111
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Trends and Perspectives in Single-Entity Electrochemistry: A Review with Focus on a Water Splitting Reaction

&

References

  • Baker, L. A. Perspective and Prospectus on Single-Entity Electrochemistry. J. Am. Chem. Soc. 2018, 140, 15549–15559. DOI: 10.1021/jacs.8b09747.
  • Lee, J.; Kang, Y.; Chang, J.; Song, J.; Kim, B. K. Determination of Serotonin Concentration in Single Human Platelets through Single-Entity Electrochemistry. ACS Sens. 2020, 5, 1943–1948. DOI: 10.1021/acssensors.0c00267.
  • Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K. Y. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120, 851–918. DOI: 10.1021/acs.chemrev.9b00248.
  • Zhou, J.; Li, J.; Zhang, L.; Song, S.; Wang, Y.; Lin, X.; Gu, S.; Wu, X.; Weng, T.-C.; Wang, J.; Zhang, S. Highly Active Surface Structure in Nanosized Spinel Cobalt-Based Oxides for Electrocatalytic Water Splitting. J. Phys. Chem. C. 2018, 122, 14447–14458. DOI: 10.1021/acs.jpcc.8b00407.
  • Guo, H.; Feng, Q.; Zhu, J.; Xu, J.; Li, Q.; Liu, S.; Xu, K.; Zhang, C.; Liu, T. Cobalt Nanoparticle-Embedded Nitrogen-Doped Carbon/Carbon Nanotube Frameworks Derived from a Metal–Organic Framework for Tri-Functional ORR, OER and HER Electrocatalysis. J. Mater. Chem. A. 2019, 7, 3664–3672. DOI: 10.1039/C8TA11400E.
  • Zhang, X.; Yang, P. g‐C3N4 Nanosheet Nanoarchitectonics: H2 Generation and CO2 Reduction. ChemNanoMat 2023, 9, e202300041. DOI: 10.1002/cnma.202300334.
  • Zhang, J.; Wang, Y.; Cui, J.; Wu, J.; Li, Y.; Zhu, T.; Kang, H.; Yang, J.; Sun, J.; Qin, Y.; et al. Water-Soluble Defect-Rich MoS2 Ultrathin Nanosheets for Enhanced Hydrogen Evolution. J. Phys. Chem. Lett. 2019, 10, 3282–3289. DOI: 10.1021/acs.jpclett.9b01121.
  • Huang, Y.; Meng, L.; Xu, W.; Li, L. The Positive Versus Negative Effects of Defect Engineering for Solar Water Splitting: A Review. Adv. Funct. Mater. 2023, 33, 2305940. DOI: 10.1002/adfm.202305940.
  • Li, J.; Jing, Z.; Bai, H.; Chen, Z.; Osman, A. I.; Farghali, M.; Rooney, D. W.; Yap, P.-S. Optimizing Hydrogen Production by Alkaline Water Decomposition with Transition Metal-Based Electrocatalysts. Environ. Chem. Lett. 2023, 21, 2583–2617. DOI: 10.1007/s10311-023-01616-z.
  • Modi, K. H.; Pataniya, P. M.; Sumesh, C. K. 2D Monolayer Catalysts: Towards Efficient Water Splitting and Green Hydrogen Production. Chem. Eur. J. 2024, 30, e202303978. DOI: 10.1002/chem.202303978.
  • Kwon, H. R.; Park, H.; Jun, S. E.; Choi, S.; Jang, H. W. High Performance Transition Metal-Based Electrocatalysts for Green Hydrogen Production. Chem. Commun. 2022, 58, 7874–7889. DOI: 10.1039/d2cc02423c.
  • Zhou, J.; Gao, S.; Hu, G. Recent Progress and Perspectives on Transition Metal-Based Electrocatalysts for Efficient Nitrate Reduction. Energy Fuels 2024, 38, 6701–6722. DOI: 10.1021/acs.energyfuels.4c00415.
  • Li, H.; Guo, Y.; Jin, Z. Advanced Electrochemical Techniques for Characterizing Electrocatalysis at the Single-Particle Level. Carb. Neutral. 2023, 2, 22. DOI: 10.1007/s43979-023-00062-8.
