47
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Label-Free Field Effect Transistors (FETs) for Fabrication of Point-of-Care (POC) Biomedical Detection Probes

, , , , , , , , & show all

References

  • Tian, Q.; Wang, Y.; Deng, R.; Lin, L.; Liu, Y.; Li, J. Carbon Nanotube Enhanced Label-Free Detection of MicroRNAs Based on Hairpin Probe Triggered Solid-Phase Rolling-Circle Amplification. Nanoscale 2015, 7, 987–993. DOI: 10.1039/c4nr05243a.
  • Chen, H.; Hou, Y.; Ye, Z.; Wang, H.; Koh, K.; Shen, Z.; Shu, Y. Label-Free Surface Plasmon Resonance Cytosensor for Breast Cancer Cell Detection Based on Nano-Conjugation of Monodisperse Magnetic Nanoparticle and Folic Acid. Sens. Actuators B Chem. 2014, 201, 433–438. DOI: 10.1016/j.snb.2014.04.040.
  • Liu, J.; Wang, J.; Li, Z.; Meng, H.; Zhang, L.; Wang, H.; Li, J.; Qu, L. A Lateral Flow Assay for the Determination of Human Tetanus Antibody in Whole Blood by Using Gold Nanoparticle Labeled Tetanus Antigen. Mikrochim. Acta. 2018, 185, 110. DOI: 10.1007/s00604-017-2657-6.
  • Scardino, P. T.; Hay, A. M. Point of Care Testing: A Welcome Advance? Nat. Clin. Pract. Urol. 2007, 4, 401–401. DOI: 10.1038/ncpuro0878.
  • Ballard, Z. S.; Joung, H.-A.; Goncharov, A.; Liang, J.; Nugroho, K.; Di Carlo, D.; Garner, O. B.; Ozcan, A. Deep Learning-Enabled Point-of-Care Sensing Using Multiplexed Paper-Based Sensors. NPJ Digit. Med. 2020, 3, 66. DOI: 10.1038/s41746-020-0274-y.
  • Lee, S.; Bi, L.; Chen, H.; Lin, D.; Mei, R.; Wu, Y.; Chen, L.; Joo, S.-W.; Choo, J. Recent Advances in Point-of-Care Testing of COVID-19. Chem. Soc. Rev. 2023, 52, 8500–8530. DOI: 10.1039/D3CS00709J.
  • Ji, T.; Xu, X.; Wang, X.; Zhou, Q.; Ding, W.; Chen, B.; Guo, X.; Hao, Y.; Chen, G. Point of Care Upconversion Nanoparticles-Based Lateral Flow Assay Quantifying Myoglobin in Clinical Human Blood Samples. Sens. Actuators B Chem. 2019, 282, 309–316. DOI: 10.1016/j.snb.2018.11.074.
  • Liu, G.; Qi, M.; Zhang, Y.; Cao, C.; Goldys, E. M. Nanocomposites of Gold Nanoparticles and Graphene Oxide towards an Stable Label-Free Electrochemical Immunosensor for Detection of Cardiac Marker Troponin-I. Anal. Chim. Acta. 2016, 909, 1–8. DOI: 10.1016/j.aca.2015.12.023.
  • Lu, J.; Van Stappen, T.; Spasic, D.; Delport, F.; Vermeire, S.; Gils, A.; Lammertyn, J. Fiber Optic-SPR Platform for Fast and Sensitive Infliximab Detection in Serum of Inflammatory Bowel Disease Patients. Biosens. Bioelectron. 2016, 79, 173–179. DOI: 10.1016/j.bios.2015.11.087.
  • Agarwal, S.; Warmt, C.; Henkel, J.; Schrick, L.; Nitsche, A.; Bier, F. F. Lateral Flow–Based Nucleic Acid Detection of SARS-CoV-2 Using Enzymatic Incorporation of Biotin-Labeled DUTP for POCT Use. Anal. Bioanal. Chem. 2022, 414, 3177–3186. DOI: 10.1007/s00216-022-03880-4.
  • Roberts, A.; Chauhan, N.; Islam, S.; Mahari, S.; Ghawri, B.; Gandham, R. K.; Majumdar, S. S.; Ghosh, A.; Gandhi, S. Graphene Functionalized Field-Effect Transistors for Ultrasensitive Detection of Japanese Encephalitis and Avian Influenza Virus. Sci. Rep. 2020, 10, 14546. DOI: 10.1038/s41598-020-71591-w.
  • Lee, H. W.; Kang, D. H.; Cho, J. H.; Lee, S.; Jun, D. H.; Park, J. H. Highly Sensitive and Reusable Membraneless Field-Effect Transistor (FET)-Type Tungsten Diselenide (WSe2) Biosensors. ACS Appl. Mater. Interfaces 2018, 10, 17639–17645. DOI: 10.1021/acsami.8b03432.
  • Li, H.; Li, D.; Chen, H.; Yue, X.; Fan, K.; Dong, L.; Wang, G. Application of Silicon Nanowire Field Effect Transistor (SiNW-FET) Biosensor with High Sensitivity. Sensors 2023, 23, 6808. DOI: 10.3390/s23156808.
