27
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Comparative Review of Solidified Floating Organic Drop Microextraction Methods for Metal Separation: recent Developments, Enhanced co-Factors, Challenges, and Environmental Assessment

, , , ORCID Icon & ORCID Icon

References

  • Martínez, J.; Cortés, J. F.; Miranda, R. Green Chemistry Metrics, a Review. Processes 2022, 10, 1274. DOI: 10.3390/pr10071274.
  • Viñas, P.; Campillo, N.; Andruch, V. Recent Achievements in Solidified Floating Organic Drop Microextraction. TrAC, Trends Anal. Chem. 2015, 68, 48–77. DOI: 10.1016/j.trac.2015.02.005.
  • Mortada, W. I.; Azooz, E. A., Microextraction of Metal Ions Based on Solidification of a Floating Drop: Basics and Recent Updates. Trends Environ. Anal. Chem. 2022, 34, e00163. DOI: 10.1016/j.teac.2022.e00163.
  • Kumar, S.; Satapathy, S.; Kurmi, B. D.; Gupta, G.; Patel, P. Recent Overview of Microextraction of Metal Ions and Pharmaceuticals by Solidified Floating Organic Drop Microextraction Techniques. Separation Science plus. 2024, 7, 2400018. DOI: 10.1002/sscp.202400018.
  • Hussein, A. R.; Gburi, M. S.; Muslim, N. M.; Azooz, E. A. A Greenness Evaluation and Environmental Aspects of Solidified Floating Organic Drop Microextraction for Metals: A Review. Trends Environ. Anal. Chem. 2023, 37, e00194. DOI: 10.1016/j.teac.2022.e00194.
  • Azooz, E. A.; Tuzen, M.; Mortada, W. I. Green Microextraction Approach Focuses on Air-Assisted Dispersive Liquid-Liquid with Solidified Floating Organic Drop for Preconcentration and Determination of Toxic Metals in Water and Wastewater Samples. Chem. Pap. 2023, 77, 3427–3438. DOI: 10.1007/s11696-023-02714-6.
  • Chen, S.; Li, J.; Lu, D.; Zhang, Y. Dual Extraction Based on Solid Phase Extraction and Solidified Floating Organic Drop Microextraction for Speciation of Arsenic and Its Distribution in Tea Leaves and Tea Infusion by Electrothermal Vaporization ICP-MS. Food Chem. 2016, 211, 741–747. DOI: 10.1016/j.foodchem.2016.05.101.
  • Tuzen, Mustafa, Naeemullah. A New Robust, Deep Eutectic-Based Floating Organic Droplets Microextraction Method for Determination of Lead in a Portable Syringe System Directly Couple with FAAS. Talanta 2019, 196, 71–77. DOI: 10.1016/j.talanta.2018.12.027.
  • Azooz, E. A.; Shabaa, G. J.; and Al-Mulla, E. A. J. Methodology for Preconcentration and Determination of Silver in Aqueous Samples Using Cloud Point Extraction. Braz. J. Anal. Chem. 2021, 9, 39–48. DOI: 10.30744/brjac.2179-3425.AR-61-2021.
  • Chen, S.; Yan, J.; Liu, Y.; Wang, C.; Lu, D. Determination of Mn (II) and Mn (VII) in Beverage Samples Using Magnetic Dispersive Micro-Solid Phase Extraction Coupled with Solidified Floating Organic Drop Microextraction Followed by Graphite Furnace Atomic Absorption Spectrometry. Food Chem. 2021, 359, 129958. DOI: 10.1016/j.foodchem.2021.129958.
  • Chamsaz, M.; Akhoundzadeh, J.; Arbab-Zavar, M. H. Preconcentration of Lead Using Solidification of Floating Organic Drop and Its Determination by Electrothermal Atomic Absorption Spectrometry. J. Adv. Res. 2013, 4, 361–366. DOI: 10.1016/j.jare.2012.07.002.