  • Andreescu, D.; Kirk, K. A.; Narouei, F. H.; Andreescu, S. Electroanalytic Aspects of Single‐Entity Collision Methods for Bioanalytical and Environmental Applications. ChemElectroChem 2018, 5, 2920–2936. DOI: 10.1002/celc.201800722.
  • Wang, H.; Tang, H.; Li, Y. Intrinsic Electrocatalytic Activity of Single MoS2 Quantum Dot Collision on Ag Ultramicroelectrodes. J. Phys. Chem. C. 2021, 125, 3337–3345. DOI: 10.1021/acs.jpcc.0c09644.
  • El Arrassi, A.; Liu, Z.; Evers, M. V.; Blanc, N.; Bendt, G.; Saddeler, S.; Tetzlaff, D.; Pohl, D.; Damm, C.; Schulz, S.; Tschulik, K. Intrinsic Activity of Oxygen Evolution Catalysts Probed at Single CoFe2O4 Nanoparticles. J. Am. Chem. Soc. 2019, 141, 9197–9201. DOI: 10.1021/jacs.9b04516.
  • Xu, W.; Zou, G.; Hou, H.; Ji, X. Single Particle Electrochemistry of Collision. Small 2019, 15, e1804908. DOI: 10.1002/smll.201804908.
  • Amemiya, S.; Bard, A. J.; Fan, F. R.; Mirkin, M. V.; Unwin, P. R. Scanning Electrochemical Microscopy. Annu. Rev. Anal. Chem. 2008, 1, 95–131. DOI: 10.1146/annurev.anchem.1.031207.112938.
  • Patrice, F. T.; Qiu, K.; Ying, Y. L.; Long, Y. T. Single Nanoparticle Electrochemistry. Annu. Rev. Anal. Chem. 2019, 12, 347–370. DOI: 10.1146/annurev-anchem-061318-114902.
  • Cox, J. T.; Zhang, B. Nanoelectrodes: Recent Advances and New Directions. Annu. Rev. Anal. Chem. 2012, 5, 253–272. DOI: 10.1146/annurev-anchem-062011-143124.
  • Clausmeyer, J.; Schuhmann, W. Nanoelectrodes: Applications in Electrocatalysis, Single-cell Analysis and High-resolution Electrochemical Imaging. Trends Anal. Chem. 2016, 79, 46–59. DOI: 10.1016/j.trac.2016.01.018.
  • Linnemann, J.; Kanokkanchana, K.; Tschulik, K. Design Strategies for Electrocatalysts from an Electrochemist’s Perspective. ACS Catal. 2021, 11, 5318–5346. DOI: 10.1021/acscatal.0c04118.
  • He, R.; Zhou, L.; Tenent, R.; Zhou, M. Basics of the Scanning Electrochemical Microscope and Its Application in the Characterization of Lithium-Ion Batteries: A Brief Review. Mater. Chem. Front. 2023, 7, 662–678. DOI: 10.1039/D2QM01079H.
  • Anderson, K. L.; Edwards, M. A. Evaluating Analytical Expressions for Scanning Electrochemical Cell Microscopy (SECCM). Anal. Chem. 2023, 95, 8258–8266. DOI: 10.1021/acs.analchem.3c00216.
  • Bard, A. J.; Fan, F.-R. F.; Kwak, J.; Lev, O. Scanning Electrochemical Microscopy. Introduction and Principles. Anal. Chem. 1989, 61, 132–138. DOI: 10.1021/ac00177a011.
  • Snowden, M. E.; Güell, A. G.; Lai, S. C. S.; McKelvey, K.; Ebejer, N.; O'Connell, M. A.; Colburn, A. W.; Unwin, P. R. Scanning Electrochemical Cell Microscopy: Theory and Experiment for Quantitative High Resolution Spatially-Resolved Voltammetry and Simultaneous Ion-Conductance Measurements. Anal. Chem. 2012, 84, 2483–2491. DOI: 10.1021/ac203195h.