  • Kaisti, M. Detection Principles of Biological and Chemical FET Sensors. Biosens. Bioelectron. 2017, 98, 437–448. DOI: 10.1016/j.bios.2017.07.010.
  • Sadighbayan, D.; Hasanzadeh, M.; Ghafar-Zadeh, E. Biosensing Based on Field-Effect Transistors (FET): Recent Progress and Challenges. Trends Analyt. Chem. 2020, 133, 116067. DOI: 10.1016/j.trac.2020.116067.
  • Novodchuk, I.; Kayaharman, M.; Prassas, I.; Soosaipillai, A.; Karimi, R.; Goldthorpe, I. A.; Abdel-Rahman, E.; Sanderson, J.; Diamandis, E. P.; Bajcsy, M.; Yavuz, M. Electronic Field Effect Detection of SARS-CoV-2 N-Protein before the Onset of Symptoms. Biosens. Bioelectron. 2022, 210, 114331. DOI: 10.1016/j.bios.2022.114331.
  • Gao, J.; Gao, Y.; Han, Y.; Pang, J.; Wang, C.; Wang, Y.; Liu, H.; Zhang, Y.; Han, L. Ultrasensitive Label-Free MiRNA Sensing Based on a Flexible Graphene Field-Effect Transistor without Functionalization. ACS Appl. Electron. Mater. 2020, 2, 1090–1098. DOI: 10.1021/acsaelm.0c00095.
  • Seo, G.; Lee, G.; Kim, M. J.; Baek, S. H.; Choi, M.; Ku, K. B.; Lee, C. S.; Jun, S.; Park, D.; Kim, H. G.; et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano. 2020, 14, 5135–5142. DOI: 10.1021/acsnano.0c02823.
  • Hasanzadeh, M.; Bahrami, A.; Alizadeh, M.; Shadjou, N. Magnetic Nanoparticles Loaded on Mobile Crystalline Material-41: Preparation, Characterization and Application as a Novel Material for the Construction of an Electrochemical Nanosensor. RSC Adv. 2013, 3, 24237–24246. DOI: 10.1039/c3ra42393j.
  • Sadr, S. H.; Davaran, S.; Alizadeh, E.; Salehi, R.; Ramazani, A. PLA-Based Magnetic Nanoparticles Armed with Thermo/PH Responsive Polymers for Combination Cancer Chemotherapy. J. Drug Deliv. Sci. Technol. 2018, 45, 240–254. DOI: 10.1016/j.jddst.2018.03.019.
  • Kergoat, L.; Piro, B.; Berggren, M.; Pham, M.-C.; Yassar, A.; Horowitz, G. DNA Detection with a Water-Gated Organic Field-Effect Transistor. Org. Electron. 2012, 13, 1–6. DOI: 10.1016/j.orgel.2011.09.025.
  • Yang, S. W.; Vosch, T. Rapid Detection of Microrna by a Silver Nanocluster DNA Probe. Anal. Chem. 2011, 83, 6935–6939. DOI: 10.1021/ac201903n.21859161
  • WHO. Hearts: Technical Package for Cardiovascular Disease Management in Primary Health Care. World Health Organization, 2024. https://www.who.int/publications/i/item/9789240001367
  • Manimekala, T.; Sivasubramanian, R.; Dharmalingam, G. Nanomaterial-Based Biosensors Using Field-Effect Transistors: A Review. J. Electron. Mater. 2022, 51, 1950–1973. DOI: 10.1007/s11664-022-09492-z.
  • Viswanathan, S.; Narayanan, T. N.; Aran, K.; Fink, K. D.; Paredes, J.; Ajayan, P. M.; Filipek, S.; Miszta, P.; Tekin, H. C.; Inci, F.; et al. Graphene-Protein Field Effect Biosensors: Glucose Sensing. Mater. Today 2015, 18, 513–522. DOI: 10.1016/j.mattod.2015.04.003.
  • Liu, S.; Guo, X. Carbon Nanomaterials Field-Effect-Transistor-Based Biosensors. NPG Asia Mater 2012, 4, e23–e23. DOI: 10.1038/am.2012.42.
  • Ahmad, R.; Mahmoudi, T.; Ahn, M. S.; Hahn, Y. B. Recent Advances in Nanowires-Based Field-Effect Transistors for Biological Sensor Applications. Biosens. Bioelectron. 2018, 100, 312–325. DOI: 10.1016/j.bios.2017.09.024.
  • Hao, R.; Liu, L.; Yuan, J.; Wu, L.; Lei, S. Recent Advances in Field Effect Transistor Biosensors: Designing Strategies and Applications for Sensitive Assay. Biosensors 2023, 13, 426. DOI: 10.3390/bios13040426.
  • Panahi, A.; Sadighbayan, D.; Forouhi, S.; Ghafar-Zadeh, E. Recent Advances of Field-Effect Transistor Technology for Infectious Diseases. Biosensors 2021, 11, 103. DOI: 10.3390/bios11040103.
