63
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Applications of Biosensors in Bladder Cancer

, , , , , , , & show all

References

  • Jubber, I.; Ong, S.; Bukavina, L.; Black, P. C.; Compérat, E.; Kamat, A. M.; Kiemeney, L.; Lawrentschuk, N.; Lerner, S. P.; Meeks, J. J.; et al. Epidemiology of Bladder Cancer in 2023: A Systematic Review of Risk Factors. Eur. Urol. 2023, 84, 176–190. DOI: 10.1016/j.eururo.2023.03.029.
  • Humphrey, P. A.; Moch, H.; Cubilla, A. L.; Ulbright, T. M.; Reuter, V. E. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part B: Prostate and Bladder Tumours. Eur. Urol. 2016, 70, 106–119. DOI: 10.1016/j.eururo.2016.02.028.
  • Compérat, E.; Amin, M. B.; Cathomas, R.; Choudhury, A.; De Santis, M.; Kamat, A.; Stenzl, A.; Thoeny, H. C.; Witjes, J. A. Current Best Practice for Bladder Cancer: A Narrative Review of Diagnostics and Treatments. Lancet 2022, 400, 1712–1721. DOI: 10.1016/S0140-6736(22)01188-6.
  • Lenis, A. T.; Lec, P. M.; Chamie, K.; Mshs, M. D. Bladder Cancer: A Review. JAMA. 2020, 324, 1980–1991. DOI: 10.1001/jama.2020.17598.
  • Kamat, A. M.; Hahn, N. M.; Efstathiou, J. A.; Lerner, S. P.; Malmström, P. U.; Choi, W.; Guo, C. C.; Lotan, Y.; Kassouf, W. Bladder Cancer. Lancet. 2016, 388, 2796–2810. DOI: 10.1016/S0140-6736(16)30512-8.
  • Alfred Witjes, J.; Max Bruins, H.; Carrión, A.; Cathomas, R.; Compérat, E.; Efstathiou, J. A.; Fietkau, R.; Gakis, G.; Lorch, A.; Martini, A.; et al. European Association of Urology Guidelines on Muscle-Invasive and Metastatic Bladder Cancer: Summary of the 2023 Guidelines. Eur. Urol. 2024, 85, 17–31. DOI: 10.1016/j.eururo.2023.08.016.
  • Kozikowski, M.; Suarez-Ibarrola, R.; Osiecki, R.; Bilski, K.; Gratzke, C.; Shariat, S. F.; Miernik, A.; Dobruch, J. Role of Radiomics in the Prediction of Muscle-Invasive Bladder Cancer: A Systematic Review and Meta-Analysis. Eur. Urol. Focus. 2022, 8, 728–738. DOI: 10.1016/j.euf.2021.05.005.
  • Babjuk, M.; Burger, M.; Capoun, O.; Cohen, D.; Compérat, E. M.; Dominguez Escrig, J. L.; Gontero, P.; Liedberg, F.; Masson-Lecomte, A.; Mostafid, A. H.; et al. European Association of Urology Guidelines on Non-Muscle-Invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ). Eur. Urol. 2022, 81, 75–94. DOI: 10.1016/j.eururo.2021.08.010.
  • Crocetto, F.; Barone, B.; Ferro, M.; Busetto, G. M.; La Civita, E.; Buonerba, C.; Di Lorenzo, G.; Terracciano, D.; Schalken, J. A. Liquid Biopsy in Bladder Cancer: State of the Art and Future Perspectives. Crit. Rev. Oncol. Hematol. 2022, 170, 103577. DOI: 10.1016/j.critrevonc.2022.103577.
  • Zhao, J.; Li, J.; Zhang, R. Off the Fog to Find the Optimal Choice: Research Advances in Biomarkers for Early Diagnosis and Recurrence Monitoring of Bladder Cancer. Biochim. Biophys. Acta. Rev. Cancer. 2023, 1878, 188926. DOI: 10.1016/j.bbcan.2023.188926.
  • Jayanthi, V.; Das, A. B.; Saxena, U. Recent Advances in Biosensor Development for the Detection of Cancer Biomarkers. Biosens. Bioelectron. 2017, 91, 15–23. DOI: 10.1016/j.bios.2016.12.014.
  • Son, M. H.; Park, S. W.; Sagong, H. Y.; Jung, Y. K. Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. BioChip J. 2023, 17, 44–67. DOI: 10.1007/s13206-022-00089-6.