  • Al-Naggar, A. H.; Shinde, N. M.; Kim, J.-S.; Mane, R. S. Water Splitting Performance of Metal and Non-metal-doped Transition Metal Oxide Electrocatalysts. Coord. Chem. Rev. 2023, 474, 214864. DOI: 10.1016/j.ccr.2022.214864.
  • Li, X.-P.; Huang, C.; Han, W.-K.; Ouyang, T.; Liu, Z.-Q. Transition Metal-based Electrocatalysts for Overall Water Splitting. Chin. Chem. Lett. 2021, 32, 2597–2616. DOI: 10.1016/j.cclet.2021.01.047.
  • Zhang, X.; Jiang, S. P. Layered g-C3N4/TiO2 Nanocomposites for Efficient Photocatalytic Water Splitting and CO2 Reduction: A Review. Mater. Today Energy 2022, 23, 100904. DOI: 10.1016/j.mtener.2021.100904.
  • Zhai, P.; Xia, M.; Wu, Y.; Zhang, G.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Fan, Z.; et al. Engineering Single-Atomic Ruthenium Catalytic Sites on Defective Nickel-Iron Layered Double Hydroxide for Overall Water Splitting. Nat. Commun. 2021, 12, 4587. DOI: 10.1038/s41467-021-24828-9.
  • Gowrisankar, A.; Selvaraju, T. Anchoring γ-MnO2 within β-NiCo(OH)2 as an Interfacial Electrode Material for Boosting Power Density in an Asymmetric Supercapacitor Device and for Oxygen Evolution Catalysis. Langmuir 2021, 37, 5964–5978. DOI: 10.1021/acs.langmuir.1c00499.
  • Wang, K.; Yang, Q.; Zhang, H.; Zhang, M.; Jiang, H.; Zheng, C.; Li, J. Recent Advances in Catalyst Design and Activity Enhancement Induced by a Magnetic Field for Electrocatalysis. J. Mater. Chem. A 2023, 11, 7802–7832. DOI: 10.1039/D2TA09276J.
  • Wang, Y.; Qian, G.; Xu, Q.; Zhang, H.; Shen, F.; Luo, L.; Yin, S. Industrially Promising IrNi-FeNi3 Hybrid Nanosheets for Overall Water Splitting Catalysis at Large Current Density. Appl. Catal. B. 2021, 286, 119881. DOI: 10.1016/j.apcatb.2021.119881.
  • Zhang, X.; Zhang, X.; Yang, P.; Jiang, S. P. Layered Graphitic Carbon Nitride: Nano‑Heterostructures, Photo/Electro‑Chemical Performance and Trends. J. Nanostruct. Chem. 2022, 12, 669–691. DOI: 10.1007/s40097-021-00442-5.
  • Gowrisankar, A.; Selvaraju, T. α‐MnO2‐Sensitized SrCO3−Sr(OH)2 Supported on Two‐Dimensional Carbon Composites as Stable Electrode Material for Asymmetric Supercapacitor and Oxygen Evolution Catalysis. ChemElectroChem 2022, 9, e202200213. DOI: 10.1002/celc.202200213.
  • Wang, C.; Zhang, Q.; Yan, B.; You, B.; Zheng, J.; Feng, L.; Zhang, C.; Jiang, S.; Chen, W.; He, S. Facet Engineering of Advanced Electrocatalysts toward Hydrogen/Oxygen Evolution Reactions. Nanomicro. Lett. 2023, 15, 52. DOI: 10.1007/s40820-023-01024-6.
  • Zhang, X.; Yang, P. Role of Graphitic Carbon in g-C3N4 Nanoarchitectonics towards Efficient Photocatalytic Reaction Kinetics: A Review. Carbon 2024, 216, 118584. DOI: 10.1016/j.carbon.2023.118584.
  • Kim, J.; Kim, B. K.; Cho, S. K.; Bard, A. J. Tunneling Ultramicroelectrode: Nanoelectrodes and Nanoparticle Collisions. J. Am. Chem. Soc. 2014, 136, 8173–8176. DOI: 10.1021/ja503314u.
  • Baur, J. E.; Wightman, R. M. Diffusion Coefficients Determined with Microelectrodes. J. Electroanal. Chem. 1991, 305, 73–81. DOI: 10.1016/0022-0728(91)85203-2.