  • Aftab, S.; Abbas, A.; Iqbal, M. Z.; Hussain, S.; Kabir, F.; Akman, E.; Xu, F.; Hegazy, H. H. Recent Advances in Nanomaterials Based Biosensors. TrAC Trends Anal. Chem. 2023, 167, 117223. DOI: 10.1016/j.trac.2023.117223.
  • Wang, J.; Shuyan, X.; Congcong, Z.; Ailing, Y.; Mingyuan, S.; Hongru, Y.; Chenguo, H.; Hong, L. Field effect transistor‐based tactile sensors: From sensor configurations to advanced applications. InfoMat. 2023, 5, e12376. DOI: 10.1002/inf2.12376.
  • Prostate Cancer: Statistics. Cancer.Net. 2023. https://www.cancer.net/cancer-types/prostate-cancer/statistics. (accessed Aug 9, 2023).
  • Yoo, G.; Park, H.; Kim, M.; Song, W. G.; Jeong, S.; Kim, M. H.; Lee, H.; Lee, S. W.; Hong, Y. K.; Lee, M. G.; et al. Real-Time Electrical Detection of Epidermal Skin MoS2 Biosensor for Point-of-Care Diagnostics. Nano Res. 2017, 10, 767–775. DOI: 10.1007/s12274-016-1289-1.
  • Park, H.; Han, G.; Lee, S. W.; Lee, H.; Jeong, S. H.; Naqi, M.; Almutairi, A.; Kim, Y. J.; Lee, J.; Kim, W. J.; et al. Label-Free and Recalibrated Multilayer MoS2 Biosensor for Point-of-Care Diagnostics. ACS Appl. Mater. Interfaces 2017, 9, 43490–43497. DOI: 10.1021/acsami.7b14479.
  • Gao, N.; Gao, T.; Yang, X.; Dai, X.; Zhou, W.; Zhang, A.; Lieber, C. M. Specific Detection of Biomolecules in Physiological Solutions Using Graphene Transistor Biosensors. Proc. Natl. Acad. Sci. U S A 2016, 113, 14633–14638. DOI: 10.1073/pnas.1625010114.
  • Zhang, Y.; Feng, D.; Xu, Y.; Yin, Z.; Dou, W.; Habiba, U. E.; Pan, C.; Zhang, Z.; Mou, H.; Deng, H.; et al. DNA-Based Functionalization of Two-Dimensional MoS2 FET Biosensor for Ultrasensitive Detection of PSA. Appl. Surf. Sci. 2021, 548, 149169. DOI: 10.1016/j.apsusc.2021.149169.
  • Yu, J.; Gao, G.; Sun, B.; Liang, L.; Shen, Q.; Zhang, Y.; Cao, H. Optimization of Sensing-Pad Functionalizing Strategy toward Separative Extended-Gate FET Biosensors for PSA Detection. J. Pharm. Biomed. Anal. 2022, 211, 114597. DOI: 10.1016/j.jpba.2022.114597.
  • Azadi, A.; Mohammadi, S.; Keshavarzi, P. Ion-Sensitive Field-Effect Transistor-Based Biosensor for PSA Antigen Concentration Measurement Using Microfluidic System. J. Model. Simul. Electr. Electron. Eng. 2022, 1, 3–6. DOI: 10.22075/mseee.2022.25133.1084.
  • Sun, C.; Li, R.; Song, Y.; Jiang, X.; Zhang, C.; Cheng, S.; Hu, W. Ultrasensitive and Reliable Organic Field-Effect Transistor-Based Biosensors in Early Liver Cancer Diagnosis. Anal. Chem. 2021, 93, 6188–6194. DOI: 10.1021/acs.analchem.1c00372.
  • Sun, C.; Vinayak, M. V.; Cheng, S.; Hu, W. Facile Functionalization Strategy for Ultrasensitive Organic Protein Biochips in Multi-Biomarker Determination. Anal. Chem. 2021, 93, 11305–11311. DOI: 10.1021/acs.analchem.1c02601.
  • Sun, C.; Wang, Y. X.; Sun, M.; Zou, Y.; Zhang, C.; Cheng, S.; Hu, W. Facile and Cost-Effective Liver Cancer Diagnosis by Water-Gated Organic Field-Effect Transistors. Biosens. Bioelectron. 2020, 164, 112251. DOI: 10.1016/j.bios.2020.112251.
  • Parkula, V.; Berto, M.; Diacci, C.; Patrahau, B.; Lauro, M.; Di; Kovtun, A.; Liscio, A.; Sensi, M.; Samor, P.; Greco, P.; et al. Harnessing Selectivity and Sensitivity in Electronic Biosensing: A Novel Lab-on-Chip Multigate Organic Transistor. Anal. Chem. 2020, 92, 9330–9337. DOI: 10.1021/acs.analchem.0c01655.
  • Yang, Y.; Zeng, B.; Li, Y.; Liang, H.; Yang, Y.; Yuan, Q. Construction of MoS2 Field Effect Transistor Sensor Array for the Detection of Bladder Cancer Biomarkers. Sci. China Chem. 2020, 63, 997–1003. DOI: 10.1007/s11426-020-9743-2.
