32
Views
0
CrossRef citations to date
0
Altmetric
Review Article

An Update on Current Trend in Sample Preparation Automation in Bioanalysis: strategies, Challenges and Future Direction

, , & ORCID Icon

References

  • Musatadi, M.; Alvarez-Mora, I.; Baciero-Hernandez, I.; Prieto, A.; Anakabe, E.; Olivares, M.; Etxebarria, N.; Zuloaga, O. Sample Preparation for Suspect Screening of Persistent, Mobile and Toxic Substances and Their Phase II Metabolites in Human Urine by Mixed-Mode Liquid Chromatography. Talanta 2024, 271, 125698. DOI: 10.1016/J.TALANTA.2024.125698.
  • Viana, J. L. M.; Menegário, A. A.; Fostier, A. H. Preparation of Environmental Samples for Chemical Speciation of Metal/Metalloids: A Review of Extraction Techniques. Talanta 2021, 226, 122119. DOI: 10.1016/J.TALANTA.2021.122119.
  • Suwanvecho, C.; Krčmová, L. K.; Švec, F. Effective, Convenient, and Green Sample Preparation for the Determination of Retinol and Retinol Acetate in Human Serum Using Pipette Tip Microextraction. Talanta 2023, 262, 124689. DOI: 10.1016/J.TALANTA.2023.124689.
  • Khan, N.; Sengupta, P. Technological Advancement and Trend in Selective Bioanalytical Sample Extraction through State of the Art 3-D Printing Techniques Aiming ‘Sorbent Customization as per Need. Crit. Rev. Anal. Chem. 2024, 1–21. DOI: 10.1080/10408347.2024.2305275.
  • Aldrich, S. Sample Prep for Chromatography Sorbents, Devices and Techniques to Improve Sensitivity, Specificity and Throughput 2010 Innovation Seminar Series Supelco, Div. of Sigma-Aldrich. 2010.
  • Ingle, R. G.; Zeng, S.; Jiang, H.; Fang, W. J. Current Developments of Bioanalytical Sample Preparation Techniques in Pharmaceuticals. J. Pharm. Anal. 2022, 12, 517–529. DOI: 10.1016/J.JPHA.2022.03.001.
  • Elpa, D. P.; Prabhu, G. R. D.; Wu, S. P.; Tay, K. S.; Urban, P. L. Automation of Mass Spectrometric Detection of Analytes and Related Workflows: A Review. Talanta 2020, 208, 120304. DOI: 10.1016/J.TALANTA.2019.120304.
  • Kołodziej, D.; Sobczak, Ł.; Goryński, K. Innovative, Simple, and Green: A Sample Preparation Method Based on 3D Printed Polymers. Talanta 2023, 257, 124380. DOI: 10.1016/J.TALANTA.2023.124380.
  • Vreeker, G. C. M.; Bladergroen, M. R.; Nicolardi, S.; Mesker, W. E.; Tollenaar, R. A. E. M.; van der Burgt, Y. E. M.; Wuhrer, M. Dried Blood Spot N-Glycome Analysis by MALDI Mass Spectrometry. Talanta 2019, 205, 120104. DOI: 10.1016/J.TALANTA.2019.06.104.
  • Kohler, I.; Schappler, J.; Rudaz, S. Microextraction Techniques Combined with Capillary Electrophoresis in Bioanalysis. Anal. Bioanal. Chem. 2012, 405, 125–141. DOI: 10.1007/S00216-012-6367-Y.
  • Cortese, M.; Gigliobianco, M. R.; Magnoni, F.; Censi, R.; Di Martino, P. Compensate for or Minimize Matrix Effects? Strategies for Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry Technique: A Tutorial Review. Molecules 2020, 25, 3047. Jul DOI: 10.3390/MOLECULES25133047.
  • Antignac, J.-P.; de Wasch, K.; Monteau, F.; De Brabander, H.; Andre, F.; Le Bizec, B. The Ion Suppression Phenomenon in Liquid Chromatography-Mass Spectrometry and Its Consequences in the Field of Residue. No. Anal. Chim. Acta 2005, 529, 129–136. DOI: 10.1016/j.aca.2004.08.055.
  • Thakare, R.; Chhonker, Y. S.; Gautam, N.; Alamoudi, J. A.; Alnouti, Y. Quantitative Analysis of Endogenous Compounds. J. Pharm Biomed. Anal. 2016, 128, 426–437. DOI: 10.1016/J.JPBA.2016.06.017.