  • Chikkaveeraiah, B. V.; Bhirde, A. A.; Morgan, N. Y.; Eden, H. S.; Chen, X. Electrochemical Immunosensors for Detection of Cancer Protein Biomarkers. ACS Nano. 2012, 6, 6546–6561. DOI: 10.1021/nn3023969.
  • Azab, M. Y.; Hameed, M. F. O.; Obayya, S. S. A. Overview of Optical Biosensors for Early Cancer Detection: Fundamentals, Applications and Future Perspectives. Biology. (Basel). 2023, 12,232. DOI: 10.3390/biology12020232.
  • Yang, Y.; Huang, Q.; Xiao, Z.; Liu, M.; Zhu, Y.; Chen, Q.; Li, Y.; Ai, K. Nanomaterial-Based Biosensor Developing as a Route toward in Vitro Diagnosis of Early Ovarian Cancer. Mater. Today. Bio. 2022, 13, 100218. DOI: 10.1016/j.mtbio.2022.100218.
  • Liu, M.; Xiang, Y. T.; Yang, Y. Q.; Long, X. Y.; Xiao, Z. X.; Nan, Y. Y.; Jiang, Y. T.; Qiu, Y. G.; Huang, Q.; Ai, K. L. State-of-the-Art Advancements in Liver-on-a-Chip (LOC): Integrated Biosensors for LOC. Biosens. Bioelectron. 2022, 218, 114758. DOI: 10.1016/j.bios.2022.114758.
  • Patel, V. G.; Oh, W. K.; Galsky, M. D. Treatment of Muscle-Invasive and Advanced Bladder Cancer in 2020. CA. Cancer J. Clin. 2020, 70, 404–423. DOI: 10.3322/caac.21631.
  • Lopez-Beltran, A.; Cookson, M. S.; Guercio, B. J.; Cheng, L. Advances in Diagnosis and Treatment of Bladder Cancer. BMJ. 2024, 384, e076743. DOI: 10.1136/bmj-2023-076743.
  • García-Pardo, M.; Makarem, M.; Li, J. J. N.; Kelly, D.; Leighl, N. B. Integrating Circulating-Free DNA (cfDNA) Analysis into Clinical Practice: Opportunities and Challenges. Br. J. Cancer. 2022, 127, 592–602. DOI: 10.1038/s41416-022-01776-9.
  • Song, P.; Wu, L. R.; Yan, Y. H.; Zhang, J. X.; Chu, T.; Kwong, L. N.; Patel, A. A.; Zhang, D. Y. Limitations and Opportunities of Technologies for the Analysis of Cell-Free DNA in Cancer Diagnostics. Nat. Biomed. Eng. 2022, 6, 232–245. DOI: 10.1038/s41551-021-00837-3.
  • Patel, K. M.; van der Vos, K. E.; Smith, C. G.; Mouliere, F.; Tsui, D.; Morris, J.; Chandrananda, D.; Marass, F.; van den Broek, D.; Neal, D. E.; et al. Association Of Plasma And Urinary Mutant DNA with Clinical Outcomes In Muscle Invasive Bladder Cancer. Sci. Rep. 2017, 7, 5554. DOI: 10.1038/s41598-017-05623-3.
  • Todenhöfer, T.; Struss, W. J.; Seiler, R.; Wyatt, A. W.; Black, P. C. Liquid Biopsy-Analysis of Circulating Tumor DNA (ctDNA) in Bladder Cancer. Bladder Cancer. 2018, 4, 19–29. DOI: 10.3233/BLC-170140.
  • Christensen, E.; Birkenkamp-Demtröder, K.; Sethi, H.; Shchegrova, S.; Salari, R.; Nordentoft, I.; Wu, H. T.; Knudsen, M.; Lamy, P.; Lindskrog, S. V.; et al. Early Detection of Metastatic Relapse and Monitoring of Therapeutic Efficacy by Ultra-Deep Sequencing of Plasma Cell-Free DNA in Patients with Urothelial Bladder Carcinoma. J. Clin. Oncol. 2019, 37, 1547–1557. DOI: 10.1200/JCO.18.02052.