  • Liu, Y.; Cai, Q.; Qin, C.; Jin, Y.; Wang, J.; Chen, Y.; Ouyang, Y.; Li, H.; Liu, S. Field-Effect Transistor Bioassay for Ultrasensitive Detection of Folate Receptor 1 by Ligand-Protein Interaction. Microchim. Acta. 2020, 187, 1–11. DOI: 10.1007/s00604-020-04630-y.
  • Park, H.; Lee, H.; Jeong, S. H.; Lee, E.; Lee, W.; Liu, N.; Yoon, D. S.; Kim, S.; Lee, S. W. MoS2 Field-Effect Transistor-Amyloid‑β1 − 42 Hybrid Device for Signal Amplified Detection of MMP‑9. Anal. Chem. 2019, 91, 8252–8258. DOI: 10.1021/acs.analchem.9b00926.
  • Chen, Y. H.; Pulikkathodi, A. K.; Ma, Y. D.; Wang, Y. L.; Lee, G. B. A Microfluidic Platform Integrated with Field-Effect Transistors for Enumeration of Circulating Tumor Cells. Lab Chip 2019, 19, 618–625. DOI: 10.1039/c8lc01072b.
  • Yin, T.; Xu, L.; Gil, B.; Merali, N.; Sokolikova, M. S.; Gaboriau, D. C. A.; Liu, D. S. K.; Muhammad Mustafa, A. N.; Alodan, S.; Chen, M.; et al. Graphene Sensor Arrays for Rapid and Accurate Detection of Pancreatic Cancer Exosomes in Patients’ Blood Plasma Samples. ACS Nano. 2023, 17, 14619–14631. DOI: 10.1021/acsnano.3c01812.
  • Oroval, M.; Coronado-Puchau, M.; Langer, J.; Sanz-Ortiz, M. N.; Ribes, Á.; Aznar, E.; Coll, C.; Marcos, M. D.; Sancenón, F.; Liz-Marzán, L. M.; Martínez-Máñez, R. Surface Enhanced Raman Scattering and Gated Materials for Sensing Applications: The Ultrasensitive Detection of Mycoplasma and Cocaine. Chemistry 2016, 22, 13488–13495. DOI: 10.1002/chem.201602457.
  • Li, Y.; Cu, Y. T. H.; Luo, D. Multiplexed Detection of Pathogen DNA with DNA-Based Fluorescence Nanobarcodes. Nat. Biotechnol. 2005, 23, 885–889. DOI: 10.1038/nbt1106.
  • Danielson, E.; Sontakke, V. A.; Porkovich, A. J.; Wang, Z.; Kumar, P.; Ziadi, Z.; Yokobayashi, Y.; Sowwan, M. Graphene Based Field-Effect Transistor Biosensors Functionalized Using Gas-Phase Synthesized Gold Nanoparticles. Sens. Actuators B Chem. 2020, 320, 128432. DOI: 10.1016/j.snb.2020.128432.
  • Hwang, M. T.; Heiranian, M.; Kim, Y.; You, S.; Leem, J.; Taqieddin, A.; Faramarzi, V.; Jing, Y.; Park, I.; van der Zande, A. M.; et al. Ultrasensitive Detection of Nucleic Acids Using Deformed Graphene Channel Field Effect Biosensors. Nat. Commun. 2020, 11, 1543. DOI: 10.1038/s41467-020-15330-9.
  • Liang, Y.; Xiao, M.; Wu, D.; Lin, Y.; Liu, L.; He, J.; Zhang, G.; Peng, L. M.; Zhang, Z. Wafer-Scale Uniform Carbon Nanotube Transistors for Ultrasensitive and Label-Free Detection of Disease Biomarkers. ACS Nano. 2020, 14, 8866–8874. DOI: 10.1021/acsnano.0c03523.
  • Anvarifard, M. K.; Ramezani, Z.; Amiri, I. S. Label-Free Detection of DNA by a Dielectric Modulated Armchair-Graphene Nanoribbon FET Based Biosensor in a Dual-Nanogap Setup. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 117, 111293. DOI: 10.1016/j.msec.2020.111293.
  • Kong, D.; Zhang, S.; Guo, M.; Li, S.; Wang, Q.; Gou, J.; Wu, Y.; Chen, Y.; Yang, Y.; Dai, C.; et al. Ultra-Fast Single-Nucleotide-Variation Detection Enabled by Argonaute-Mediated Transistor Platform. Adv. Mater. 2024, 36, e2307366. DOI: 10.1002/adma.202307366.
  • Cheng, H. L.; Fu, C. Y.; Kuo, W. C.; Chen, Y. W.; Chen, Y. S.; Lee, Y. M.; Li, K. H.; Chen, C.; Ma, H. P.; Huang, P. C.; et al. Detecting MiRNA Biomarkers from Extracellular Vesicles for Cardiovascular Disease with a Microfluidic System. Lab Chip 2018, 18, 2917–2925. DOI: 10.1039/c8lc00386f.
  • Tian, M.; Qiao, M.; Shen, C.; Meng, F.; Frank, L. A.; Krasitskaya, V. V.; Wang, T.; Zhang, X.; Song, R.; Li, Y.; et al. Highly-Sensitive Graphene Field Effect Transistor Biosensor Using PNA and DNA Probes for RNA Detection. Appl. Surf. Sci. 2020, 527, 146839. DOI: 10.1016/j.apsusc.2020.146839.