  • Panuwet, P.; Hunter, R. E.; D'Souza, P. E.; Chen, X.; Radford, S. A.; Cohen, J. R.; Marder, M. E.; Kartavenka, K.; Ryan, P. B.; Barr, D. B.; et al. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring. Crit. Rev. Anal. Chem. 2016, 46, 93–105. DOI: 10.1080/10408347.2014.980775.
  • Maragou, N. C.; Thomaidis, N. S.; Koupparis, M. A. Optimization and Comparison of ESI and APCI LC-MS/MS Methods: A Case Study of Irgarol 1051, Diuron, and Their Degradation Products in Environmental Samples. J. Am Soc Mass Spectrom. 2011, 22, 1826–1838. DOI: 10.1007/S13361-011-0191-Z/TABLES/3.
  • Garcia-Ac, A.; Segura, P. A.; Viglino, L.; Gagnon, C.; Sauvé, S. Comparison of APPI, APCI and ESI for the LC-MS/MS Analysis of Bezafibrate, Cyclophosphamide, Enalapril, Methotrexate and Orlistat in Municipal Wastewater. J. Mass Spectrom. 2011, 46, 383–390. DOI: 10.1002/jms.1904.
  • Vogeser, M.; Kirchhoff, F. Progress in Automation of LC-MS in Laboratory Medicine. Clin. Biochem. 2011, 44, 4–13. DOI: 10.1016/J.CLINBIOCHEM.2010.06.005.
  • Xu, R. N.; Fan, L.; Rieser, M. J.; El-Shourbagy, T. A. Recent Advances in High-Throughput Quantitative Bioanalysis by LC-MS/MS. J. Pharm. Biomed. Anal. 2007, 44, 342–355. DOI: 10.1016/J.JPBA.2007.02.006.
  • Janiszewski, J.; Liston, T.; Cole, M. Perspectives on Bioanalytical Mass Spectrometry and Automation in Drug Discovery. Curr. Drug Metab. 2008, 9, 986–994. DOI: 10.2174/138920008786485173.
  • Kole, P. L.; Venkatesh, G.; Kotecha, J.; Sheshala, R. Recent Advances in Sample Preparation Techniques for Effective Bioanalytical Methods. Biomed. Chromatogr. 2011, 25, 199–217. DOI: 10.1002/BMC.1560.
  • Singleton, C. Recent Advances in Bioanalytical Sample Preparation for LC-MS Analysis. Bioanalysis 2012, 4, 1123–1140. DOI: 10.4155/BIO.12.73.
  • Shou, W. Z.; Zhang, J. Recent Development in Software and Automation Tools for High-Throughput Discovery Bioanalysis. Bioanalysis 2012, 4, 1097–1109. DOI: 10.4155/BIO.12.51.
  • Tweed, J. A. Automation in LC-MS Bioanalysis. In Handbook of LC-MS Bioanalysis: Best Practices, Experimental Protocols, and Regulations; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2013; pp. 275–295. DOI: 10.1002/9781118671276.CH22.
  • Stoll, D. R. Recent Advances in 2D-LC for Bioanalysis. Bioanalysis 2015, 7, 3125–3142. DOI: 10.4155/BIO.15.223/ASSET/IMAGES/LARGE/FIGURE5.JPEG.
  • Wilson, S. R.; Jankowski, M.; Pepaj, M.; Mihailova, A.; Boix, F.; Vivo Truyols, G.; Lundanes, E.; Greibrokk, T. 2D LC Separation and Determination of Bradykinin in Rat Muscle Tissue Dialysate with on-Line SPE-HILIC-SPE-RP-MS. Chroma 2007, 66, 469–474. DOI: 10.1365/S10337-007-0341-4/METRICS.
  • Buszewski, B.; Noga, S. Hydrophilic Interaction Liquid Chromatography (HILIC)-A Powerful Separation Technique. Anal. Bioanal. Chem. 2012, 402, 231–247. DOI: 10.1007/S00216-011-5308-5/TABLES/3.
  • Rogeberg, M.; Malerod, H.; Roberg-Larsen, H.; Aass, C.; Wilson, S. R. On-Line Solid Phase Extraction-Liquid Chromatography, with Emphasis on Modern Bioanalysis and Miniaturized Systems. J. Pharm. Biomed. Anal. 2014, 87, 120–129. DOI: 10.1016/J.JPBA.2013.05.006.
