.; Yuan, H. Q.; Sheng, R. L.; Bao, G. M. A Distinctive Mitochondrion-Targeting, in Situ-Activatable near-Infrared Fluorescent Probe for Visualizing Sulfur Dioxide Derivatives and Their Fluctuations. J. Mater. Chem. B 2020, 8, 1914–1921. DOI: 10.1039/c9tb02593f.
  • Jiang, L. R.; Chen, T. H.; Song, E. W.; Fan, Y.; Min, D. Y.; Zeng, L. T.; Bao, G. M. High-Performance near-Infrared Fluorescence Probe for Fast and Specific Visualization of Harmful Sulfite in Food, Living Cells, and Zebrafish. Chem. Eng. J. 2022, 427, 131563. DOI: 10.1016/j.cej.2021.131563.
  • Dai, L. X.; Zhang, Q.; Ma, Q. Q.; Lin, W. Y. Emerging near Infrared Fluorophore: Dicyanoisophorone-Based Small-Molecule Fluorescent Probes with Large Stokes Shifts for Bioimaging. Coordin Chem Rev 2023, 489, 215193. DOI: 10.1016/j.ccr.2023.215193.
  • Zhang, W. J.; Huo, F. J.; Yin, C. X. Recent Advances of Dicyano-Based Materials in Biology and Medicine. J. Mater. Chem. B 2018, 6, 6919–6929. DOI: 10.1039/c8tb02205d.
  • Kosilkin, I. V.; Hillenbrand, E. A.; Tongwa, P.; Fonari, A.; Zazueta, J.; Fonari, M. S.; Antipin, M.; Dalton, L. R.; Timofeeva, T. Synthesis, Structure, Thermal and Nonlinear Optical Properties of a Series of Novel D-π-a Chromophores with Varying Alkoxy Substituents. J. Mol Struct 2011, 1006, 356–365. DOI: 10.1016/j.molstruc.2011.09.032.
  • Dell’Amico, L.; Rassu, G.; Zambrano, V.; Sartori, A.; Curti, C.; Battistini, L.; Pelosi, G.; Casiraghi, G.; Zanardi, F. Exploring the Vinylogous Reactivity of Cyclohexenylidene Malononitriles: Switchable Regioselectivity in the Organocatalytic Asymmetric Addition to Enals Giving Highly Enantioenriched Carbabicyclic Structures. J. Am. Chem. Soc. 2014, 136, 11107–11114. DOI: 10.1021/ja5054576.
  • Zhu, M. Q.; Fan, F. G.; Zhao, Z. Y.; Wu, X. Q.; Wang, L. J.; Na, R. S.; Wang, Y. An ICT-Based Ratiometric Fluorescent Probe for Cysteine and Its Application in Biological Issues. J. Mol. Liq. 2019, 296, 111832. DOI: 10.1016/j.molliq.2019.111832.
  • Zhu, M. Q.; Xu, Y. M.; Sang, L. F.; Zhao, Z. Y.; Wang, L. J.; Wu, X. Q.; Fan, F. G.; Wang, Y.; Li, H. An ICT-Based Fluorescent Probe with a Large Stokes Shift for Measuring Hydrazine in Biological and Water Samples. Environ. Pollut. 2020, 256, 113427. DOI: 10.1016/j.envpol.2019.113427.
  • Liu, M.; Zhai, W. H.; Chen, H. L.; Zhang, H.; Li, C. H. Halogen Effects-Induced Bright D-π-a Fluorophore as Scaffold for NIR Fluorogenic Probes with High Contrast. Anal. Chem. 2020, 92, 10792–10799. DOI: 10.1021/acs.analchem.0c02247.
  • Li, L. J.; Wang, J. H.; Xu, S. H.; Li, C. X.; Dong, B. Recent Progress in Fluorescent Probes for Metal Ion Detection. Front. Chem. 2022, 10, 875241. DOI: 10.3389/fchem.2022.875241.
  • Jiang, L.; Zheng, T.; Xu, Z.; Li, J.; Li, H.; Tang, J.; Liu, S.; Wang, Y. New NIR Spectroscopic Probe with a Large Stokes Shift for Hg2+ and Ag+ Detection and Living Cells Imaging. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2022, 271, 120916. DOI: 10.1016/j.saa.2022.120916.
  • Li, X.; Chu, D.; Wang, J.; Qi, Y.; Yuan, W.; Li, J.; Zhou, Z. A Dicyanoisophorone-Based ICT Fluorescent Probe for the Detection of Hg2+ in Water/Food Sample Analysis and Live Cell Imaging. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2023, 295, 122628. DOI: 10.1016/j.saa.2023.122628.