  • Azooz, E. A.; Shabaa, G. J.; Al-Muhanna, E. H. B.; Al-Mulla, E. A. J.; Mortada, W. I. Displacement Cloud Point Extraction Procedure for Preconcentration of Iron (III) in Water and Fruit Samples Prior to Spectrophotometric Determination. Bull. Chem. Soc. Ethiop. 2022, 37, 1–10. DOI: 10.4314/bcse.v37i1.1.
  • Herce-Sesa, B.; López-López, J. A.; Moreno, C. Advances in Ionic Liquids and Deep Eutectic Solvents-Based Liquid Phase Microextraction of Metals for Sample Preparation in Environmental Analytical Chemistry. TrAC, Trends Anal. Chem. 2021, 143, 116398. DOI: 10.1016/j.trac.2021.116398.
  • Leong, M.-I.; Huang, S. Dispersive Liquid-Liquid Microextraction Method Based on Solidification of Floating Organic Drop Combined with Gas Chromatography with Electron-Capture or Mass Spectrometry Detection. J. Chromatogr. 2008, 1211, 8–12. DOI: 10.1016/j.chroma.2008.09.111.
  • Azooz, E. A.; Wannas, F. A.; Ridha, R. K.; Jawad, S. K.; Al-Mulla, E. A. J. A Green Approach for Micro-Determination of Silver (I) in Water and Soil Samples Using Vitamin C. Analyt. Bioanalyt. Chem. Res. 2022, 9, 133–140. DOI: 10.22036/abcr.2021.277834.1609.
  • Jin, F.; Yin, X.; Wang, J.; Fu, X. J.; Chen, X.; Wang, Y.; Tian, B.; Feng, Z. Ultrasonic-Microwave Synergistic Liquid-Liquid Microextraction Based on Solidified Floating Organic Droplets for Extraction of Histamine in Beer and Fish and Exploration of the Extraction Process. Food Sci. Technol. 2024, 197, 115932. DOI: 10.1016/j.lwt.2024.115932.
  • Azooz, E. A.; Moslim, J. R.; Hameed, S. M.; Jawad, S. K.; Al-Mulla, E. A. J. Aspirin in Food Samples for Separation and Micro-Determination of Copper (II) Using Cloud Point Extraction and Solvation Method. Nano BioMed. ENG. 2021, 13, 62–71. DOI: 10.5101/nbe.v13i1.p62-71.
  • Belbachir, I.; Lopez-Lopez, J. A.; Herce-Sesa, B.; Moreno, C. A Liquid Micro-Extraction-Based One-Step Method for the Chemical Fractionation of Copper in Seawater. J. Hazard. Mater. 2022, 430, 128505. DOI: 10.1016/j.jhazmat.2022.128505.
  • Mohamadi, M.; Mostafavi, A., A Novel Solidified Floating Organic Drop Microextraction Based on Ultrasound-Dispersion for Separation and Preconcentration of Palladium in Aqueous Samples. Talanta 2010, 81, 309–313. DOI: 10.1016/j.talanta.2009.12.004.
  • Oviedo, J. A.; Fialho, L. L.; Nóbrega, J. A. Determination of Molybdenum in Plants by Vortex-Assisted Emulsification Solidified Floating Organic Drop Microextraction and Flame Atomic Absorption Spectrometry. Spectrochim. Acta. Part B, Atomic Spectrosc. 2013, 86, 142–145. DOI: 10.1016/j.sab.2013.02.005.
  • Wang, Y.; Luo, X.; Tang, J.; Hu, X. Determination of Se(IV) Using Solidified Floating Organic Drop Microextraction Coupled to Ultrasound-Assisted Back-Extraction and Hydride Generation Atomic Fluorescence Spectrometry. Microchim. Acta 2011, 173, 267–273. DOI: 10.1007/s00604-011-0574-7.
  • Ezoddin, M.; Abdi, K.; and Esmaeili, N. Ultrasound-Enhanced Air-Assisted Surfactant Liquid-Liquid Microextraction Based on the Solidification of an Organic Droplet for the Determination of Chromium in Water, Air and Biological Samples. Microchem. J. 2016, 129, 200–204. DOI: 10.1016/j.microc.2016.07.005.