  • Zheng, N.; Jiang, H.; Zeng, J. Current Advances and Strategies towards Fully Automated Sample Preparation for Regulated LC-MS/MS Bioanalysis. Bioanalysis 2014, 6, 2441–2459. DOI: 10.4155/BIO.14.161.
  • Becker, W.; Scherer, A.; Faust, C.; Bauer, D. K.; Scholtes, S.; Rao, E.; Hofmann, J.; Schauder, R.; Langer, T. A Fully Automated Three-Step Protein Purification Procedure for up to Five Samples Using the NGC Chromatography System. Protein Expr. Purif. 2019, 153, 1–6. DOI: 10.1016/J.PEP.2018.08.003.
  • Tweed, J. A.; Gu, Z.; Xu, H.; Zhang, G.; Nouri, P.; Li, M.; Steenwyk, R. Automated Sample Preparation for Regulated Bioanalysis: An Integrated Multiple Assay Extraction Platform Using Robotic Liquid Handling. Bioanalysis 2010, 2, 1023–1040. DOI: 10.4155/BIO.10.55.
  • Lanio, T.; Jeltsch, A.; Pingoud, A. Automated purification of His6-tagged proteins allows exhaustive screening of libraries generated by random mutagenesis. BioTechniques 2000, 29(2), 338–342. DOI: 10.2144/00292rr01.
  • Zhang, J.; Wei, S.; Ayres, D. W.; Smith, H. T.; Tse, F. L. S. An Automation-Assisted Generic Approach for Biological Sample Preparation and LC-MS/MS Method Validation. Bioanalysis 2011, 3, 1975–1986. DOI: 10.4155/BIO.11.178.
  • Tweed, J. A.; Walton, J.; Gu, Z. Automated Supported Liquid Extraction Using 2D Barcode Processing for Routine Toxicokinetic Portfolio Support. Bioanalysis 2012, 4, 249–262. DOI: 10.4155/BIO.11.314/ASSET/IMAGES/LARGE/FIGURE4.JPEG.
  • Gu, H.; Unger, S.; Deng, Y. Automated Tecan Programming for Bioanalytical Sample Preparation with EZTecan. ASSAY Drug Dev. Technol. 2006, 4, 721–733. DOI: 10.1089/ADT.2006.4.721.
  • Li, M.; Chou, J.; King, K. W.; Yang, L. ASPECTS: An Automation-Assisted SPE Method Development System. Bioanalysis 2013, 5, 1661–1676. DOI: 10.4155/BIO.13.136.
  • Jiang, H.; Ouyang, Z.; Zeng, J.; Yuan, L.; Zheng, N.; Jemal, M.; Arnold, M. E. A User-Friendly Robotic Sample Preparation Program for Fully Automated Biological Sample Pipetting and Dilution to Benefit the Regulated Bioanalysis. J. Lab. Autom. 2012, 17, 211–221. DOI: 10.1177/2211068211429775.
  • Chang, M. S.; Ji, Q.; Zhang, J.; El-Shourbagy, T. A. Historical Review of Sample Preparation for Chromatographic Bioanalysis: Pros and Cons. Drug Dev. Res. 2007, 68, 107–133. DOI: 10.1002/ddr.20173.
  • Nováková, L.; Vlcková, H. A Review of Current Trends and Advances in Modern Bio-Analytical Methods: Chromatography and Sample Preparation. Anal. Chim. Acta 2009, 656, 8–35. DOI: 10.1016/J.ACA.2009.10.004.
  • Palandra, J.; Weller, D.; Hudson, G.; Li, J.; Osgood, S.; Hudson, E.; Zhong, M.; Buchholz, L.; Cohen, L. H. Flexible Automated Approach for Quantitative Liquid Handling of Complex Biological Samples. Anal. Chem. 2007, 79, 8010–8015. DOI: 10.1021/AC070618S.
  • Yang, L.; Clement, R. P.; Kantesaria, B.; Reyderman, L.; Beaudry, F.; Grandmaison, C.; Di Donato, L.; Masse, R.; Rudewicz, P. J. Validation of a Sensitive and Automated 96-Well Solid-Phase Extraction Liquid Chromatography–Tandem Mass Spectrometry Method for the Determination of Desloratadine and 3-Hydroxydesloratadine in Human Plasma. J. Chromatogr. B 2003, 792, 229–240. DOI: 10.1016/S1570-0232(03)00267-8.