  • Zhang, C. Q.; Lv, X. Y.; Liu, X. H.; Chen, H. Y.; He, H. F. A Reasonably Constructed Fluorescent Chemosensor Based on the Dicyanoisophorone Skeleton for the Discriminative Sensing of Fe3+ and Hg2+ as Well as Imaging in HeLa Cells and Zebrafish. RSC Adv. 2022, 12, 12355–12362. DOI: 10.1039/d2ra01357f.
  • Zhang, Y. B.; Miu, J.; Wang, B. L.; Rong, X. Q.; Liu, J.; Tang, C.; Wang, C.; Gao, W. X.; Gui, Y. R.; Wang, H. P.; et al. A Novel near-Infrared Fluorescent Probe Based on the Dicyanoisophorone for the Selective Detection of Cu2+in Real Water Samples. J. Mol. Struct. 2023, 1286, 135632. DOI: 10.1016/j.molstruc.2023.135632.
  • Li, J.; Zhou, C. P.; Yang, H.; Wu, X. Z.; Yan, L. Q. Two near-Infrared Fluorescent Probes Based on Dicyanoisfluorone for Rapid Monitoring of Zn2+ and Pb2+. Methods Appl Fluores 2022, 10, 035010. DOI: 10.1088/2050-6120/ac7199.
  • Yan, L. Q.; Zhou, C. P.; Li, J.; Yang, H.; Wu, X. Z.; Li, L. A near-Infrared Fluorescent Probe Based on Dicyanisophorone for the Detection of Zinc Ions (Zn2+) in Water and Living Cells. J. Fluoresc. 2023, 33, 201–207. DOI: 10.1007/s10895-022-03040-y.
  • Yan, L. Q.; Yang, H.; Li, J.; Zhou, C. P.; Li, L.; Wu, X. Z.; Lei, C. H. A near Infrared Fluorescent Probe for Detection and Bioimaging of Zinc Ions and Hypochloric Acid. Anal. Chim. Acta. 2022, 1206, 339750. DOI: 10.1016/j.aca.2022.339750.
  • Nural, Y.; Karasu, E.; Keles, E.; Aydiner, B.; Seferoglu, N.; Efeoglu, Ç.; Sahin, E.; Seferoglu, Z. Synthesis of Novel Acylthioureas Bearing Naphthoquinone Moiety as Dual Sensor for High-Performance Naked-Eye Colorimetric and Fluorescence Detection of CN- and F- Ions and Its Application in Water and Food Samples. Dyes Pigments 2022, 198, 110006. DOI: 10.1016/j.dyepig.2021.110006.
  • Keleş, E.; Aydıner, B.; Nural, Y.; Seferoğlu, N.; Şahin, E.; Seferoğlu, Z. A New Mechanism for Selective Recognition of Cyanide in Organic and Aqueous Solution. Eur. J. Org. Chem. 2020, 2020, 4681–4692. DOI: 10.1002/ejoc.202000342.
  • Chan, C. M.; Li, J.; Xue, Z. L.; Qiu, F. X. A Isophorone Based Colorimetric and Ratiometric Probe: Synthesis and Rapid Detection of Cyanide in Aqueous Medium and Its Application in Bioimaging. Microchem. J. 2021, 170, 106705. DOI: 10.1016/j.microc.2021.106705.
  • Song, Q.; Wang, N.; Wang, F. K.; Guo, K. Z.; Cui, J. W.; Hao, J. C.; Zhang, Y. Q.; Jiang, J. A Highly Selective NIR Ratiometric Fluorescent Probe for Detection of Metabolized Hydrazine in Living Cells. Sensor Actuat B-Chem 2023, 393, 134164. DOI: 10.1016/j.snb.2023.134164.
  • Xu, H.; Zhang, C.; Huai, R. P.; Suo, S. N.; Wang, Y. W.; Peng, Y. A NIR Fluorescent Probe Based on C=N Isomerization for Fast Detection of Toxic Acrolein. Sensor Actuat B-Chem 2022, 371, 132547. DOI: 10.1016/j.snb.2022.132547.
  • Li, K.; Li, L. L.; Zhou, Q.; Yu, K. K.; Kim, J. S.; Yu, X. Q. Reaction-Based Fluorescent Probes for SO2 Derivatives and Their Biological Applications. Coordin Chem Rev 2019, 388, 310–333. DOI: 10.1016/j.ccr.2019.03.001.
  • Yue, L. Z.; Huang, H. W.; Song, W. H.; Lin, W. Y. A near-Infrared Endoplasmic Reticulum-Targeted Fluorescent Probe to Visualize the Fluctuation of SO2 during Endoplasmic Reticulum Stress. Chem. Eng. J. 2022, 431, 133468. DOI: 10.1016/j.cej.2021.133468.