  • Na, J.; Park, K.; Kwon, S. J. Single-Entity Electrochemistry in the Agarose Hydrogel: Observation of Enhanced Signal Uniformity and Signal-to-Noise Ratio. Gels 2023, 9, 537. DOI: 10.3390/gels9070537.
  • Sun, Z.; Hafez, M. E.; Ma, W.; Long, Y.-T. Recent Advances in Nanocollision Electrochemistry. Sci. China Chem. 2019, 62, 1588–1600. DOI: 10.1007/s11426-019-9529-x.
  • Sekretareva, A. Single-Entity Electrochemistry of Collision in Sensing Applications. Sens. Actuators Rep. 2021, 3, 100037. DOI: 10.1016/j.snr.2021.100037.
  • Dick, J. E.; Renault, C.; Kim, B.-K.; Bard, A. J. Simultaneous Detection of Single Attoliter Droplet Collisions by Electrochemical and Electrogenerated Chemiluminescent Responses. Angew. Chem. 2014, 126, 12053. DOI: 10.1002/ange.201407937.
  • Xiao, X.; Fan, F.-R. F.; Zhou, J.; Bard, A. J. Current Transients in Single Nanoparticle Collision Events. J. Am. Chem. Soc. 2008, 130, 16669–16677. DOI: 10.1021/ja8051393.
  • Park, J.; Kim, K.; Son, H.; Kwon, S. Chronoamperometric Observation and Analysis of Electrocatalytic Ability of Single Pd Nanoparticle for Hydrogen Peroxide Reduction Reaction. Nanomaterials 2018, 8, 879. DOI: 10.3390/nano8110879.
  • Jung, A.; Lee, S.; Joo, J. W.; Shin, J. C.; Bae, H.; Moon, S. G.; Kwon, S. J. Potential-Controlled Current Responses from Staircase to Blip in Single Pt Nanoparticle Collisions on a Ni Ultramicroelectrode. J. Am. Chem. Soc. 2015, 137, 1762–1765. DOI: 10.1021/ja511858c.
  • Ortiz-Ledón, C. A.; Zoski, C. G. Pt Nanoparticle Collisions Detected by Electrocatalytic Amplification and Atomic Force Microscopy Imaging: Nanoparticle Collision Frequency, Adsorption, and Random Distribution at an Ultramicroelectrode Surface. Anal. Chem. 2017, 89, 6424–6431. DOI: 10.1021/acs.analchem.7b00188.
  • Song, D.; Yan, H.; Xu, W.; Zhou, Y.-G. Fluidized Nanoparticles Catalyzed Oxygen Evolution Reaction: Enhanced Stability, Kinetics and Electrocatalytic Activity. Chem. Eng. J. 2023, 455, 140574. DOI: 10.1016/j.cej.2022.140574.
  • Liu, Z.; Amin, H. M. A.; Peng, Y.; Corva, M.; Pentcheva, R.; Tschulik, K. Facet-Dependent Intrinsic Activity of Single Co3O4 Nanoparticles for Oxygen Evolution Reaction. Adv. Funct. Mater. 2023, 33, 2210945. DOI: 10.1002/adfm.202210945.
  • Saha, P.; Rahman, M. M.; Hill, C. M. Borohydride Oxidation Electrocatalysis at Individual, Shape-Controlled Au Nanoparticles. Electrochem. Sci. Adv. 2021, 2, e2100120. DOI: 10.1002/elsa.202100120.
  • Zhao, X. H.; Zhou, Y. G. Rapid and Accurate Data Processing for Silver Nanoparticle Oxidation in Nano-Impact Electrochemistry. Front. Chem. 2021, 9, 718000. DOI: 10.3389/fchem.2021.718000.
  • Chen, M.; Lu, S. M.; Peng, Y. Y.; Ding, Z.; Long, Y. T. Tracking the Electrocatalytic Activity of a Single Palladium Nanoparticle for the Hydrogen Evolution Reaction. Chem. Eur. J. 2021, 27, 11799–11803. DOI: 10.1002/chem.202101263.