  • Biddlecombe, R. A.; Pleasance, S. Automated Protein Precipitation by Filtration in the 96-Well Format. J .Chromatogr. B Biomed. Sci. Appl. 1999, 734, 257–265. DOI: 10.1016/S0378-4347(99)00355-2.
  • Li, W.; Jian, W.; Fu, Y. Basic Sample Preparation Techniques in LC-MS Bioanalysis. In Sample Preparation in LC-MS Bioanalysis; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2019, 1–30. DOI: 10.1002/9781119274315.CH1.
  • Ma, J.; Shi, J.; Le, H.; Cho, R.; Huang, J. C-j.; Miao, S.; Wong, B. K. A Fully Automated Plasma Protein Precipitation Sample Preparation Method for LC-MS/MS Bioanalysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 862, 219–226. DOI: 10.1016/J.JCHROMB.2007.12.012.
  • Yuan, L.; Jiang, H.; Ouyang, Z.; Xia, Y.-Q.; Zeng, J.; Peng, Q.; Lange, R. W.; Deng, Y.; Arnold, M. E.; Aubry, A.-F.; et al. A Rugged and Accurate Liquid Chromatography–Tandem Mass Spectrometry Method for the Determination of Asunaprevir, an NS3 Protease Inhibitor, in Plasma. J. Chromatogr. B 2013, 921-922, 81–86. DOI: 10.1016/j.jchromb.2013.01.029.
  • Zheng, N.; Zeng, J.; Akinsanya, B.; Buzescu, A.; Xia, Y.-Q.; Ly, V.; Trouba, K.; Peng, Q.; Aubry, A.-F.; Arnold, M. E.; et al. A Rapid, Accurate and Robust UHPLC-MS/MS Method for Quantitative Determination of BMS-927711, a CGRP Receptor Antagonist, in Plasma in Support of Non-Clinical Toxicokinetic Studies. J. Pharm. Biomed. Anal. 2013, 83, 237–248. DOI: 10.1016/J.JPBA.2013.05.019.
  • Liu, G.; Snapp, H. M.; Ji, Q. C.; Arnold, M. E. Strategy of Accelerated Method Development for High-Throughput Bioanalytical Assays Using Ultra High-Performance Liquid Chromatography Coupled with Mass Spectrometry. Anal. Chem. 2009, 81, 9225–9232. DOI: 10.1021/AC901316W.
  • Wu, S.; Li, W.; Mujamdar, T.; Smith, T.; Bryant, M.; Tse, F. L. S. Supported Liquid Extraction in Combination with LC-MS/MS for High-Throughput Quantitative Analysis of Hydrocortisone in Mouse Serum. Biomed. Chromatogr. 2010, 24, 632–638. DOI: 10.1002/BMC.1339.
  • Li, Y.; Emm, T.; Yeleswaram, S. Simultaneous Determination of Fluoxetine and Its Major Active Metabolite Norfluoxetine in Human Plasma by LC-MS/MS Using Supported Liquid Extraction. Biomed. Chromatogr. 2011, 25, 1245–1251. DOI: 10.1002/BMC.1597.
  • Pan, J.; Fair, S. J.; Mao, D. Quantitative Analysis of Skeletal Symmetric Chlorhexidine in Rat Plasma Using Doubly Charged Molecular Ions in LC-MS/MS Detection. Bioanalysis 2011, 3, 1357–1368. DOI: 10.4155/BIO.11.85.
  • Pan, J.; Jiang, X.; Chen, Y. L. Automatic Supported Liquid Extraction (SLE) Coupled with HILIC-MS/MS: An Application to Method Development and Validation of Erlotinib in Human Plasma. Pharmaceutics 2010, 2, 105–118. DOI: 10.3390/PHARMACEUTICS2020105.
  • Peng, S. X.; Branch, T. M.; King, S. L. Fully Automated 96-Well Liquid-Liquid Extraction for Analysis of Biological Samples by Liquid Chromatography with Tandem Mass Spectrometry. Anal. Chem. 2001, 73, 708–714. DOI: 10.1021/AC001036C/ASSET/IMAGES/LARGE/AC001036CF00006.JPEG.
  • High-throughput liquid-liquid extraction in 96-well format: Parallel artificial liquid membrane extraction. https://www.researchgate.net/publication/317747642_High-throughput_liquid-liquid_extraction_in_96-well_format_Parallel_artificial_liquid_membrane_extraction (accessed: Mar 24, 2024).