  • Hajian, R.; Balderston, S.; Tran, T.; DeBoer, T.; Etienne, J.; Sandhu, M.; Wauford, N. A.; Chung, J. Y.; Nokes, J.; Athaiya, M.; et al. Detection of Unamplified Target Genes via CRISPR–Cas9 Immobilized on a Graphene Field-Effect Transistor. Nat. Biomed. Eng. 2019, 3, 427–437. DOI: 10.1038/s41551-019-0371-x.
  • Li, K.; Tu, J.; Zhang, Y.; Jin, D.; Li, T.; Li, J.; Ni, W.; Xiao, M. M.; Zhang, Z. Y.; Zhang, G. J. Ultrasensitive Detection of Exosomal MiRNA with PMO-Graphene Quantum Dots-Functionalized Field-Effect Transistor Biosensor. iScience 2022, 25, 104522. DOI: 10.1016/j.isci.2022.104522.
  • Papamatthaiou, S.; Estrela, P.; Moschou, D. Printable Graphene BioFETs for DNA Quantification in Lab ‑ on ‑ PCB Microsystems. Sci. Rep. 2021, 11, 9815. DOI: 10.1038/s41598-021-89367-1.
  • Woo, J.; Jang, Y.; Mo, G.; Kim, S.; Lee, E.; Cho, K.; Lim, K.; Hyoung, W. Liquid Coplanar-Gate Organic/Graphene Hybrid Electronics for Label-Free Detection of Single and Double-Stranded DNA Molecules. Org. Electron. 2018, 62, 163–167. DOI: 10.1016/j.orgel.2018.07.032.
  • Guo, S.; Wu, K.; Li, C.; Wang, H.; Sun, Z.; Xi, D.; Zhang, S.; Ding, W.; Zaghloul, M. E.; Wang, C.; et al. Integrated Contact Lens Sensor System Based on Multifunctional Ultrathin MoS2 Transistors. Matter 2021, 4, 969–985. DOI: 10.1016/j.matt.2020.12.002.
  • Huang, C.; Hao, Z.; Qi, T.; Pan, Y.; Zhao, X. An Integrated Flexible and Reusable Graphene Field Effect Transistor Nanosensor for Monitoring Glucose. J. Mater. 2020, 6, 308–314. DOI: 10.1016/j.jmat.2020.02.002.
  • Minami, T.; Sato, T.; Minamiki, T.; Fukuda, K.; Kumaki, D.; Tokito, S. A Novel OFET-Based Biosensor for the Selective and Sensitive Detection of Lactate Levels. Biosens. Bioelectron. 2015, 74, 45–48. DOI: 10.1016/j.bios.2015.06.002.
  • Piccinini, E.; Bliem, C.; Reiner-Rozman, C.; Battaglini, F.; Azzaroni, O.; Knoll, W. Enzyme-Polyelectrolyte Multilayer Assemblies on Reduced Graphene Oxide Field-Effect Transistors for Biosensing Applications. Biosens. Bioelectron. 2017, 92, 661–667. DOI: 10.1016/j.bios.2016.10.035.
  • Khan, H. U.; Jang, J.; Kim, J. J.; Knoll, W. In Situ Antibody Detection and Charge Discrimination Using Aqueous Stable Pentacene Transistor Biosensors. J. Am. Chem. Soc. 2011, 133, 2170–2176. DOI: 10.1021/ja107088m.
  • Minamiki, T.; Sasaki, Y.; Tokito, S.; Minami, T. Label-Free Direct Electrical Detection of a Histidine-Rich Protein with Sub-Femtomolar Sensitivity Using an Organic Field-Effect Transistor. ChemistryOpen 2017, 6, 472–475. DOI: 10.1002/open.201700070.
  • Minamiki, T.; Minami, T.; Koutnik, P.; Anzenbacher, P.; Tokito, S. Antibody- and Label-Free Phosphoprotein Sensor Device Based on an Organic Transistor. Anal. Chem. 2016, 88, 1092–1095. DOI: 10.1021/acs.analchem.5b04618.
  • Wang, S.; Hossain, M. Z.; Shinozuka, K.; Shimizu, N.; Kitada, S.; Suzuki, T.; Ichige, R.; Kuwana, A.; Kobayashi, H. Graphene Field-Effect Transistor Biosensor for Detection of Biotin with Ultrahigh Sensitivity and Specificity. Biosens. Bioelectron. 2020, 165, 112363. DOI: 10.1016/j.bios.2020.112363.
  • Yang, H.; Sakata, T. Molecular-Charge-Contact-Based Ion-Sensitive Field-Effect Transistor Sensor in Microfluidic System for Protein Sensing. Sensors 2019, 19, 3393. DOI: 10.3390/s19153393.