  • Huang, K.; Crooks, R. M. Enhanced Electrocatalytic Activity of Cu-Modified, High-Index Single Pt NPs for Formic Acid Oxidation. Chem. Sci. 2022, 13, 12479–12490. DOI: 10.1039/d2sc03433f.
  • Ganguli, S.; Zhao, Z.; Parlak, O.; Hattori, Y.; Sa, J.; Sekretareva, A. Nano-Impact Single-Entity Electrochemistry Enables Plasmon-Enhanced Electrocatalysis. Angew. Chem. Int. Ed. Engl. 2023, 62, e202302394. DOI: 10.1002/anie.202302394.
  • Peng, Y. Y.; Guo, D.; Ma, W.; Long, Y. T. Intrinsic Electrocatalytic Activity of Gold Nanoparticles Measured by Single Entity Electrochemistry. ChemElectroChem 2018, 5, 2982–2985. DOI: 10.1002/celc.201801065.
  • Rudakemwa, H.; Kim, K. J.; Park, T. E.; Son, H.; Na, J.; Kwon, S. J. Observation and Analysis of Staircase Response of Single Palladium Nanoparticle Collision on Gold Ultramicroelectrodes. Nanomaterials 2022, 12, 3095. DOI: 10.3390/nano12183095.
  • Sun, Z.; Gu, Z.; Ma, W. Confined Electrochemical Behaviors of Single Platinum Nanoparticles Revealing Ultrahigh Density of Gas Molecules inside a Nanobubble. Anal. Chem. 2023, 95, 3613–3620. DOI: 10.1021/acs.analchem.2c04309.
  • Jiao, X.; Lin, C.; Young, N. P.; Batchelor-McAuley, C.; Compton, R. G. Hydrogen Oxidation Reaction on Platinum Nanoparticles: Understanding the Kinetics of Electrocatalytic Reactions via “Nano-Impacts”. J. Phys. Chem. C. 2016, 120, 13148–13158. DOI: 10.1021/acs.jpcc.6b04281.
  • Lin, J.; Zhao, W.; Li, S.; Wang, J.; Zhang, D.; Zang, Y.; Xin, Q. Electrocatalytic Performance of Single Nanoparticles for Methanol Oxidation Reaction. J. Electroanal. Chem. 2023, 928, 117045. DOI: 10.1016/j.jelechem.2022.117045.
  • Lemineur, J. F.; Wang, H.; Wang, W.; Kanoufi, F. Emerging Optical Microscopy Techniques for Electrochemistry. Annu. Rev. Anal. Chem. 2022, 15, 57–82. DOI: 10.1146/annurev-anchem-061020-015943.
  • Xiang, Z. P.; Deng, H. Q.; Peljo, P.; Fu, Z. Y.; Wang, S. L.; Mandler, D.; Sun, G. Q.; Liang, Z. X. Electrochemical Dynamics of a Single Platinum Nanoparticle Collision Event for the Hydrogen Evolution Reaction. Angew.Chem. Int. Ed. 2018, 57, 3464–3468. DOI: 10.1002/anie.201712454.
  • Zhou, M.; Bao, S.; Bard, A. J. Probing Size and Substrate Effects on the Hydrogen Evolution Reaction by Single Isolated Pt Atoms, Atomic Clusters, and Nanoparticles. J. Am. Chem. Soc. 2019, 141, 7327–7332. DOI: 10.1021/jacs.8b13366.
  • Sun, T.; Wang, D.; Mirkin, M. V. Tunneling Mode of Scanning Electrochemical Microscopy: Probing Electrochemical Processes at Single Nanoparticles. Angew.Chem. Int. Ed. 2018, 57, 7463–7467. DOI: 10.1002/anie.201801115.
  • Wang, Y.; Gordon, E.; Ren, H. Mapping the Nucleation of H2 Bubbles on Polycrystalline Pt via Scanning Electrochemical Cell Microscopy. J. Phys. Chem. Lett. 2019, 10, 3887–3892. DOI: 10.1021/acs.jpclett.9b01414.