  • Zheng, N. Automated and High-Throughput Extraction Approaches. Solid-Phase Extraction; Elsevier Inc.: Amsterdam, Netherlands, 2020; pp 573–588, DOI: 10.1016/B978-0-12-816906-3.00021-2.
  • Calderilla, C.; Maya, F.; Leal, L. O.; Cerdà, V. Recent Advances in Flow-Based Automated Solid-Phase Extraction. TrAC, Trends Anal. Chem. 2018, 108, 370–380. DOI: 10.1016/j.trac.2018.09.011.
  • Callejas, S. L.; Biddlecombe, R. A.; Jones, A. E.; Joyce, K. B.; Pereira, A. I.; Pleasance, S. Determination of the Glucocorticoid Fluticasone Propionate in Plasma by Automated Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 1998, 718, 243–250. DOI: 10.1016/S0378-4347(98)00374-0.
  • Chapter 13 Solid-Phase Extraction: Automation Strategies. Progress in Pharmaceutical and Biomedical Analysis 2003, 5, 485–504. DOI: 10.1016/S1464-3456(03)80015-7.
  • Veeramachineni, S.; Wrona, M. D. “Automation of Peptide SPE for Bioanalytical Method Development | Waters. (n.d.). https://www.waters.com/nextgen/ie/en/library/application-notes/2022/automation-of-peptide-spe-for-bioanalytical-method-development.html ( accessed May 9, 2024).
  • O’Reilly, J.; et al. Automation of Solid-Phase Microextraction. J. Sep. Sci. 2005, 28, 2010–2022. DOI: 10.1002/JSSC.200500244.
  • Eisert, R.; Pawliszyn, J. Automated in-Tube Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography. Anal. Chem. 1997, 69, 3140–3147. DOI: 10.1021/AC970319A/ASSET/IMAGES/LARGE/AC970319AF00009.JPEG.
  • Kataoka, H. Recent Advances in Online Column-Switching Sample Preparation. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier Inc.: Shujitsu University, Okayama, Japan, 2018, DOI: 10.1016/B978-0-12-409547-2.14547-0.
  • Vuckovic, D.; Cudjoe, E.; Hein, D.; Pawliszyn, J. Automation of Solid-Phase Microextraction in High-Throughput Format and Applications to Drug Analysis. Anal. Chem. 2008, 80, 6870–6880. DOI: 10.1021/AC800936R.
  • Hutchinson, J. P.; Setkova, L.; Pawliszyn, J. Automation of Solid-Phase Microextraction on a 96-Well Plate Format. J. Chromatogr A 2007, 1149, 127–137. DOI: 10.1016/J.CHROMA.2007.02.117.
  • Vatinno, R.; Vuckovic, D.; Zambonin, C. G.; Pawliszyn, J. Automated High-Throughput Method Using Solid-Phase Microextraction–Liquid Chromatography–Tandem Mass Spectrometry for the Determination of Ochratoxin a in Human Urine. J. Chromatogr A 2008, 1201, 215–221. DOI: 10.1016/J.CHROMA.2008.05.079.
  • Verdirame, M.; Veneziano, M.; Alfieri, A.; Di Marco, A.; Monteagudo, E.; Bonelli, F. Turbulent Flow Chromatography TFC-Tandem Mass Spectrometry Supporting in Vitro/Vivo Studies of NCEs in High Throughput Fashion. J. Pharm. Biomed. Anal. 2010, 51, 834–841. DOI: 10.1016/J.JPBA.2009.10.005.
  • Alnouti, Y.; Srinivasan, K.; Waddell, D.; Bi, H.; Kavetskaia, O.; Gusev, A. I. Development and Application of a New on-Line SPE System Combined with LC-MS/MS Detection for High Throughput Direct Analysis of Pharmaceutical Compounds in Plasma. J. Chromatogr A 2005, 1080, 99–106. DOI: 10.1016/J.CHROMA.2005.04.056.
  • Kataoka, H.; Saito, K. Recent Advances in Column Switching Sample Preparation in Bioanalysis. Bioanalysis 2012, 4, 809–832. DOI: 10.4155/BIO.12.28.
  • Guthrie And, R.; Susi, A. A Simple Phenylalanine Method for Detecting Phenylketonuria in Large Populations of Newborn Infants. Pediatrics 1963, 32, 338–343. DOI: 10.1542/peds.32.3.338.