  • Suspène, C.; Piro, B.; Reisberg, S.; Pham, M. C.; Toss, H.; Berggren, M.; Yassar, A.; Horowitz, G. Copolythiophene-Based Water-Gated Organic Field-Effect Transistors for Biosensing. J. Mater. Chem. B 2013, 1, 2090–2097. DOI: 10.1039/c3tb00525a.
  • Mulla, M. Y.; Tuccori, E.; Magliulo, M.; Lattanzi, G.; Palazzo, G.; Persaud, K.; Torsi, L. Capacitance-Modulated Transistor Detects Odorant Binding Protein Chiral Interactions. Nat. Commun. 2015, 6, 6010. DOI: 10.1038/ncomms7010.
  • Song, J.; Dailey, J.; Li, H.; Jang, H. J.; Zhang, P.; Wang, J. T. H.; Everett, A. D.; Katz, H. E. Extended Solution Gate OFET-Based Biosensor for Label-Free Glial Fibrillary Acidic PProtein Detection with Polyethylene Glycol-Containing Bioreceptor Layer. Adv. Funct. Mater. 2017, 27, 1606506. DOI: 10.1002/adfm.201606506.
  • Lin, Y. H.; Chu, C. P.; Lin, C. F.; Liao, H. H.; Tsai, H. H.; Juang, Y. Z. Extended-Gate Field-Effect Transistor Packed in Micro Channel for Glucose, Urea and Protein Biomarker Detection. Biomed. Microdevices 2015, 17, 111. DOI: 10.1007/s10544-015-0020-4.
  • Shen, H.; Zou, Y.; Zang, Y.; Huang, D.; Jin, W.; Di, C. A.; Zhu, D. Molecular Antenna Tailored Organic Thin-Film Transistors for Sensing Application. Mater. Horiz. 2018, 5, 240–247. DOI: 10.1039/C7MH00887B.
  • Hemamalini, V.; Anand, L.; Nachiyappan, S.; Geeitha, S.; Ramana Motupalli, V.; Kumar, R.; Ahilan, A.; Rajesh, M. Integrating Bio Medical Sensors in Detecting Hidden Signatures of COVID-19 with Artificial Intelligence. Measurement 2022, 194, 111054. DOI: 10.1016/j.measurement.2022.111054.
  • Wasfi, A.; Awwad, F.; Qamhieh, N.; Al Murshidi, B.; Palakkott, A. R.; Gelovani, J. G. Real-Time COVID-19 Detection via Graphite Oxide-Based Field-Effect Transistor Biosensors Decorated with Pt/Pd Nanoparticles. Sci. Rep. 2022, 12, 18155. DOI: 10.1038/s41598-022-22249-2.
  • Alnaji, N.; Wasfi, A.; Awwad, F. The Design of a Point of Care FET Biosensor to Detect and Screen COVID-19. Sci. Rep. 2023, 13, 4485. DOI: 10.1038/s41598-023-31679-5.
  • Gao, J.; Wang, C.; Chu, Y.; Han, Y.; Gao, Y.; Wang, Y.; Wang, C.; Liu, H.; Han, L.; Zhang, Y. Graphene Oxide-Graphene Van Der Waals Heterostructure Transistor Biosensor for SARS-CoV-2 Protein Detection. Talanta 2022, 240, 123197. DOI: 10.1016/j.talanta.2021.123197.
  • Thanihaichelvan, M.; Surendran, S. N.; Kumanan, T.; Sutharsini, U.; Ravirajan, P.; Valluvan, R.; Tharsika, T. Selective and Electronic Detection of COVID-19 (Coronavirus) Using Carbon Nanotube Field Effect Transistor-Based Biosensor: A Proof-of-Concept Study. Mater. Today Proc. 2022, 49, 2546–2549. DOI: 10.1016/j.matpr.2021.05.011.
  • Soylemez, S.; Yoon, B.; Toppare, L.; Swager, T.M. Quaternized polymer-single-walled carbon nanotube scaffolds for a chemiresistive glucose sensor, ACS Sensors 2017, 2, 1123–1127. DOI: 10.1021/acssensors.7b00323.
  • Zamzami, M. A.; Rabbani, G.; Ahmad, A.; Basalah, A. A.; Al-Sabban, W. H.; Nate Ahn, S.; Choudhry, H. Carbon Nanotube Field-Effect Transistor (CNT-FET)-Based Biosensor for Rapid Detection of SARS-CoV-2 (COVID-19) Surface Spike Protein S1. Bioelectrochemistry 2022, 143, 107982. DOI: 10.1016/j.bioelechem.2021.107982.
  • Kumar, S.; Chauhan, R. K.; Kumar, M. Sensitivity Enhancement of Dual Gate FET Based Biosensor Using Modulated Dielectric for Covid Detection. Silicon 2022, 14, 11453–11462. DOI: 10.1007/s12633-022-01865-7.
  • Poimanova, E. Y.; Shaposhnik, P. A.; Anisimov, D. S.; Zavyalova, E. G.; Trul, A. A.; Skorotetcky, M. S.; Borshchev, O. V.; Vinnitskiy, D. Z.; Polinskaya, M. S.; Krylov, V. B.; et al. Biorecognition Layer Based on Biotin-Containing [1]Benzothieno[3,2-b][1]Benzothiophene Derivative for Biosensing by Electrolyte-Gated Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces 2022, 14, 16462–16476. DOI: 10.1021/acsami.1c24109.