  • Liu, Y.; Jin, C.; Liu, Y.; Ruiz, K. H.; Ren, H.; Fan, Y.; White, H. S.; Chen, Q. Visualization and Quantification of Electrochemical H2 Bubble Nucleation at Pt, Au, and MoS2 Substrates. ACS Sens. 2021, 6, 355–363. DOI: 10.1021/acssensors.0c00913.
  • Lemineur, J.-F.; Ciocci, P.; Noël, J.-M.; Ge, H.; Combellas, C.; Kanoufi, F. Imaging and Quantifying the Formation of Single Nanobubbles at Single Platinum Nanoparticles during the Hydrogen Evolution Reaction. ACS Nano. 2021, 15, 2643–2653. DOI: 10.1021/acsnano.0c07674.
  • Hafez, M. E.; Ma, H.; Ma, W.; Long, Y. T. Unveiling the Intrinsic Catalytic Activities of Single-Gold-Nanoparticle-Based Enzyme Mimetics. Angew. Chem. 2019, 58, 6327.DOI: 10.1002/anie.201901384.
  • Hafez, M. E.; Mohammed, A. T. A. Revealing the Catalytic Activities of Single-Dispersed Pd Clusters Embedded on Hollow Nanoparticles toward the Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces. 2022, 14, 43290–43297. DOI: 10.1021/acsami.2c11624.
  • Aiyappa, H. B.; Wilde, P.; Quast, T.; Masa, J.; Andronescu, C.; Chen, Y. T.; Muhler, M.; Fischer, R. A.; Schuhmann, W. Oxygen Evolution Electrocatalysis of a Single MOF-Derived Composite Nanoparticle on the Tip of a Nanoelectrode. Angew. Chem. Int. Ed. Engl. 2019, 58, 8927–8931. DOI: 10.1002/anie.201903283.
  • Lu, X.; Li, M.; Peng, Y.; Xi, X.; Li, M.; Chen, Q.; Dong, A. Direct Probing of the Oxygen Evolution Reaction at Single NiFe2O4 Nanocrystal Superparticles with Tunable Structures. J. Am. Chem. Soc. 2021, 143, 16925–16929. DOI: 10.1021/jacs.1c08592.
  • Wu, Y. A.; McNulty, I.; Liu, C.; Lau, K. C.; Liu, Q.; Paulikas, A. P.; Sun, C.-J.; Cai, Z.; Guest, J. R.; Ren, Y.; et al. Facet-Dependent Active Sites of a Single Cu2O Particle Photocatalyst for CO2 Reduction to Methanol. Nat. Energy 2019, 4, 957–968. DOI: 10.1038/s41560-019-0490-3.
  • Guo, R.; Xiong, Q.; Ulatowski, A.; Li, S.; Ding, Z.; Xiao, T.; Liang, S.; Heger, J. E.; Guan, T.; Jiang, X.; et al. Trace Water in Lead Iodide Affecting Perovskite Crystal Nucleation Limits the Performance of Perovskite Solar Cells. Adv. Mater. 2009, 36, e2310237. DOI: 10.1002/adma.202310237.
  • Shan, Y.; Deng, X.; Lu, X.; Gao, C.; Li, Y.; Chen, Q. Surface Facets Dependent Oxygen Evolution Reaction of Single Cu2O Nanoparticles. Chin. Chem. Lett. 2022, 33, 5158. DOI: 10.1016/j.cclet.2022.03.010.
  • Tarnev, T.; Aiyappa, H. B.; Botz, A.; Erichsen, T.; Ernst, A.; Andronescu, C.; Schuhmann, W. Scanning Electrochemical Cell Microscopy Investigation of Single ZIF-Derived Nanocomposite Particles as Electrocatalysts for Oxygen Evolution in Alkaline Media. Angew. Chem. Int. Ed. Engl. 2019, 58, 14265–14269. DOI: 10.1002/anie.201908021.
  • Gowrisankar, A.; Thangavelu, S. Effect of β-MnO2 on Controlled Polymorphism of VO2 (x) (x = A, B, M Polymorphs) Microstructures Anchored on Two-Dimensional Reduced Graphene Oxide Nanosheets for Overall Water Splitting. J. Phys. Chem. C 2022, 126, 3419–3431. DOI: 10.1021/acs.jpcc.1c10624.