  • Ooms, B.; Hempen, C.; Knegt, L.; Holland, S. Towards Unbiased Dried Blood Spot Analysis Using Temperature-Enhanced Flow-through Desorption Coupled Online to Solid-Phase Extraction and Mass Spectrometry. 2013.
  • Ooms, J. A.; Knegt, L.; Koster, E. H. M. Exploration of a New Concept for Automated Dried Blood Spot Analysis Using Flow-through Desorption and Online SPE-MS/MS. Bioanalysis 2011, 3, 2311–2320. DOI: 10.4155/BIO.11.214.
  • Verplaetse, R.; Henion, J. Quantitative Determination of Opioids in Whole Blood Using Fully Automated Dried Blood Spot Desorption Coupled to on-Line SPE-LC-MS/MS. Drug Test. Anal. 2016, 8, 30–38. DOI: 10.1002/DTA.1927.
  • Uyeda, C.; Pham, R.; Fide, S.; Henne, K.; Xu, G.; Soto, M.; James, C.; Wong, P. Application of Automated Dried Blood Spot Sampling and LC-MS/MS for Pharmacokinetic Studies of AMG 517 in Rats. Bioanalysis 2011, 3, 2349–2356. DOI: 10.4155/BIO.11.227.
  • Yuan, L.; Zhang, D.; Aubry, A. F.; Arnold, M. E. Automated Dried Blood Spots Standard and QC Sample Preparation Using a Robotic Liquid Handler. Bioanalysis 2012, 4, 2795–2804. DOI: 10.4155/BIO.12.264.
  • Lange, T.; Thomas, A.; Walpurgis, K.; Thevis, M. Fully Automated Dried Blood Spot Sample Preparation enables the detection of Lower Molecular Mass Peptide and Non-Peptide Doping Agents by Means of LC-HRMS. Anal. Bioanal. Chem. 2020, 412, 3765–3777. DOI: 10.1007/S00216-020-02634-4/FIGURES/3.
  • Garzinsky, A. M.; Thomas, A.; Guddat, S.; Görgens, C.; Dib, J.; Thevis, M. Dried Blood Spots for Doping Controls—Development of a Comprehensive Initial Testing Procedure with Fully Automated Sample Preparation. Biomed. Chromatogr. 2023, 37, e5633. DOI: 10.1002/bmc.5633.
  • Tretzel, L.; Thomas, A.; Piper, T.; Hedeland, M.; Geyer, H.; Schänzer, W.; Thevis, M. Fully Automated Determination of nicotine and its Major Metabolites in Whole Blood by Means of a DBS online-SPE LC-HR-MS/MS Approach for Sports Drug Testing. J. Pharm. Biomed. Anal. 2016, 123, 132–140. DOI: 10.1016/J.JPBA.2016.02.009.
  • George S., et al. Automation and expert systems in a core clinical chemistry laboratory. JALA: Journal of the Association for Laboratory Automation 2009, 14(2), 94–105. DOI: 10.1016/j.jala.2008.12.001.
  • Y. C.; Barrett, B.; Akinsanya, S. Y.; Chang.; O.; Vesterqvist. Automated on-Line SPE LC-MS/MS Method to Quantitate 6beta-Hydroxycortisol and Cortisol in Human Urine: Use of the 6beta-Hydroxycortisol to Cortisol Ratio as an Indicator of CYP3A4 Activity. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 821, 159–165. DOI: 10.1016/J.JCHROMB.2005.04.030.
  • Pérez-Fernández, V.; Mainero Rocca, L.; Tomai, P.; Fanali, S.; Gentili, A. Recent Advancements and Future Trends in Environmental Analysis: Sample Preparation, Liquid Chromatography and Mass Spectrometry. Anal. Chim. Acta 2017, 983, 9–41. DOI: 10.1016/J.ACA.2017.06.029.
  • De Toffoli, A. L.; Fumes, B. H.; Lanças, F. M. Packed in-Tube Solid Phase Microextraction with Graphene Oxide Supported on Aminopropyl Silica: Determination of Target Triazines in Water Samples. J. Environ. Sci. Health B 2018, 53, 434–440. DOI: 10.1080/03601234.2018.1438831.
  • de Toffoli, A. L.; Maciel, E. V. S.; Fumes, B. H.; Lanças, F. M. The Role of Graphene-Based Sorbents in Modern Sample Preparation Techniques. J. Sep. Sci. 2018, 41, 288–302. DOI: 10.1002/JSSC.201700870.