  • Jin, X.; Zhang, H.; Li, Y. T.; Xiao, M. M.; Zhang, Z. L.; Pang, D. W.; Wong, G.; Zhang, Z. Y.; Zhang, G. J. A Field Effect Transistor Modified with Reduced Graphene Oxide for Immunodetection of Ebola Virus. Microchim. Acta. 2019, 186, 223. DOI: 10.1007/s00604-019-3256-5.
  • Chang, J.; Pu, H.; Wells, S. A.; Shi, K.; Guo, X.; Zhou, G.; Sui, X.; Ren, R.; Mao, S.; Chen, Y.; et al. Semi-Quantitative Design of Black Phosphorous Field-Effect Transistor Sensors for Heavy Metal Ion Detection in Aqueous Media. Mol. Syst. Des. Eng. 2019, 4, 491–502. DOI: 10.1039/C8ME00056E.
  • Sun, M.; Zhang, C.; Chen, D.; Wang, J.; Ji, Y.; Liang, N.; Gao, H.; Cheng, S.; Liu, H. Ultrasensitive and Stable All Graphene Field‐Effect Transistor‐Based Hg 2+ Sensor Constructed by Using Different Covalently Bonded RGO Films Assembled by Different Conjugate Linking Molecules. SmartMat 2021, 2, 213–225. DOI: 10.1002/smm2.1030.
  • Mansouri Majd, S.; Ghasemi, F.; Salimi, A.; Sham, T. K. Transport Properties of a Molybdenum Disulfide and Carbon Dot Nanohybrid Transistor and Its Applications as a Hg2 + Aptasensor. ACS Appl. Electron. Mater. 2020, 2, 635–645. DOI: 10.1021/acsaelm.9b00632.
  • Zhou, G.; Chang, J.; Pu, H.; Shi, K.; Mao, S.; Sui, X.; Ren, R.; Cui, S.; Chen, J. Ultrasensitive Mercury Ion Detection Using DNA-Functionalized Molybdenum Disulfide Nanosheet/Gold Nanoparticle Hybrid Field-Effect Transistor Device. ACS Sens. 2016, 1, 295–302. DOI: 10.1021/acssensors.5b00241.
  • Xue, M.; Mackin, C.; Weng, W. H.; Zhu, J.; Luo, Y.; Luo, S. X. L.; Lu, A. Y.; Hempel, M.; McVay, E.; Kong, J.; Palacios, T. Integrated Biosensor Platform Based on Graphene Transistor Arrays for Real-Time High-Accuracy Ion Sensing. Nat. Commun. 2022, 13, 5064. DOI: 10.1038/s41467-022-32749-4.
  • Fakih, I.; Durnan, O.; Mahvash, F.; Napal, I.; Centeno, A.; Zurutuza, A.; Yargeau, V.; Szkopek, T. Selective Ion Sensing with High Resolution Large Area Graphene Field Effect Transistor Arrays. Nat. Commun. 2020, 11, 3226. DOI: 10.1038/s41467-020-16979-y.
  • Li, H.; Zhu, Y.; Islam, M. S.; Rahman, M. A.; Walsh, K. B.; Koley, G. Graphene Field Effect Transistors for Highly Sensitive and Selective Detection of K + Ions. Sens. Actuators B Chem. 2017, 253, 759–765. DOI: 10.1016/j.snb.2017.06.129.
  • Bao, C.; Kaur, M.; Kim, W. S. Sensors and Actuators B : Chemical toward a Highly Selective Arti Fi Cial Saliva Sensor Using Printed Hybrid Fi Eld e Ff Ect Transistors. Sens. Actuators B Chem. 2019, 285, 186–192. DOI: 10.1016/j.snb.2019.01.062.
  • Kabaa, E. A.; Abdulateef, S. A.; Ahmed, N. M.; Hassan, Z.; Sabah, F. A. A Novel Porous Silicon Multi-Ions Selective Electrode Based Extended Gate Field Effect Transistor for Sodium, Potassium, Calcium, and Magnesium Sensor. Appl. Phys. A 2019, 125, 753. DOI: 10.1007/s00339-019-3056-0.
  • Asoka, S. A.; Slewa, L. H.; Abbas, T. A. Multi-Ion (Na+/K+/Ca2+/Mg2+) EGFET Sensor Based on Heterostructure of ZrO2-NPs/MacroPSi. Chem. Pap. 2023, 77, 1351–1360. DOI: 10.1007/s11696-022-02554-w.
  • Firoozbakhtian, A.; Rezayan, A. H.; Hajghassem, H.; Rahimi, F.; Ghazani, M. F.; Kalantar, M.; Mohamadsharifi, A. Buried-Gate MWCNT FET-Based Nanobiosensing Device for Real-Time Detection of CRP. ACS Omega 2022, 7, 7341–7349. DOI: 10.1021/acsomega.1c07271.