  • Crupi, E.; de Padua, T. C.; Marandino, L.; Raggi, D.; Dyrskjøt, L.; Spiess, P. E.; Sonpavde, G. P.; Kamat, A. M.; Necchi, A. Circulating Tumor DNA as a Predictive and Prognostic Biomarker in the Perioperative Treatment of Muscle-Invasive Bladder Cancer: A Systematic Review. Eur. Urol. Oncol. 2024, 7, 44–52. DOI: 10.1016/j.euo.2023.05.012.
  • Le Goux, C.; Vacher, S.; Schnitzler, A.; Barry Delongchamps, N.; Zerbib, M.; Peyromaure, M.; Sibony, M.; Allory, Y.; Bieche, I.; Damotte, D.; Pignot, G. Assessment of Prognostic Implication of a Panel of Oncogenes in Bladder Cancer and Identification of a 3-Gene Signature Associated with Recurrence and Progression Risk in Non-Muscle-Invasive Bladder Cancer. Sci. Rep. 2020, 10, 16641. DOI: 10.1038/s41598-020-73642-8.
  • Ascione, C. M.; Napolitano, F.; Esposito, D.; Servetto, A.; Belli, S.; Santaniello, A.; Scagliarini, S.; Crocetto, F.; Bianco, R.; Formisano, L. Role of FGFR3 in Bladder Cancer: Treatment Landscape and Future Challenges. Cancer Treat. Rev. 2023, 115, 102530. DOI: 10.1016/j.ctrv.2023.102530.
  • Duffy, M. J.; Synnott, N. C.; McGowan, P. M.; Crown, J.; O'Connor, D.; Gallagher, W. M. p53 as a Target for the Treatment of Cancer. Cancer Treat. Rev. 2014, 40, 1153–1160. DOI: 10.1016/j.ctrv.2014.10.004.
  • Joerger, A. C.; Fersht, A. R. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annu. Rev. Biochem. 2016, 85, 375–404. DOI: 10.1146/annurev-biochem-060815-014710.
  • Matuszczak, M.; Salagierski, M. Diagnostic and Prognostic Potential of Biomarkers CYFRA 21.1, ERCC1, p53, FGFR3 and TATI in Bladder Cancers. Int. J. Mol. Sci. 2020, 21, 3360. DOI: 10.3390/ijms21093360.
  • van Rhijn, B. W.; van der Kwast, T. H.; Vis, A. N.; Kirkels, W. J.; Boevé, E. R.; Jöbsis, A. C.; Zwarthoff, E. C. FGFR3 and P53 Characterize Alternative Genetic Pathways in the Pathogenesis of Urothelial Cell Carcinoma. Cancer Res. 2004, 64, 1911–1914. DOI: 10.1158/0008-5472.can-03-2421.
  • Shin, Y.; Perera, A. P.; Park, M. K. Label-Free DNA Sensor for Detection of Bladder Cancer Biomarkers in Urine. Sens. Actuators, B. 2013, 178, 200–206. DOI: 10.1016/j.snb.2012.12.057.
  • Thangsunan, P.; Lal, N.; Tiede, C.; Moul, S.; Robinson, J. I.; Knowles, M. A.; Stockley, P. G.; Beales, P. A.; Tomlinson, D. C.; McPherson, M. J.; Millner, P. A. Affimer-Based Impedimetric Biosensors for Fibroblast Growth Factor Receptor 3 (FGFR3): A Novel Tool for Detection and Surveillance of Recurrent Bladder Cancer. Sens. Actuators, B. 2021, 326, 128829. DOI: 10.1016/j.snb.2020.128829.
  • Chen, D. F.; Wu, Y. F. Rapid and Ultrasensitive Electrochemical Detection of TP53 Gene Mutation in Blood: Hybridization with a DNA/Gold-Coated Magnetic Nanoparticle Network. Anal. Sens. 2022, 2. E202200032.DOI: 10.1002/anse.202200032.
  • Kinde, I.; Munari, E.; Faraj, S. F.; Hruban, R. H.; Schoenberg, M.; Bivalacqua, T.; Allaf, M.; Springer, S.; Wang, Y.; Diaz, L. A. Jr.; et al. TERT Promoter Mutations Occur Early in Urothelial Neoplasia and Are Biomarkers of Early Disease and Disease Recurrence in Urine. Cancer Res. 2013, 73, 7162–7167. DOI: 10.1158/0008-5472.CAN-13-2498.