  • Jalili, V.; Barkhordari, A.; Ghiasvand, A. New Extraction Media in Microextraction Techniques. A Review of Reviews. Microchem. J. 2020, 153, 104386. DOI: 10.1016/j.microc.2019.104386.
  • Maciel, E. V. S.; de Toffoli, A. L.; Lanças, F. M. Current Status and Future Trends on Automated Multidimensional Separation Techniques Employing Sorbent-Based Extraction Columns. J. Sep Sci. 2019, 42, 258–272. DOI: 10.1002/JSSC.201800824.
  • Medina, D. A. V.; Rodriguez Cabal, L. F.; Lanças, F. M.; Santos-Neto, Á. J. Sample Treatment Platform for Automated Integration of Microextraction Techniques and Liquid Chromatography Analysis. HardwareX 2019, 5, e00056. DOI: 10.1016/j.ohx.2019.e00056.
  • Pan, J.; Zhang, C.; Zhang, Z.; Li, G. Review of Online Coupling of Sample Preparation Techniques with Liquid Chromatography. Anal. Chim. Acta 2014, 815, 1–15. DOI: 10.1016/J.ACA.2014.01.017.
  • McDowall, R. D. Cost-Effective and Business-Beneficial Computer Validation for Bioanalytical Laboratories. Bioanalysis 2011, 3, 1487–1499. DOI: 10.4155/BIO.11.138.
  • Gu, H.; Deng, Y. Dilution Effect in Multichannel Liquid-Handling System Equipped with Fixed Tips: Problems and Solutions for Bioanalytical Sample Preparation. J. Lab. Autom. 2007, 12, 355–362. DOI: 10.1016/J.JALA.2007.07.002/ASSET/IMAGES/LARGE/10.1016_J.JALA.2007.07.002-FIG2.JPEG.
  • Ouyang, Z.; Federer, S.; Porter, G.; Kaufmann, C.; Jemal, M. Strategies to Maintain Sample Integrity Using a Liquid-Filled Automated Liquid-Handling System with Fixed Pipetting Tips. Journal of the Association for Laboratory Automation 2008, 3(1), 24–32. DOI: 10.1016/j.jala.2007.10.007.
  • Zhou, S.; Zhou, H.; Larson, M.; Miller, D. L.; Mao, D.; Jiang, X.; Naidong, W. High-Throughput Biological Sample Analysis Using on-Line Turbulent Flow Extraction Combined with Monolithic Column Liquid Chromatography/Tandem Mass Spectrometry. Rapid Comm. Mass Spectrom. 2005, 19, 2144–2150. DOI: 10.1002/rcm.2037.
  • Niederländer, H. A. G.; Koster, E. H. M.; Hilhorst, M. J.; Metting, H. J.; Eilders, M.; Ooms, B.; de Jong, G. J. High Throughput Therapeutic Drug Monitoring of Clozapine and Metabolites in Serum by on-Line Coupling of Solid Phase Extraction with Liquid Chromatography-Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 834, 98–107. DOI: 10.1016/J.JCHROMB.2006.02.042.
  • Ceglarek, U.; Lembcke, J.; Martin Fiedler, G.; Werner, M.; Witzigmann, H.; Peter Hauss, J.; Thiery, J. Rapid Simultaneous Quantification of Immunosuppressants in Transplant Patients by Turbulent Flow Chromatography Combined with Tandem Mass Spectrometry. Clin. Chim. Acta 2004, 346, 181–190. DOI: 10.1016/j.cccn.2004.03.017.
  • Robin, T.; Barnes, A.; Dulaurent, S.; Loftus, N.; Baumgarten, S.; Moreau, S.; Marquet, P.; El Balkhi, S.; Saint-Marcoux, F. Fully Automated Sample Preparation Procedure to Measure Drugs of Abuse in Plasma by Liquid Chromatography Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2018, 410, 5071–5083. DOI: 10.1007/S00216-018-1159-7.
  • Deng, Y.; Wu, J. T.; Lloyd, T. L.; Chi, C. L.; Olah, T. V.; Unger, S. E. High-Speed Gradient Parallel Liquid Chromatography/Tandem Mass Spectrometry with Fully Automated Sample Preparation for Bioanalysis: 30 Seconds per Sample from Plasma. Rapid Commun. Mass Spectrom. 2002, 16, 1116–1123. DOI: 10.1002/RCM.688.