  • Li, M.; Ye, K. H.; Qiu, W.; Wang, Y.; Ren, H. Heterogeneity between and within Single Hematite Nanorods as Electrocatalysts for Oxygen Evolution Reaction. J. Am. Chem. Soc. 2022, 144, 5247–5252. DOI: 10.1021/jacs.2c00506.
  • Haase, F. T.; Rabe, A.; Schmidt, F. P.; Herzog, A.; Jeon, H. S.; Frandsen, W.; Narangoda, P. V.; Spanos, I.; Friedel Ortega, K.; Timoshenko, J.; et al. Role of Nanoscale Inhomogeneities in Co2FeO4 Catalysts during the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2022, 144, 12007–12019. DOI: 10.1021/jacs.2c00850.
  • Quast, T.; Varhade, S.; Saddeler, S.; Chen, Y. T.; Andronescu, C.; Schulz, S.; Schuhmann, W. Single Particle Nanoelectrochemistry Reveals the Catalytic Oxygen Evolution Reaction Activity of Co3O4 Nanocubes. Angew. Chem. Int. Ed. Engl. 2021, 60, 23444–23450. DOI: 10.1002/anie.202109201.
  • Quast, T.; Aiyappa, H. B.; Saddeler, S.; Wilde, P.; Chen, Y. T.; Schulz, S.; Schuhmann, W. Single-Entity Electrocatalysis of Individual "Picked-and-Dropped" Co3O4 Nanoparticles on the Tip of a Carbon Nanoelectrode. Angew. Chem. Int. Ed. Engl. 2021, 60, 3576–3580. DOI: 10.1002/anie.202014384.
  • Vieira, M. M.; Lemineur, J.-F.; Médard, J.; Combellas, C.; Kanoufi, F.; Noël, J.-M. Nanoimpact Electrochemistry to Quantify the Transformation and Electrocatalytic Activity of Ni(OH)2 Nanoparticles: Toward the Size-Activity Relationship at High Throughput. J. Phys. Chem. Lett. 2022, 13, 5468–5473. DOI: 10.1021/acs.jpclett.2c01408.
  • Pumford, A.; White, R. J. Controlling the Collision Type and Frequency of Single Pt Nanoparticles at Chemically Modified Gold Electrodes. Anal. Chem. 2024, 96, 4800–4808. DOI: 10.1021/acs.analchem.3c04668.
  • Sun, Z.; Zhao, S.; Gu, Z.; Ma, W. Understanding Correlation between Magnetism and Electrocatalytic Hydrogen Evolution Based on Intrinsic Properties of Single MoS2 Entity. J. Phys. Chem. Lett. 2023, 14, 6765–6771. DOI: 10.1021/acs.jpclett.3c01165.
  • Gu, Z.; Le, J.; Wei, H.; Sun, Z.; Hafez, M. E.; Ma, W. Unveiling the Intrinsic Properties of Single NiZnFeOx Entity for Promoting Electrocatalytic Oxygen Evolution. Chin. Chem. Lett. 2024, 35, 108849. DOI: 10.1016/j.cclet.2023.108849.
  • Gao, H.; Xu, J.; Zhang, X.; Zhou, M. Benchmarking the Intrinsic Activity of Transition Metal Oxides for the Oxygen Evolution Reaction with Advanced Nanoelectrodes. Angew. Chem. Int. Ed. 2024, e202404663. DOI: 10.1002/anie.202404663.
  • Zhang, W.; Li, J.; Xia, X.-H.; Zhou, Y.-G. Enhanced Electrochemistry of Single Plasmonic Nanoparticles. Angew. Chem. Int. Ed. Engl. 2022, 61, e202115819. DOI: 10.1002/anie.202115819.
  • Steimecke, M.; Seiffarth, G.; Bron, M. In Situ Characterization of Ni and Ni/Fe Thin Film Electrodes for Oxygen Evolution in Alkaline Media by a Raman-Coupled Scanning Electrochemical Microscope Setup. Anal. Chem. 2017, 89, 10679–10686. DOI: 10.1021/acs.analchem.7b01060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.