  • Yuan, X. M.; Liu, T.; Luo, K.; Xie, C.; Zhou, L. Y. Neo-Construction of a SO2-Tunable near-Infrared Ratiometric Fluorescent Probe for High-Fidelity Diagnosis and Evaluation Hazards of Cd2+-Induced Liver Injury. J. Hazard. Mater. 2024, 466, 133653. DOI: 10.1016/j.jhazmat.2024.133653.
  • Li, H. N.; Fang, Y. X.; Yan, J. J.; Ren, X. Y.; Zheng, C.; Wu, B.; Wang, S. Y.; Li, Z. L.; Hua, H. M.; Wang, P.; et al. Small-Molecule Fluorescent Probes for H2S Detection: Advances and Perspectives. Trac-Trend Anal Chem 2021, 134, 116117. DOI: 10.1016/j.trac.2020.116117.
  • Zhao, X. Y.; Ning, L. L.; Zhou, X. M.; Song, Z. H.; Zhang, J. J.; Guan, F.; Yang, X. F. An Activatable near-Infrared Fluorescence Hydrogen Sulfide (H2S) Donor for Imaging H2S Release and Inhibiting Inflammation in Cells. Anal. Chem. 2021, 93, 4894–4901. DOI: 10.1021/acs.analchem.0c05081.
  • Mahato, S. K.; Bhattacherjee, D.; Barman, P.; Bhabak, K. P. Thioredoxin Reductase-Triggered Fluorogenic Donor of Hydrogen Sulfide: A Model Study with a Symmetrical Organopolysulfide Probe with Turn-on near-Infrared Fluorescent Emission. J. Mater. Chem. B 2022, 10, 2183–2193. DOI: 10.1039/d1tb02425f.
  • Shang, C. L.; Wang, H. Y.; Ni, T. J.; Chang, K. W.; Ge, C. P. A Dicyanoisophorone-Based near-Infrared Fluorescent Probe with Fast Detection for H2S in Living Cells and Zebrafish. J. Lumin 2022, 243, 118669. DOI: 10.1016/j.jlumin.2021.118669.
  • Lu, X. M.; Wu, M. Y.; Wang, S. W.; Qin, J. C.; Li, P. Y. Synthesis and Preliminary Exploration of a NIR Fluorescent Probe for the Evaluation of Androgen Dependence of Prostate Cancer. Talanta 2022, 239, 123058. DOI: 10.1016/j.talanta.2021.123058.
  • Qin, J. C.; Tian, H.; Kong, F.; Zhao, Q. Q.; Zhang, C.; Gu, H. M.; Li, Y. H. A Novel Long Excitation/Emission Wavelength Fluorophore as Platform Utilized to Construct NIR Probes for Bioimaging and Biosensing. Bioorg. Chem. 2022, 127, 105954. DOI: 10.1016/j.bioorg.2022.105954.
  • Ju, Z. Y.; Zhang, Y. X.; Kong, L. Y. A Highly Selective Fluorescent Probe for Hydrogen Sulfide and Its Application in Living Cell. J. Fluoresc. 2024, DOI: 10.1007/s10895-024-03601-3.
  • Huang, X. L.; Lan, N.; Jiang, F.; He, H. F.; Zhong, J. Synthesis of a near-Infrared Fluorescence Turn-On Probe Based on Dicyanoisophorone for HS-Detection in Cancer Cells and Zebrafish in Pure Water Media. Chemistryselect 2022, 7, e202201070. DOI: 10.1002/slct.202201070.
  • Wang, Z. S.; Li, J.; Chen, J.; Cao, Z. F.; Li, H.; Cao, Y. P.; Li, Q. Q.; She, M. Y.; Liu, P.; Zhang, S. Y.; et al. A NIR Fluorescent Probe for Imaging Thiophenol in the Living System and Revealing Thiophenol-Induced Oxidative Stress. Chinese Chem Lett 2023, 34, 108507. DOI: 10.1016/j.cclet.2023.108507.
  • Erdemir, S.; Oguz, M.; Malkondu, S. Visual and Quantitative Monitoring of Thiophenol by a Novel Deep-Red Emitting Fluorescent Probe in Environmental and Biological Systems. Anal. Chim. Acta. 2023, 1246, 340901. DOI: 10.1016/j.aca.2023.340901.
  • Ma, C. H.; Yan, D. L.; Hou, P.; Liu, X. B.; Wang, H.; Xia, C. H.; Li, G.; Chen, S. Bioimaging and Sensing Thiols in Vivo and in Tumor Tissues Based on a near-Infrared Fluorescent Probe with Large Stokes Shift. Molecules 2023, 28, 5702. DOI: 10.3390/molecules28155702.