  • Ridha, R.; Azooz, E.; Tarish, S. Rapid Palladium Preconcentration and Spectrophotometric Determination in Water and Soil Samples. Analyt. Bioanalyt. Chem. Res. 2022, 9, 251–258. DOI: 10.22036/abcr.2022.309795.1687.
  • Thongsaw, A.; Chaiyasith, W. C.; Sananmuang, R.; Ross, G. M.; Ampiah-Bonney, R. J. Determination of Cadmium in Herbs by SFODME with ETAAS Detection. Food Chem. 2017, 219, 453–458. DOI: 10.1016/j.foodchem.2016.09.177.
  • Seidi, S.; Alavi, L.; and Jabbari, A. Trace Determination of Cadmium in Rice Samples Using Solidified Floating Organic Drop Microextraction Based on Vesicular Supramolecular Solvent Followed by Flow-Injection Analysis-Flame Atomic Absorption Spectrometry. J. Iran. Chem. Soc. 2018, 15, 2083–2092. DOI: 10.1007/s13738-018-1401-4.
  • Snigur, D.; Azooz, E. A.; Zhukovetska, O.; Guzenko, O.; Mortada, W. I. Recent Innovations in Cloud Point Extraction towards a More Efficient and Environmentally Friendly Procedure. TrAC, Trends Anal. Chem. 2023, 164, 117113. DOI: 10.1016/j.trac.2023.117113.
  • Parmar, A.; Jain, B. D.; Jain, R.; Sachar, S.; Saini, A.; Sharma, S. Green Miniaturized Technologies-Based Sample Preparation Techniques. In Comprehensive Analytical Chemistry, 2024. DOI: 10.1016/bs.coac.2023.08.004.
  • Afzali, D.; Mohadesi, A.; Jahromi, B. B.; Falahnejad, M. Separation of Trace Amount of Silver Using Dispersive Liquid Based on Solidification of Floating Organic Drop Microextraction. Anal. Chim. Acta. 2011, 684, 45–49. DOI: 10.1016/j.aca.2010.11.003.
  • Tajik, S.; Taher, M. A., New Method for Microextraction of Ultra-Trace Quantities of Gold in Real Samples Using Ultrasound-Assisted Emulsification of Solidified Floating Organic Drops. Microchim. Acta 2011, 173, 249–257. DOI: 10.1007/s00604-011-0553-z.
  • Zhang, J.; Wang, Y.; Du, X.; Xia, L.; Ma, J.; Li, J. Ultrasound-Assisted Emulsification Solidified Floating Organic Drop Microextraction for the Determination of Trace Cadmium in Water Samples by Flame Atomic Absorption Spectrometry. J. Braz. Chem. Soc. 2011, 22, 446–453. DOI: 10.1590/S0103-50532011000300006.
  • Iraji, A.; Afzali, D.; Mostafavi, A.; Fayazi, M. Ultrasound-Assisted Emulsification Microextraction for Separation of Trace Amounts of Antimony Prior to FAAS Determination. Microchim. Acta 2011, 176, 185–192. DOI: 10.1007/s00604-011-0706-0.
  • Mohadesi, A.; Falahnejad, M. Ultrasound-Assisted Emulsification Microextraction Based on Solidification Floating Organic Drop Trace Amounts of Manganese Prior to Graphite Furnace Atomic Absorption Spectrometry Determination. Scientific World Journal 2012, 2012, 987645–987645. DOI: 10.1100/2012/987645.
  • Dadfarnia, S.; Shabani, A. M. H.; Amirkavei, M. Ultrasound-Assisted Emulsification-Solidified Floating Organic Drop Microextraction Combined with Flow Injection-Flame Atomic Absorption Spectrometry for the Determination of Palladium in Water Samples. Turk. J. Chem. 2013, 37, 746–755. DOI: 10.3906/kim-1212-23.