  • Zvereva, M.; Pisarev, E.; Hosen, I.; Kisil, O.; Matskeplishvili, S.; Kubareva, E.; Kamalov, D.; Tivtikyan, A.; Manel, A.; Vian, E.; et al. Activating Telomerase TERT Promoter Mutations and Their Application for the Detection of Bladder Cancer. Int. J. Mol. Sci. 2020, 21, 6034. DOI: 10.3390/ijms21176034.
  • Hosen, M. I.; Sheikh, M.; Zvereva, M.; Scelo, G.; Forey, N.; Durand, G.; Voegele, C.; Poustchi, H.; Khoshnia, M.; Roshandel, G.; et al. Urinary TERT Promoter Mutations Are Detectable up to 10 Years Prior to Clinical Diagnosis of Bladder Cancer: Evidence from the Golestan Cohort Study. EBioMedicine. 2020, 53, 102643. DOI: 10.1016/j.ebiom.2020.102643.
  • Gourd, E. TERT Mutations in Urine Could Predict Bladder Cancer Recurrence. Lancet. Oncol. 2017, 18, e443. DOI: 10.1016/S1470-2045(17)30538-7.
  • Beukers, W.; van der Keur, K. A.; Kandimalla, R.; Vergouwe, Y.; Steyerberg, E. W.; Boormans, J. L.; Jensen, J. B.; Lorente, J. A.; Real, F. X.; Segersten, U.; et al. FGFR3, TERT and OTX1 as a Urinary Biomarker Combination for Surveillance of Patients with Bladder Cancer in a Large Prospective Multicenter Study. J. Urol. 2017, 197, 1410–1418. DOI: 10.1016/j.juro.2016.12.096.
  • Cai, A.; Yang, L.; Kang, X.; Liu, J.; Wang, F.; Ji, H.; Wang, Q.; Wu, M.; Li, G.; Zhou, X.; et al. Target Recognition– and HCR Amplification–Induced In Situ Electrochemical Signal Probe Synthesis Strategy for Trace ctDNA Analysis. Biosensors (Basel). 2022, 12, 989. DOI: 10.3390/bios12110989.
  • Chen, D.; Wu, Y.; Hoque, S.; Tilley, R. D.; Gooding, J. J. Rapid and Ultrasensitive Electrochemical Detection of Circulating Tumor DNA by Hybridization on the Network of Gold-Coated Magnetic Nanoparticles. Chem. Sci. 2021, 12, 5196–5201. DOI: 10.1039/d1sc01044a.
  • Li, M.; Luo, N.; Liao, X.; Zou, L. Proximity Hybridization-Regulated CRISPR/Cas12a-Based Dual Signal Amplification Strategy for Sensitive Detection of Circulating Tumor DNA. Talanta. 2023, 257, 124395. DOI: 10.1016/j.talanta.2023.124395.
  • Li, D.; Chen, H.; Fan, K.; Labunov, V.; Lazarouk, S.; Yue, X.; Liu, C.; Yang, X.; Dong, L.; Wang, G. A Supersensitive Silicon Nanowire Array Biosensor for Quantitating Tumor Marker ctDNA. Biosens. Bioelectron. 2021, 181, 113147. DOI: 10.1016/j.bios.2021.113147.
  • Yang, L.; Zhou, X.; Zhang, K.; Liu, J.; Zhao, L.; Cai, A.; Zhao, X.; Wu, L.; Qin, Y. Electrochemiluminescent/Electrochemical Ratiometric Biosensor for Extremely Specific and Ultrasensitive Detection of Circulating Tumor DNA. Sens. Actuators, B. 2023, 382, 133490. DOI: 10.1016/j.snb.2023.133490.
  • Ali Syeda, Z.; Langden, S. S. S.; Munkhzul, C.; Lee, M.; Song, S. J. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 2020, 21, 1723. DOI: 10.3390/ijms21051723.
  • Lin, S.; Gregory, R. I. MicroRNA Biogenesis Pathways in Cancer. Nat. Rev. Cancer. 2015, 15, 321–333. DOI: 10.1038/nrc3932.
  • Di Leva, G.; Garofalo, M.; Croce, C. M. MicroRNAs in Cancer. Annu. Rev. Pathol. 2014, 9, 287–314. DOI: 10.1146/annurev-pathol-012513-104715.
  • Creemers, E. E.; Tijsen, A. J.; Pinto, Y. M. Circulating microRNAs: Novel Biomarkers and Extracellular Communicators in Cardiovascular Disease? Circ. Res. 2012, 110, 483–495. DOI: 10.1161/CIRCRESAHA.111.247452.