  • Zhou, H.; Li, Y.; Fang, R.; Li, J. H.; Hong, C.; Luo, W. A Dicyanoisophorone-Based Long-Wavelength Fluorescent Probe for Detection of Cysteine in Vitro and in Vivo. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2024, 304, 123403. DOI: 10.1016/j.saa.2023.123403.
  • Wang, H. Y.; Ge, C. P.; Ni, T. J.; Yang, Z. J.; Chang, K. W. A Red Dicyanoisophorone-Based Fluorescent Probe for Monitoring Cysteine Fluctuations Due to Redox Imbalances in Living Organisms Even in the Presence of Other Biological Molecules. Microchem J. 2022, 174, 107093. DOI: 10.1016/j.microc.2021.107093.
  • Chen, D. G.; Nie, G.; Dang, Y. C.; Liang, W. J.; Li, W. Q.; Zhong, C. Rational Design of near-Infrared Fluorophores with a Phenolic D-a Type Structure and Construction of a Fluorescent Probe for Cysteine Imaging. New J. Chem. 2021, 45, 18528–18537. DOI: 10.1039/D1NJ02459K.
  • Qi, Q. F.; Shang, C. L.; Wang, H. Y.; Ge, C. P.; Yang, Z. J.; Ni, T. J.; Chang, K. W. A NIR Fluorescence Probe for Monitoring Cys Upregulation Induced by Balsam Pear Polysaccharide and Imaging in Zebrafish. Anal Bioanal Chem. 2022, 414, 6871–6880. DOI: 10.1007/s00216-022-04252-8.
  • Sun, Y. H.; Han, H. H.; Huang, J. M.; Li, J.; Zang, Y.; Wang, C. Y. A Long-Wavelength Fluorescent Probe with a Large Stokes Shift for Lysosome-Targeted Imaging of Cys and GSH. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 261, 120055. DOI: 10.1016/j.saa.2021.120055.
  • Qin, J. C.; Li, Z. W.; Fu, Z. H.; Zhang, Z. H. Development of a NIR Fluorescent Probe for Detection of Cysteine and Its Application in Bioimaging. Sensor Actuat B-Chem. 2022, 357, 131430. DOI: 10.1016/j.snb.2022.131430.
  • Ai, Y.; Ding, H. C.; Fan, C. B.; Liu, G.; Pu, S. Z. Time-Dependent NIR Fluorescent Probe with Large Stokes-Shift for Detecting Cys/Hcy and Cell Imaging. Dyes Pigments 2022, 203, 110320. DOI: 10.1016/j.dyepig.2022.110320.
  • Chen, Z. Z.; Wang, B. Q.; Liang, Y. Q.; Shi, L.; Cen, X. H.; Zheng, L.; Liang, E.; Huang, L.; Cheng, K. Near-Infrared Fluorescent and Photoacoustic Dual-Mode Probe for Highly Sensitive and Selective Imaging of Cysteine. Anal. Chem. 2022, 94, 10737–10744. DOI: 10.1021/acs.analchem.2c01372.
  • Zhang, M.; Zhang, Y. B.; Huo, F. J.; Chao, J. B.; Shuang, S. M. A NIR Turn-on Fluorescent Probe for Specific Recognition of Cysteine and Its Application in Cells and Zebrafish. Dyes Pigments 2023, 208, 110774. DOI: 10.1016/j.dyepig.2022.110774.
  • Qin, J. C.; Tian, H.; Kong, F.; Guo, Y. Y.; Du, W. X.; Zhang, C.; Gu, H. M.; Li, Y. H. Construction of GSH Activated near-Infrared Fluorescent and Photoacoustic Dual-Modal Probe for in Vivo Tumor Imaging. Sensor Actuat B-Chem. 2022, 371, 132522. DOI: 10.1016/j.snb.2022.132522.
  • Yang, Q. M.; Xie, C.; Luo, K.; Tan, L. B.; Peng, L. P.; Zhou, L. Y. Rational Construction of a New Water Soluble Turn-on Colorimetric and NIR Fluorescent Sensor for High Selective Sec Detection in Se-Enriched Foods and Biosystems. Food Chem. 2022, 394, 133474. DOI: 10.1016/j.foodchem.2022.133474.
  • Peng, Z. X.; Li, Z.; Zhou, T. S.; Wu, D.; Wang, E. R.; Ma, C.; Lu, C. F.; Nie, J. Q.; Fan, G. R.; Yang, G. C.; et al. Visualizing Biothiols Using a Dual-Channel Sensitive Fluorescent Probe. Dyes Pigments 2023, 214, 111230. DOI: 10.1016/j.dyepig.2023.111230.
  • Kwon, N.; Chen, Y. H.; Chen, X. Q.; Yoon, J.; Kim, M. H. Recent Progress on Small Molecule-Based Fluorescent Imaging Probes for Hypochlorous Acid(HOCl)/Hypochlorite (OCl.). Dyes Pigments 2022, 200, 110132. DOI: 10.1016/j.dyepig.2022.110132.