  • Khayatian, G.; Hassanpoor, S. Development of Ultrasound-Assisted Emulsification Solidified Floating Organic Drop Microextraction for Determination of Trace Amounts of Iron and Copper in Water, Food and Rock Samples. J. Iran. Chem. Soc. 2012, 10, 113–121. DOI: 10.1007/s13738-012-0131-2.
  • Asadollahzadeh, M.; Niksirat, N.; Tavakoli, H.; Hemmati, A.; Rahdari, P.; Mohammadi, M.; Fazaeli, R. Application of Multi-Factorial Experimental Design to Successfully Model and Optimize Inorganic Arsenic Speciation in Environmental Water Samples by Ultrasound-Assisted Emulsification of Solidified Floating Organic Drop Microextraction. Anal. Methods 2014, 6, 2973. DOI: 10.1039/c3ay41712c.
  • Oviedo, J. A.; De Jesus, A. M. D.; Fialho, L. L.; Pereira-Filho, E. R., Combined Discrete Nebulization and Microextraction Process for Molybdenum Determination by Flame Atomic Absorption Spectrometry (FAAS). Química Nova 2014, 37, 249–254. DOI: 10.5935/0100-4042.20140043.
  • Liu, Q. F.; Dong, Y. L.; Jing, J.; Li, J. C. Solidified Floating Organic Drop Microextraction for Determination of Trace Amounts of Copper in Water Samples by Flame Atomic Absorption Spectrometry. Asian J. Chem. 2014, 26, 4921–4922. DOI: 10.14233/ajchem.2014.16196.
  • Tuzen, M.; Shemsi, A. M.; Bukhari, A. A. Vortex-Assisted Solidified Floating Organic Drop Microextraction of Molybdenum in Beverages and Food Samples Coupled with Graphite Furnace Atomic Absorption Spectrometry. Food Anal. Methods 2016, 10, 219–226. DOI: 10.1007/s12161-016-0571-x.
  • Arpa, Ç.; Aridaşir, I. A Method to Determination of Lead Ions in Aqueous Samples: Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Method Based on Solidification of Floating Organic Drop and Back-Extraction Followed by FAAS. J. Anal. Methods Chem. 2018, 2018, 8951028–8951027. DOI: 10.1155/2018/8951028.
  • Fındıkoğlu, M. S.; Fırat, M.; Chormey, D. S.; Turak, F.; Şahin, Ç.; Bakırdere, S. Determination of Cadmium in Tap, Sea and Wastewater Samples by Vortex-Assisted Dispersive Liquid-Solidified Floating Organic Drop Microextraction and Slotted Quartz Tube FAAS after Complexation with an Imidazole-Based Ligand. Water. Air. Soil Pollut. 2018, 229, 37. DOI: 10.1007/s11270-018-3689-1.
  • Arpa, Ç.; Arıdaşır, I. Ultrasound-Assisted Ion Pair-Based Surfactant-Enhanced Liquid-Liquid Microextraction with Solidification of Floating Organic Drop Combined with Flame Atomic Absorption Spectrometry for Preconcentration and Determination of Nickel and Cobalt Ions in Vegetable and Herb Samples. Food Chem. 2019, 284, 16–22. DOI: 10.1016/j.foodchem.2019.01.092.
  • El-Gamal, G. G.; Mortada, W. I.; Hassanien, M. M.; Ibrahim, A.; El-Reash, Y. G. A., The Selective Separation of Thorium from Uranyl Ions Using Ultrasonic-Assisted Solidified Floating Organic Drop Microextraction. J. Anal. At. Spectrom. 2021, 36, 1306–1312. DOI: 10.1039/D1JA00098E.
  • Islami-Bonab, F.; Sajedi-Amin, S.; Sorouraddin, S. M.; Maleknia, S. D.; Naseri, A. Multiple Objective Optimization of Air-Assisted Liquid-Liquid Microextraction Combined with Solidified Floating Organic Drop Microextraction for Simultaneous Determination of Trace Copper and Nickel. Turk. J. Chem. 2021, 45, 1030–1044. DOI: 10.3906/kim-2010-24.