  • Cortez, M. A.; Bueso-Ramos, C.; Ferdin, J.; Lopez-Berestein, G.; Sood, A. K.; Calin, G. A. MicroRNAs in Body Fluids–the Mix of Hormones and Biomarkers. Nat. Rev. Clin. Oncol. 2011, 8, 467–477. DOI: 10.1038/nrclinonc.2011.76.
  • Deng, H.; Lv, L.; Li, Y.; Zhang, C.; Meng, F.; Pu, Y.; Xiao, J.; Qian, L.; Zhao, W.; Liu, Q.; et al. miR-193a-3p Regulates the Multi-Drug Resistance of Bladder Cancer by Targeting the LOXL4 Gene and the Oxidative Stress Pathway. Mol. Cancer. 2014, 13, 234. DOI: 10.1186/1476-4598-13-234.
  • Liyanage, T.; Masterson, A. N.; Oyem, H. H.; Kaimakliotis, H.; Nguyen, H.; Sardar, R. Plasmoelectronic-Based Ultrasensitive Assay of Tumor Suppressor microRNAs Directly in Patient Plasma: Design of Highly Specific Early Cancer Diagnostic Technology. Anal. Chem. 2019, 91, 1894–1903. DOI: 10.1021/acs.analchem.8b03768.
  • Usuba, W.; Urabe, F.; Yamamoto, Y.; Matsuzaki, J.; Sasaki, H.; Ichikawa, M.; Takizawa, S.; Aoki, Y.; Niida, S.; Kato, K.; et al. Circulating miRNA Panels for Specific and Early Detection in Bladder Cancer. Cancer Sci. 2019, 110, 408–419. DOI: 10.1111/cas.13856.
  • Davalos, V.; Esteller, M. Cancer Epigenetics in Clinical Practice. CA. Cancer J. Clin. 2023, 73, 376–424. DOI: 10.3322/caac.21765.
  • Iacobuzio-Donahue, C. A. Epigenetic Changes in Cancer. Annu. Rev. Pathol. 2009, 4, 229–249. DOI: 10.1146/annurev.pathol.3.121806.151442.
  • Michalak, E. M.; Burr, M. L.; Bannister, A. J.; Dawson, M. A. The Roles of DNA, RNA and Histone Methylation in Ageing and Cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 573–589. DOI: 10.1038/s41580-019-0143-1.
  • Reinert, T.; Modin, C.; Castano, F. M.; Lamy, P.; Wojdacz, T. K.; Hansen, L. L.; Wiuf, C.; Borre, M.; Dyrskjøt, L.; Orntoft, T. F. Comprehensive Genome Methylation Analysis in Bladder Cancer: Identification and Validation of Novel Methylated Genes and Application of These as Urinary Tumor Markers. Clin. Cancer Res. 2011, 17, 5582–5592. DOI: 10.1158/1078-0432.CCR-10-2659.
  • Schübeler, D. Function and Information Content of DNA Methylation. Nature. 2015, 517, 321–326. DOI: 10.1038/nature14192.
  • Hentschel, A. E.; Beijert, I. J.; Bosschieter, J.; Kauer, P. C.; Vis, A. N.; Lissenberg-Witte, B. I.; van Moorselaar, R. J. A.; Steenbergen, R. D. M.; Nieuwenhuijzen, J. A. Bladder Cancer Detection in Urine Using DNA Methylation Markers: A Technical and Prospective Preclinical Validation. Clin. Epigen. 2022, 14, 19. DOI: 10.1186/s13148-022-01240-8.
  • Yu, Y.; Cao, H.; Zhang, M.; Shi, F.; Wang, R.; Liu, X. Prognostic Value of DNA Methylation for Bladder Cancer. Clin. Chim. Acta. 2018, 484, 207–212. DOI: 10.1016/j.cca.2018.05.056.
  • Chan, M. W.; Chan, L. W.; Tang, N. L.; Tong, J. H.; Lo, K. W.; Lee, T. L.; Cheung, H. Y.; Wong, W. S.; Chan, P. S.; Lai, F. M.; To, K. F. Hypermethylation of Multiple Genes in Tumor Tissues and Voided Urine in Urinary Bladder Cancer Patients. Clin. Cancer Res. 2002, 8, 464–470.