  • Surya, S. G.; Majhi, S. M.; Lahcen, A. A.; Yuvaraja, S.; Chappanda, K. N.; Salama, K. N.; Agarwal, D. K.; Chappanda, K. N. A Label-Free Aptasensor FET Based on Au Nanoparticle Decorated Co3O4 Nanorods and a SWCNT Layer for Detection of Cardiac Troponin T Protein. J. Mater Chem B 2019, 8, 18–26. DOI: 10.1039/c9tb01989h.
  • Hu, X.; Li, J.; Li, Y.-T.; Zhang, Y.; Xiao, M.-M.; Zhang, Z.; Liu, Y.; Zhang, Z.-Y.; Zhang, G.-J. Plug-and-Play Smart Transistor Bio-Chips Implementing Point-of-Care Diagnosis of AMI with Modified CRISPR/Cas12a System. Biosens Bioelectron 2024, 246, 115909. DOI: 10.1016/j.bios.2023.115909.
  • Dalila, N. R.; Arshad, M. K. M.; Gopinath, S. C. B.; Nuzaihan, M. N. M.; Fathil, M. F. M. Molybdenum Disulfide—Gold Nanoparticle Nanocomposite in Field-Effect Transistor Back-Gate for Enhanced C-Reactive Protein Detection. Mikrochim Acta 2020, 187, 588. DOI: 10.1007/s00604-020-04562-7.
  • Sinha, A.; Tai, T. Y.; Li, K. H.; Gopinathan, P.; Chung, Y. D.; Sarangadharan, I.; Ma, H. P.; Huang, P. C.; Shiesh, S. C.; Wang, Y. L.; Lee, G. B. An Integrated Microfluidic System with Field-Effect-Transistor Sensor Arrays for Detecting Multiple Cardiovascular Biomarkers from Clinical Samples. Biosens Bioelectron 2019, 129, 155–163. DOI: 10.1016/j.bios.2019.01.001.
  • Kao, W. C.; Chu, C. H.; Chang, W. H.; Wang, Y. L.; Lee, G. B. Dual-Aptamer Assay for C-Reactive Protein Detection by Using Field-Effect Transistors on an Integrated Microfluidic System. In 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems, NEMS; 583–586, 2016. DOI: 10.1109/NEMS.2016.7758319.
  • Tsai, S.-Y.; Huang, C.-C.; Chen, P.-H.; Tripathi, A.; Wang, Y.-R.; Wang, Y.-L.; Chen, J.-C. Rapid Drug-Screening Platform Using Field-Effect Transistor-Based Biosensors: A Study of Extracellular Drug Effects on Transmembrane Potentials. Anal. Chem. 2022, 94, 2679–2685. DOI: 10.1021/acs.analchem.1c03402.34919373.
  • Zheng, C.; Jin, X.; Li, Y.; Mei, J.; Sun, Y.; Xiao, M.; Zhang, H.; Zhang, Z.; Zhang, G. J. Sensitive Molybdenum Disulfide Based Field Effect Transistor Sensor for Real-Time Monitoring of Hydrogen Peroxide. Sci. Rep. 2019, 9, 759. DOI: 10.1038/s41598-018-36752-y.
  • Gong, X.; Liu, Y.; Xiang, H.; Liu, H.; Liu, Z.; Zhao, X.; Li, J.; Li, H.; Hong, Guo.; Hu, T. S.; .; et al. Membraneless Reproducible MoS2 Field-Effect Transistor Biosensor for High Sensitive and Selective Detection of FGF21. Sci. China Mater. 2019, 62, 1479–1487. 10.1007/s40843-019-9444-y.
  • Ricci, S.; Casalini, S.; Parkula, V.; Selvaraj, M.; Saygin, G. D.; Greco, P.; Biscarini, F.; Mas-Torrent, M. Label-Free Immunodetection of α-Synuclein by Using a Microfluidics Coplanar Electrolyte-Gated Organic Field-Effect Transistor. Biosens. Bioelectron. 2020, 167, 112433. DOI: 10.1016/j.bios.2020.112433.
  • Ren, Q.; Jiang, L.; Ma, S.; Li, T.; Zhu, Y.; Qiu, R.; Xing, Y.; Yin, F.; Li, Z.; Ye, X.; et al. Multi-Body Biomarker Entrapment System: An All-Encompassing Tool for Ultrasensitive Disease Diagnosis and Epidemic Screening. Adv. Mater. 2023, 35, e2304119. DOI: 10.1002/adma.202304119.
  • Ma, M.; Chao, L.; Zhao, Y.; Ding, J.; Huang, Z.; Long, M.; Wang, F.; Jiang, J.; Liu, Z. High-Sensitivity Detection of Concanavalin a Using MoS2-Based Field Effect Transistor Biosensor. J. Phys. D: Appl. Phys. 2021, 54, 245401. DOI: 10.1088/1361-6463/abeeb9.
  • Wang, J.; Shao, W.; Liu, Z.; Kesavan, G.; Zeng, Z.; Shurin, M. R.; Star, A. Diagnostics of Tuberculosis with Single-Walled Carbon Nanotube-Based Field-Effect Transistors. ACS Sens. 2024, 9, 1957–1966. DOI: 10.1021/acssensors.3c02694.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.