  • Sorouraddin, S. M.; Farajzadeh, M. A.; Dastoori, H.; Okhravi, T. Development of an Air-Assisted Liquid-Liquid Microextraction Method Based on a Ternary Solidified Deep Eutectic Solvent in Extraction and Preconcentration of Cd(II) and Zn(II) Ions. Int. J. Environ. Analyt. Chem. 2019, 101, 1567–1580. DOI: 10.1080/03067319.2019.1686144.
  • Chen, S.; Liu, J.; Yan, J.; Wang, C.; Lu, D. In-Syringe Solid Phase Extraction and in-Syringe Vortex-Assisted Solidified Floating Organic Drop Microextraction of Sb (III) and Sb (V) in Rice Wines with Determination by Graphite Furnace Atomic Absorption Spectrometry. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2022, 39, 499–507. DOI: 10.1080/19440049.2021.2021301.
  • Khayatian, G.; Pourbahram, B. Ultrasound-Assisted Emulsification Microextraction and Preconcentration of Trace Amounts of Silver Ions as a Cyclam Complex. J. Anal. Sci. Technol. 2016, 7, 5. DOI: 10.1186/s40543-016-0083-8.
  • Ezoddin, M.; Majidi, B.; Abdi, K. Ultrasound-Assisted Supramolecular Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drops for Preconcentration of Palladium in Water and Road Dust Samples. J. Mol. Liq. 2015, 209, 515–519. DOI: 10.1016/j.molliq.2015.06.031.
  • Fathirad, F.; Afzali, D.; Mostafavi, A.; Ghanbarian, M. Ultrasound-Assisted Emulsification Solidified Floating Organic Drops Microextraction of Ultra Trace Amount of Te (IV) Prior to Graphite Furnace Atomic Absorption Spectrometry Determination. Talanta 2012, 88, 759–764. DOI: 10.1016/j.talanta.2011.11.078.
  • Afzali, D.; Bahadori, B.; Fathirad, F. Ultrasound-Assisted Emulsification/Microextraction Based on Solidification of Trace Amounts of Thallium Prior to Graphite Furnace Atomic Absorption Spectrometry Determination. Toxicol. Environ. Chem. 2013, 95, 1080–1089. DOI: 10.1080/02772248.2013.856912.
  • Habibollahi, M. H.; Karimyan, K.; Arfaeinia, H.; Mirzaei, N.; Safari, Y.; Akramipour, R.; Sharafi, H.; Fattahi, N. Extraction and Determination of Heavy Metals in Soil and Vegetables Irrigated with Treated Municipal Wastewater Using New Mode of Dispersive Liquid-Liquid Microextraction Based on the Solidified Deep Eutectic Solvent Followed by GFAAS, J. Sci. Food Agric. 2018, 99, 656–665. DOI: 10.1002/jsfa.9230.
  • Mohammadi, S. Z.; Shamspur, T.; Afzali, D.; Taher, M. A. Atomic Absorption Spectrometric Determination of Trace Amount of Rhodium by Using Ligandless Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet. Gazi Univ. J. Sci. 2013, 26, 11–19.
  • Semysim, F. A.; Ridha, R. K.; Azooz, E. A.; Snigur, D. Switchable Hydrophilicity Solvent-Assisted Solidified Floating Organic Drop Microextraction for Separation and Determination of Arsenic in Water and Fish Samples. Talanta 2024, 272, 125782. DOI: 10.1016/j.talanta.2024.125782.
  • Yan, J.; Zhang, C.; Wang, C.; Lu, D.; Chen, S. Solidified Floating Organic Drop Microextraction in Tandem with Syringe Membrane Micro-Solid Phase Extraction for Sequential Detection of Thallium (III) and Thallium (I) by Graphite Furnace Atomic Absorption Spectrometry. Arab. J. Chem. 2022, 15, 104335. DOI: 10.1016/j.arabjc.2022.104335.