  • Shin, Y.; Perera, A. P.; Kee, J. S.; Song, J.; Fang, Q.; Lo, G.-Q.; Park, M. K. Label-Free Methylation Specific Sensor Based on Silicon Microring Resonators for Detection and Quantification of DNA Methylation Biomarkers in Bladder Cancer. Sens. Actuators, B. 2013, 177, 404–411. DOI: 10.1016/j.snb.2012.11.058.
  • Pursey, J. P.; Chen, Y.; Stulz, E.; Park, M. K.; Kongsuphol, P. Microfluidic Electrochemical Multiplex Detection of Bladder Cancer DNA Markers. Sens. Actuators, B. 2017, 251, 34–39. DOI: 10.1016/j.snb.2017.05.006.
  • Ruan, W.; Chen, X.; Huang, M.; Wang, H.; Chen, J.; Liang, Z.; Zhang, J.; Yu, Y.; Chen, S.; Xu, S.; et al. A Urine-Based DNA Methylation Assay to Facilitate Early Detection and Risk Stratification of Bladder Cancer. Clin. Epigenetics. 2021, 13, 91. DOI: 10.1186/s13148-021-01073-x.
  • Piatti, P.; Chew, Y. C.; Suwoto, M.; Yamada, T.; Jara, B.; Jia, X.-Y.; Guo, W.; Ghodoussipour, S.; Daneshmand, S.; Ahmadi, H.; et al. Clinical Evaluation of Bladder CARE, A New Epigenetic Test for Bladder Cancer Detection in Urine Samples. Clin. Epigen. 2021, 13, 84. DOI: 10.1186/s13148-021-01029-1.
  • Fang, Q.; Zhang, X.; Nie, Q.; Hu, J.; Zhou, S.; Wang, C. Improved Urine DNA Methylation Panel for Early Bladder Cancer Detection. BMC Cancer. 2022, 22, 237. DOI: 10.1186/s12885-022-09268-y.
  • Dai, X.; Ren, T.; Zhang, Y.; Nan, N. Methylation Multiplicity and Its Clinical Values in Cancer. Expert Rev. Mol. Med. 2021, 23, e2. DOI: 10.1017/erm.2021.4.
  • Drayton, R. M.; Dudziec, E.; Peter, S.; Bertz, S.; Hartmann, A.; Bryant, H. E.; Catto, J. W. Reduced Expression of miRNA-27a Modulates Cisplatin Resistance in Bladder Cancer by Targeting the Cystine/Glutamate Exchanger SLC7A11. Clin. Cancer Res. 2014, 20, 1990–2000. DOI: 10.1158/1078-0432.CCR-13-2805.
  • Li, F.; Zheng, Z.; Chen, W.; Li, D.; Zhang, H.; Zhu, Y.; Mo, Q.; Zhao, X.; Fan, Q.; Deng, F.; et al. Regulation of Cisplatin Resistance in Bladder Cancer by Epigenetic Mechanisms. Drug Resist. Updat. 2023, 68, 100938. DOI: 10.1016/j.drup.2023.100938.
  • Compton, D. A.; Cleveland, D. W. NuMA is Required for the Proper Completion of Mitosis. J. Cell Biol. 1993, 120, 947–957. DOI: 10.1083/jcb.120.4.947.
  • Othman, H. O.; Salehnia, F.; Fakhri, N.; Hassan, R.; Hosseini, M.; Faizullah, A.; Ganjali, M. R.; Kazem Aghamir, S. M. A Highly Sensitive Fluorescent Immunosensor for Sensitive Detection of Nuclear Matrix Protein 22 as Biomarker for Early Stage Diagnosis of Bladder Cancer. RSC Adv. 2020, 10, 28865–28871. DOI: 10.1039/d0ra06191c.
  • Davido, T.; Getzenberg, R. H. Nuclear Matrix Proteins as Cancer Markers. J. Cell. Biochem. Suppl. 2000, 35, 136–141. DOI: 10.1002/1097-4644(2000)79:35+<136::AID-JCB1137>3.3.CO;2-5.
  • Kundal, V. K.; Pandith, A. A.; Hamid, A.; Shah, A.; Kundal, R.; Wani, S. M. Role of NMP22 Bladder Check Test in Early Detection of Bladder Cancer with Recurrence. Asian Pac. J. Cancer Prev. 2010, 11, 1279–1282.