  • Saitoh, S.; Yoshimori, T. Fully Automated Laboratory Robotic System for Automating Sample Preparation and Analysis to Reduce Cost and Time in Drug Development Process. J. Lab. Autom. 2008, 13, 265–274. DOI: 10.1016/J.JALA.2008.07.001/ASSET/IMAGES/10.1016_J.JALA.2008.07.001-IMG2.PNG.
  • Wahba, A.; Bao, Y.; Wang, H.; Watson, K.; Zhao, G. Q.; Lin, S. Abstract 259: Fully Automated Targeted Sequencing Sample Prep on Open Platform Liquid Handlers. Cancer Res 2023, 83, 259–259. DOI: 10.1158/1538-7445.AM2023-259.
  • Patel, V.; Leach, D.; Hornberger, M.; Williams, K.; Shih, J.; Ma, M.; Laycock, J. Automating Bioanalytical Sample Analysis through Enhanced System Integration. Bioanalysis 2013, 5, 1649–1659. DOI: 10.4155/BIO.13.123.
  • Alexovič, M.; Dotsikas, Y.; Bober, P.; Sabo, J. Achievements in Robotic Automation of Solvent Extraction and Related Approaches for Bioanalysis of Pharmaceuticals. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1092, 402–421. DOI: 10.1016/J.JCHROMB.2018.06.037.
  • EXTREVA ASE | Thermo Fisher Scientific - IN. https://www.thermofisher.com/in/en/home/industrial/chromatography/chromatography-sample-preparation/automated-sample-preparation/accelerated-solvent-extraction-ase/extreva-ase.html (accessed Mar 26, 2024).
  • Automated DNA Extraction | Maxwell Instruments | Automated RNA Extraction. https://www.promega.in/products/lab-automation/automated-dna-rna-extraction-purification-maxwell/ (accessed Mar 26, 2024).
  • Maxprep® Liquid Handler: Robotic DNA Extraction. https://www.promega.in/products/lab-automation/automated-dna-rna-extraction-purification-maxwell/maxprep-maxwell-rsc-48-bundle/?catNum=AS9105 (accessed Mar 26, 2024).
  • KingFisher Apex System | Thermo Fisher Scientific - IN. https://www.thermofisher.com/in/en/home/life-science/dna-rna-purification-analysis/automated-purification-extraction/kingfisher-systems/models/kingfisher-apex.html (accessed Mar 26, 2024).
  • Automated Protein and Peptide Sample Prep with AssayMAP Bravo | Agilent. https://www.agilent.com/en/product/automated-liquid-handling/automated-liquid-handling-applications/assaymap-bravo-protein-sample-prep-platform (accessed Mar 26, 2024).
  • VWorks Automation Control Software for Liquid Handling | Agilent. https://www.agilent.com/en/product/software-informatics/automation-solutions-software/vworks-automation-control-software (accessed Mar 26, 2024).
  • Metabolomics Sample Prep Automation, Plasma Sample Prep Robots | Agilent. https://www.agilent.com/en/product/automated-liquid-handling/automated-liquid-handling-applications/bravo-metabolomics-sample-prep-platform (accessed Mar 26, 2024).
  • NGS Enrichment Robot; Automated Library Prep Liquid Handling | Agilent. https://www.agilent.com/en/product/automated-liquid-handling/automated-liquid-handling-applications/bravo-ngs (accessed Mar 26, 2024).
  • Automated Sample Preparation, Gc Sample Preparation | Agilent. https://www.Agilent.Com/En/Product/Gas-Chromatography/Gc-Sample-Preparation-Introduction/7696a-Sample-Prep-Workbench (accessed Mar 26, 2024).
  • PreON® - Automated sample preparation. https://www.preomics.com/preon-automated-sample-preparation (accessed Mar 26, 2024).
  • DRQ Automated QuEChERS Extraction System - Raykol Group (XiaMen) Corp., Ltd. https://www.raykolgroup.com/products/drq-automated-quechers-extraction-system/ (accessed Mar 26, 2024).
  • Raykol ISP 600 Integrated Sample Preparation Workstation/System Manufacturer. https://www.raykolgroup.com/products/isp-600-integrated-sample-preparation-workstation/ (accessed Mar 26, 2024).
  • ACCROMA | Archer Science. https://www.archerscience.com/accroma (accessed Mar 26, 2024).
  • Charslton | Automated Sample Preparation and Analysis. https://charslton.com/sample-preparation/automated-sample-preparation-and-analysis/ (accessed Mar 26, 2024).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.