  • Xu, H.; Wu, S. L.; Lin, N. J.; Lu, Y.; Xiao, J.; Wang, Y. W.; Peng, Y. A NIR Fluorescent Probe for Rapid Turn-on Detection and Bioimaging of Hypochlorite Anion. Sensor Actuat B-Chem. 2021, 346, 130484. DOI: 10.1016/j.snb.2021.130484.
  • Chan, C. M.; Li, J.; Xue, Z. L.; Guan, B. B. A Dicyanoisophorone-Based Fluorescent Probe for Hypochlorite with a Fast Response and Its Applications in Bioimaging. Anal. Methods 2022, 14, 2311–2317. DOI: 10.1039/d2ay00524g.
  • Zhen, L.; Lan, J. S.; Zhang, S. A.; Liu, L.; Zeng, R. F.; Chen, Y.; Ding, Y. A NIR Fluorescent Probe for the Specific Detection of Hypochlorite and Its Application in Vitro and in Vivo. Anal. Methods 2022, 14, 2147–2152. DOI: 10.1039/d2ay00561a.
  • Zhang, Z. Y.; Ma, L. L.; Huang, Y. L.; Zhou, Y.; Zhang, H.; Yan, J. W.; Liu, C. X. A Facile Ratiometric near-Infrared Fluorescent Probe Using Conjugated 1,8-Naphthalimide and Dicyanoisophorone with a Vinylene Linker for Detection and Bioimaging of Hypochlorite. Anal. Methods 2023, 15, 3420–3425. DOI: 10.1039/d3ay00820g.
  • Liu, Y. Y.; Jiao, C. P.; Lu, W. J.; Zhang, P. P.; Wang, Y. F. Research Progress in the Development of Organic Small Molecule Fluorescent Probes for Detecting H2O2. RSC Adv. 2019, 9, 18027–18041. DOI: 10.1039/c9ra02467k.
  • Li, Y. Q.; Zhou, Y.; Lei, J. N.; Lu, Q. J.; Qin, X.; Xu, Q.; Wang, Y. Q.; Wu, C. Y.; Yang, Z.; He, B. S. A NIR Fluorescent Probe for the Selective Detection of Hydrogen Peroxide by Acetyl-Hydrolyzing in Cells. J. Mol. Struct. 2023, 1271, 134042. DOI: 10.1016/j.molstruc.2022.134042.
  • Sufian, A.; Bhattacherjee, D.; Barman, P.; Srivastava, A.; Thummer, R. P.; Bhabak, K. P. Stimuli-Responsive Prodrug of Non-Steroidal anti-Inflammatory Drug Diclofenac: Self-Immolative Drug Release with Turn-on near-Infrared Fluorescence. Chem. Commun. (Camb) 2022, 58, 7833–7836. DOI: 10.1039/d2cc02132c.
  • Yan, L. Q.; Yang, H.; Zhang, S. Q.; Zhou, C. P.; Lei, C. H. A Critical Review on Organic Small Fluorescent Probes for Monitoring Carbon Monoxide in Biology. Crit. Rev. Anal. Chem. 2023, 53, 1792–1806. DOI: 10.1080/10408347.2022.2042670.
  • Rong, X. D.; Liu, C. Y.; Li, M. Z.; Wang, K.; Zhu, H. C.; Yu, M. H.; Sheng, W. L.; Zhu, B. C.; Wang, Z. P. Rational Construction of a NIR Fluorescent Probe for CO Imaging in Living Cells and Zebrafish. J Photoch Photobio A 2024, 451, 115487. DOI: 10.1016/j.jphotochem.2024.115487.
  • Zhou, Y. Q.; Yang, X. F.; Zhang, J.; Xu, S.; Li, J.; Wang, W. S.; Yan, M. Small Molecule Fluorescent Probes for the Detection of Reactive Nitrogen Species in Biological Systems. Coordin Chem Rev 2023, 493, 215258. DOI: 10.1016/j.ccr.2023.215258.
  • Chung, J.; Kim, H.; Li, H. D.; Yoon, J. Reasonably Constructed NIR Fluorescent Probes Based on Dicyanoisophorone Skeleton for Imaging ONOO- in Living Cells. Dyes Pigments 2021, 195, 109665. DOI: 10.1016/j.dyepig.2021.109665.
  • Wang, Y.; Zhao, L. L.; Xie, L. Y.; Pang, M. L.; Zhang, Y. Z.; Ran, H. Y.; Huang, J. J.; Wang, J. Y.; Tao, Y.; Lyu, S. Construction of a Robust Turn-on Fluorescence NIR Sensor for Rapid Detection and Imaging of ONOO- in Inflammatory Models. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2023, 295, 122624. DOI: 10.1016/j.saa.2023.122624.