  • Elik, A.; Altunay, N. Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop for Analysis of Propineb in Water and Food Samples: Experimental Modelling. Sustain. Chem. Pharm. 2023, 35, 101215. DOI: 10.1016/j.scp.2023.101215.
  • Basati, G.; Mirzaei, A.; Shiri, S. Salting out and Vortex-Assisted Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop Microextraction (so-VADLLME-SFODME) for Extraction and Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Water and Solid Samples Followed by HPLC. Eurasian Chem. Commun. 2021, 3, 726–742. DOI: 10.22034/ecc.2021.298981.1211.
  • Psillakis, E. Vortex-Assisted Liquid Microextraction Revisited. TrAC, Trends Anal. Chem. 2019, 113, 332–339. DOI: 10.1016/j.trac.2018.11.007.
  • Azooz, E. A.; Al-Wani, H. S. A.; Gburi, M. S.; Al-Muhanna, E. H. B. Recent Modified Air-Assisted Liquid-Liquid Microextraction Applications for Medicines and Organic Compounds in Various Samples: A Review. Open Chem. 2022, 20, 525–540. DOI: 10.1515/chem-2022-0174.
  • Zhang, K.; Guo, R.; Wang, Y.; Nie, Q.; Zhu, G. One-Step Derivatization and Temperature-Controlled Vortex-Assisted Liquid-Liquid Microextraction Based on the Solidification of Floating Deep Eutectic Solvents Coupled to UV-Vis Spectrophotometry for the Rapid Determination of Total Iron in Water and Food Samples. Food Chem. 2022, 384, 132414. DOI: 10.1016/j.foodchem.2022.132414.
  • Muslim, N. M.; Hussain, B. K.; Abdulhussein, N. M.; Azooz, E. A. Determination of Selenium in Black Tea Leaves Using the Air-Assisted Cloud Point Extraction Method: Evaluation of the Method’s Environmental Performance. Analyt. Bioanalyt. Chem. Res. 2024, 11, 11–22. DOI: 10.22036/abcr.2023.403916.1945.
  • Shabaa, G. J.; Semysim, F. A.; Ridha, R. K.; Azooz, E. A.; and Al-Mulla, E. A. J. Air-Assisted Dual-Cloud Point Extraction Coupled with Flame Atomic Absorption Spectroscopy for the Separation and Quantification of Zinc in Pregnant Women’s Serum. J. Iran. Chem. Soc. 2023, 20, 2277–2284. DOI: 10.1007/s13738-023-02834-6.
  • Kraume, M.; Gäbler, A.; Schulze, K. Influence of Physical Properties on Drop Size Distribution of Stirred Liquid Dispersions. Chem. Eng. Technol. 2004, 27, 330–334. DOI: 10.1002/ceat.200402006.
  • El-Deen, A. K.; Elmansi, H.; Belal, F.; Magdy, G. Recent Advances in Dispersion Strategies for Dispersive Liquid-Liquid Microextraction from Green Chemistry Perspectives. Microchem. J. 2023, 191, 108807. DOI: 10.1016/j.microc.2023.108807.
  • Mejías, C.; Arenas, M.; Martín, J.; Santos, J. L.; Aparicio, I.; Alonso, E. Green Assessment of Analytical Procedures for the Determination of Pharmaceuticals in Sewage Sludge and Soil. Crit. Rev. Anal. Chem. 2023. DOI: 10.1080/10408347.2023.2276294.
  • Nowak, P. M. What Does It Mean That “Something is Green”? the Fundamentals of a Unified Greenness Theory. Green Chem. 2023, 25, 4625–4640. DOI: 10.1039/D3GC00800B.
  • Rostom, Y.; Rezk, M. R.; Wadie, M.; Abdel-Moety, E. M.; Marzouk, H. M. State-of-the-Art Mathematically Induced Filtration Approaches for Smart Spectrophotometric Assessment of Silodosin and Solifenacin Mixtures in Their New Challenging Formulation: Multi-Tool Greenness and Whiteness Evaluation. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2024, 307, 123650. DOI: 10.1016/j.saa.2023.123650.