  • Shen, L.; Liu, H. M.; Jin, M.; Zhang, J. C.; Yin, C. X.; Wang, S. X.; Yang, Y. T. “Three-in-One” Strategy of Trifluoromethyl Regulated Blood-Brain Barrier Permeable Fluorescent Probe for Peroxynitrite and Antiepileptic Evaluation of Edaravone. Chinese Chem. Lett. 2024, 109572. DOI: 10.1016/j.cclet.2024.109572.
  • Chen, S. Y.; Huang, W.; Tan, H. L.; Yin, G. X.; Chen, S. Y.; Zhao, K. C.; Huang, Y. H.; Zhang, Y. Y.; Li, H. T.; Wu, C. Y. A Large Stokes Shift NIR Fluorescent Probe for Visual Monitoring of Mitochondrial Peroxynitrite during Inflammation and Ferroptosis and in an Alzheimer’s Disease Model. Analyst 2023, 148, 4331–4338. DOI: 10.1039/d3an00956d.
  • Ji, Y. X.; Liu, S.; Zhang, J.; Qu, L. R. K.; Wu, J. S.; Liu, H.; Cheng, Z. Y. Construction of HPQ-Based Activatable Fluorescent Probe for Peroxynitrite and Its Application in Ferroptosis and Mice Model of LPS-Induced Inflammation. Bioorg. Chem. 2023, 138, 106650. DOI: 10.1016/j.bioorg.2023.106650.
  • Liu, X. B.; Ma, Y. K.; Liu, Y. T.; Li, Q.; Zhang, H. G.; Fu, S.; Chen, S.; Li, H. M.; Li, S.; Hou, P. Near-Infrared Molecular Sensor for Visualizing and Tracking ONOO- during the Process of anti-Tuberculosis Drug-Induced Liver Damage. Anal. Bioanal. Chem. 2023, 415, 7187–7196. DOI: 10.1007/s00216-023-04985-0.
  • Zhang, C.; Qian, M.; Zhang, L. W.; Zheng, H. N.; Zhang, M.; Jiao, Y. H.; Kafuti, Y. S.; Chen, Q. X.; Wang, J. Y. A near-Infrared Fluorescent Probe with Ultra-Large Stokes Shift for the Detection of HNO in Cells and Mice. J. Lumin. 2022, 241, 118496. DOI: 10.1016/j.jlumin.2021.118496.
  • Hande, P. E.; Shelke, Y. G.; Datta, A.; Gharpure, S. J. Recent Advances in Small Molecule-Based Intracellular pH Probes. Chembiochem 2022, 23, e202100448. DOI: 10.1002/cbic.202100448.
  • Fang, H. F.; Xu, S.; Gong, J. H.; Tang, L. D.; He, X. M.; Lin, Y.; Yang, H.; Yan, K.; Su, D.; Leng, Y. J. A Latent Reversible Ratiometric Optical pH Sensing Probe Based on Phenylboronic Acid for Alkaline pH Detection and Applications in Test Paper and Alkalotic HK-2 Cells. New J. Chem. 2023, 47, 10849–10856. DOI: 10.1039/D3NJ01398G.
  • Zhang, L.; Guo, J.; You, Q. H.; Xu, Y. Q. A Water-Soluble Fluorescent pH Probe and Its Application for Monitoring Lysosomal pH Changes in Living Cells. Anal. Methods 2023, 15, 3057–3063. DOI: 10.1039/d3ay00343d.
  • Huang, Y. L.; Zhang, Z. Y.; Ma, L. L.; Zhang, H.; Yan, J. W.; Wu, J. J.; Liu, C. X. A New near-Infrared Ratiometric Fluorescent Probe Using Conjugated Dicyanoisophorone and Quinoline with Double Vinylene Linkers for Sensing of pH and Its Application. Dyes Pigments 2023, 219, 111629. DOI: 10.1016/j.dyepig.2023.111629.
  • Ma, C. G.; Sun, W.; Xu, L. M.; Qian, Y.; Dai, J. A.; Zhong, G. Y.; Hou, Y.; Liu, J. L.; Shen, B. X. A Minireview of Viscosity-Sensitive Fluorescent Probes: Design and Biological Applications. J. Mater. Chem. B 2020, 8, 9642–9651. DOI: 10.1039/d0tb01146k.
  • Kong, F. P.; Li, Y.; Li, X.; Wang, X. X.; Fu, G. Y.; Zhao, Q. Y.; Tang, B. Screening of Dicyanoisophorone-Based Probes for Highly Sensitive Detection of Viscosity Changes in Living Cells and Zebrafish. Chem. Commun. (Camb) 2021, 57, 9554–9557. DOI: 10.1039/d1cc03738b.
  • Ni, J. Y.; Zhang, X. Q.; Wang, M. Y.; Yu, Q.; Sun, R.; Xu, Y. J.; Song, Y. L.; Ge, J. F. Dicyanoisophorone Derivatives with Self-Targeting Abilities towards Multiple Organelles for Fluorescent Markers and Viscosity Detection. Sensor Actuat B-Chem 2022, 367, 132065. DOI: 10.1016/j.snb.2022.132065.
  • Zhang, J. J.; Chai, X. Z.; He, X. P.; Kim, H. J.; Yoon, J.; Tian, H. Fluorogenic Probes for Disease-Relevant Enzymes. Chem. Soc. Rev. 2019, 48, 683–722. DOI: 10.1039/c7cs00907k.
  • Zhang, J. M.; Peng, Y. M.; Li, Y.; Wang, N.; Chai, Y. N.; Qin, C. Z.; Wang, X. R.; Liu, S. N.; Zhou, Y. B.; Zhang, X. J.; et al. Development of a near-Infrared Fluorescent Probe with Large Stokes Shift for Carboxylesterases Detection and Its Application in Living Systems. Dyes Pigments 2022, 198, 109993. DOI: 10.1016/j.dyepig.2021.109993.
  • Dong, J. Q.; Gao, J. B.; Wang, Y. A New near-Infrared Fluorescence Indicator Derived from Chloro-Substituted Dicyanoisophorone for Detecting Carboxylesterases (CEs) in Living Cells and Dyes Pigments 2022, 205, 110549. DOI: 10.1016/j.dyepig.2022.110549.
  • Zhang, W. D.; Qi, C. Z.; Wang, X. R.; Fu, Z.; Zhang, J. M.; Zhou, Y. B.; Wang, Y. An Ultrasensitive and Selective near-Infrared Fluorescent Probe for Tracking Carboxylesterases with Large Stokes Shift in Living Cells and Mice. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2024, 308, 123708. DOI: 10.1016/j.saa.2023.123708.
  • Zhang, W. D.; Zhang, J. M.; Qin, C. Z.; Wang, X. R.; Zhou, Y. B. A Far-Red/near-Infrared Fluorescence Probe with Large Stokes Shift for Monitoring Butyrylcholinesterase (BChE) in Living Cells and in Vivo. Anal. Chim. Acta. 2022, 1235, 340540. DOI: 10.1016/j.aca.2022.340540.
  • Feng, Y. A.; Xu, H.; Zhou, Y.; Wang, B. J.; Xiao, J.; Wang, Y. W.; Peng, Y. Ratiometric Detection and Bioimaging of Endogenous Alkaline Phosphatase by a NIR Fluorescence Probe. Sensor Actuat B-Chem 2022, 358, 131505. DOI: 10.1016/j.snb.2022.131505.
  • Lan, T.; Tian, Q. Q.; Li, M. H.; He, W. Activatable Endoplasmic Reticulum-Targeted NIR Fluorescent Probe with a Large Stokes Shift for Detecting and Imaging Chymotrypsin. Analyst 2022, 147, 4098–4104. DOI: 10.1039/d2an01013e.
  • Wang, Y.; Ma, T.; Dong, J. Q. Design and Synthesis of a New near-Infrared and Large Stokes Shift Fluorescence Probe for NAD(P)H: Quinone Oxidoreductase 1 Detection in Living Systems. Dyes Pigments 2023, 210, 110981. DOI: 10.1016/j.dyepig.2022.110981.
  • Lan, T.; Ji, N.; Tian, Q. Q.; Zhan, Y.; He, W. An Edoplasmic Reticulum-Targeted NIR Fluorescent Probe with a Large Stokes Shift for Hypoxia Imaging. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2023, 288, 122201. DOI: 10.1016/j.saa.2022.122201.
  • Liu, T.; Zhang, M.; Feng, L.; Cui, J. N.; Tian, X. G.; Yu, Z. L.; Zhang, B. J.; Deng, S.; Wang, C.; Ma, X. C. Visual Screening of PGP-1 Inhibitors and Identification of Intestinal Microbiota with Active PGP-1 Using a NIR Fluorescent Probe. Sensor Actuat B-Chem 2021, 337, 129764. DOI: 10.1016/j.snb.2021.129764.
  • Xu, J. F.; Yang, Y. S.; Jiang, A. Q.; Zhu, H. L. Detection Methods and Research Progress of Human Serum Albumin. Crit. Rev. Anal. Chem. 2022, 52, 72–92. DOI: 10.1080/10408347.2020.1789835.