  • Nowak, P. M.; Wietecha-Posłuszny, R.; Pawliszyn, J. White Analytical Chemistry: An Approach to Reconcile the Principles of Green Analytical Chemistry and Functionality. TrAC, Trends Anal. Chem. 2021, 138, 116223. DOI: 10.1016/j.trac.2021.116223.
  • Semysim, F. A.; Hussain, B. K.; Hussien, M. A.; Azooz, E. A.; Snigur, D. Assessing the Greenness and Environmental Friendliness of Analytical Methods: Modern Approaches and Recent Computational Programs. Crit. Rev. Anal. Chem. 2024. DOI: 10.1080/10408347.2024.2304552.
  • Eissa, M. S.; Darweish, E. Insights on Ecological Spectroscopic Techniques Recently Adopted for Pharmaceutical Analysis: A Comprehensive Review from the Perspective of Greenness Assessment Metrics Systems Application. TrAC, Trends Anal. Chem. 2024, 170, 117435. DOI: 10.1016/j.trac.2023.117435.
  • Manousi, N.; Wojnowski, W.; Płotka‐Wasylka, J.; Samanidou, V. Blue Applicability Grade Index (BAGI) and Software: A New Tool for the Evaluation of Method Practicality. Green Chem. 2023, 25, 7598–7604. DOI: 10.1039/D3GC02347H.
  • Hamd, M. a E.; Soltan, O. M.; Abdelrahman, K. S.; Fouad, A.; Saleh, S. F.; Obaydo, R. H.; Sallam, S.; Alshehri, S.; Mahdi, W. A.; Hamad, A. A. Roth’s Switch-on Fluorometric Probe for Green Tracking and Quantifying of 1.4-Dihydropyridine Medication: Evaluation of Greenness, Whiteness, and Blueness. Sustain. Chem. Pharm. 2023, 36, 101294. DOI: 10.1016/j.scp.2023.101294.
  • Azooz, E. A.; Tuzen, M.; Mortada, W. I.; Ullah, N. A Critical Review of Selected Preconcentration Techniques Used for Selenium Determination in Analytical Samples. Crit. Rev. Anal. Chem. 2022, 1–15. DOI: 10.1080/10408347.2022.2153579.
  • Dadfarnia, S.; Shabani, A.; Nozohor, M. Dispersive Liquid-Liquid Microextraction-Solidified Floating Organic Drop Combined with Spectrophotometry for the Speciation and Determination of Ultratrace Amounts of Selenium. J. Braz. Chem. Soc. 2013, 25, 229–237. DOI: 10.5935/0103-5053.20130287.
  • Esteve-Turrillas, F. A.; Garrigues, S.; de la Guardia, M. Green Extraction Techniques in Green Analytical Chemistry: A 2019–2023 Update. TrAC, Trends Anal. Chem. 2024, 170, 117464. DOI: 10.1016/j.trac.2023.117464.
  • Saleh, S. S.; Obaydo, R. H.; Hamd, M. a E.; Rostom, Y.; Mohamed, D.; Lotfy, H. M. Guidelines for Accurate Application of Green and White Analytical Concepts: Merits vs Demerits with Insights of Significant Milestones of Assessment Tools Applied for Antiviral Drugs. Microchem. J. 2024, 199, 109917. DOI: 10.1016/j.microc.2024.109917.
  • Wannas, F. A.; Azooz, E. A.; Jawad, S. K. Liquid Ion Exchange with Spectrophotometric Method for Separation and Determination W (VI). J. Adv. Res. Dyn. Control Syst. 2019, 11, 260–269.
  • Yin, L.; Yu, L.; Guo, Y.; Wang, C.; Ge, Y.; Zheng, X.; Zhang, N.; You, J.; Zhang, Y.; Shi, M. Green Analytical Chemistry Metrics for Evaluating the Greenness of Analytical Procedures. J. Pharm. Anal. 2024, 101013. DOI: 10.1016/j.jpha.2024.101013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.