  • Liu, B.; Zhao, X. F.; Zhou, M.; Song, C.; Zeng, C. H.; Qin, T. Y.; Zhang, M. Y.; Xu, Z. Y. Modulating Donor of Dicyanoisophorone-Based Fluorophores to Detect Human Serum Albumin with NIR Fluorescence. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2022, 268, 120666. DOI: 10.1016/j.saa.2021.120666.
  • Liu, B.; Zeng, C. H.; Zheng, D. N.; Zhao, X. F.; Song, C.; Qin, T. Y.; Xu, Z. Y. A near-Infrared Dicyanoisophorone-Based Fluorescent Probe for Discriminating HSA from BSA. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2022, 274, 121081. DOI: 10.1016/j.saa.2022.121081.
  • Yuan, D.; Pan, K. X.; Xu, S. Y.; Wang, L. Y. Dual-Channel Recognition of Human Serum Albumin and Glutathione by Fluorescent Probes with Site-Dependent Responsive Features. Anal. Chem. 2022, 94, 12391–12397. DOI: 10.1021/acs.analchem.2c02025.
  • Huang, Y. F.; Liang, J. P.; Fan, Z. F. A Review: Small Organic Molecule Dual/Multi-Organelle-Targeted Fluorescent Probes. Talanta 2023, 259, 124529. DOI: 10.1016/j.talanta.2023.124529.
  • Hong, J. X.; Liu, Y. J.; Tan, X. D.; Feng, G. Q. Engineering of a NIR Fluorescent Probe for High-Fidelity Tracking of Lipid Droplets in Living Cells and Nonalcoholic Fatty Liver Tissues. Biosens. Bioelectron. 2023, 240, 115646. DOI: 10.1016/j.bios.2023.115646.
  • Yang, J.; Wang, Z. Y.; Deng, Y.; Zhang, C. F.; Shen, X. B.; He, J.; Hu, L.; Wang, H. A Wash-Free Fluorescent Probe with a Large Stokes Shift for the Identification of NAFL through Tracing the Change of Lipid Droplets. Org. Biomol. Chem. 2023, 21, 8767–8771. DOI: 10.1039/d3ob01410j.
  • Chen, H.; Guo, S.; Liu, Y.; Jiang, H.; Liao, Y. X.; Shen, J. L.; Song, W.; Hou, J. T. A Stable NIR Fluorescent Probe for Imaging Lipid Droplets in Triple-Negative Breast Cancer. Sensor Actuat B-Chem 2024, 398, 134740. DOI: 10.1016/j.snb.2023.134740.
  • Hong, J. X.; Li, Q. H.; Xia, Q. F.; Feng, G. Q. Real-Time and High-Fidelity Tracking of Lysosomal Dynamics with a Dicyanoisophorone-Based Fluorescent Probe. Anal. Chem. 2021, 93, 16956–16964. DOI: 10.1021/acs.analchem.1c04341.
  • Wang, Y. F.; Niu, H. Y.; Wang, K.; Wang, G.; Liu, J. W.; James, T. D.; Zhang, H. mtDNA-Specific Ultrasensitive near-Infrared Fluorescent Probe Enables the Differentiation of Healthy and Apoptotic Cells. Anal. Chem. 2022, 94, 7510–7519. DOI: 10.1021/acs.analchem.1c05582.
  • Tian, M. G.; Sun, Y. R.; Kong, X. Q.; Dong, B. L. Revealing the Phase Separation in ER Membranes of Living Cells and Tissues by NIR Ratiometric Imaging. Anal. Chem. 2022, 94, 2844–2854. DOI: 10.1021/acs.analchem.1c04596.
  • Liu, J. D.; Wang, Y.; Chen, Y.; Shi, W. S. Two-Photon AIEgen Based on Dicyanoisophorone Derivative: Synthesis, Characterization and Cells Imaging. J. Mol. Struct. 2022, 1268, 133610. DOI: 10.1016/j.molstruc.2022.133610.
  • Yu, J. R.; Fan, J.; Song, Y. X.; Zhao, Y.; Lin, Z. Y.; Jiang, L.; Li, H. Q. Near-Infrared Fluorescent Probe with Large Stokes Shift for Specific Detection of Lysine. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2024, 308, 123734. DOI: 10.1016/j.saa.2023.123734.
  • Shen, D.; Jin, W. H.; Bai, Y. L.; Huang, Y. N.; Lyu, H. C.; Zeng, L. G.; Wang, M. D.; Tang, Y. Q.; Wan, W.; Dong, X. P.; et al. Rational Design of Crystallization-Induced-Emission Probes to Detect Amorphous Protein Aggregation in Live Cells. Angew. Chem. Int. Ed. Engl. 2021, 60, 16067–16076. DOI: 10.1002/anie.202103674.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.