  • Wilson, J. L., Jr.; Antoniassi, M. P.; Lopes, P. I.; Azevedo, H. Proteomic Research and Diagnosis in Bladder Cancer: State of the Art Review. Int. Braz. J. Urol. 2021, 47, 503–514. DOI: 10.1590/S1677-5538.IBJU.2021.99.02.
  • Chou, R.; Gore, J. L.; Buckley, D.; Fu, R.; Gustafson, K.; Griffin, J. C.; Grusing, S.; Selph, S. Urinary Biomarkers for Diagnosis of Bladder Cancer: A Systematic Review and Meta-Analysis. Ann. Intern. Med. 2015, 163, 922–931. DOI: 10.7326/M15-0997.
  • Mahnert, B.; Tauber, S.; Kriegmair, M.; Nagel, D.; Holdenrieder, S.; Hofmann, K.; Reiter, W.; Schmeller, N.; Stieber, P. Measurements of Complement Factor H-Related Protein (BTA-TRAK Assay) and Nuclear Matrix Protein (NMP22 Assay)–Useful Diagnostic Tools in the Diagnosis of Urinary Bladder Cancer? Clin. Chem. Lab. Med. 2003, 41, 104–110. DOI: 10.1515/CCLM.2003.018.
  • Wu, D.; Wang, Y.; Zhang, Y.; Ma, H.; Yan, T.; Du, B.; Wei, Q. Sensitive Electrochemical Immunosensor for Detection of Nuclear Matrix Protein-22 Based on NH2-SAPO-34 Supported Pd/Co Nanoparticles. Sci. Rep. 2016, 6, 24551. DOI: 10.1038/srep24551.
  • Piro, B.; Reisberg, S. Recent Advances in Electrochemical Immunosensors. Sensors. 2017, 17, 794. DOI: 10.3390/s17040794.
  • Cheng, K.; Wan, S.; Chen, S.-Y.; Yang, J.-W.; Wang, H.-L.; Xu, C.-H.; Qiao, S.-H.; Yang, L. Nuclear Matrix Protein 22 in Bladder Cancer. Clin. Chim. Acta. 2024, 560, 119718. DOI: 10.1016/j.cca.2024.119718.
  • Kuburich, N. A.; den Hollander, P.; Pietz, J. T.; Mani, S. A. Vimentin and Cytokeratin: Good Alone, Bad Together. Semin. Cancer Biol. 2022, 86, 816–826. DOI: 10.1016/j.semcancer.2021.12.006.
  • Southgate, J.; Harnden, P.; Trejdosiewicz, L. K. Cytokeratin Expression Patterns in Normal and Malignant Urothelium: A Review of the Biological and Diagnostic Implications. Histol. Histopathol. 1999, 14, 657–664. DOI: 10.14670/HH-14.657.
  • Zhu, R. J.; Zhou, J.; Liang, P. Q.; Xiang, X. X.; Ran, J.; Xie, T. A.; Guo, X. G. Accuracy of Cytokeratin 19 Fragment in the Diagnosis of Bladder Cancer. Biomark. Med. 2022, 16, 197–216. DOI: 10.2217/bmm-2021-0754.
  • Morita, T.; Kikuchi, T.; Hashimoto, S.; Kobayashi, Y.; Tokue, A. Cytokeratin-19 Fragment (CYFRA 21-1) in Bladder Cancer. Eur. Urol. 1997, 32, 237–244. DOI: 10.1159/000480865.
  • Kuang, L. I.; Song, W. J.; Qing, H. M.; Yan, S.; Song, F. L. CYFRA21-1 Levels Could Be a Biomarker for Bladder Cancer: A Meta-Analysis. Genet. Mol. Res. 2015, 14, 3921–3931. DOI: 10.4238/2015.April.27.6.
  • Nisman, B.; Barak, V.; Shapiro, A.; Golijanin, D.; Peretz, T.; Pode, D. Evaluation of Urine CYFRA 21-1 for the Detection of Primary and Recurrent Bladder Carcinoma. Cancer. 2002, 94, 2914–2922. DOI: 10.1002/cncr.10565.
  • Huang, Y. L.; Chen, J.; Yan, W.; Zang, D.; Qin, Q.; Deng, A. M. Diagnostic Accuracy of Cytokeratin-19 Fragment (CYFRA 21-1) for Bladder Cancer: A Systematic Review and Meta-Analysis. Tumour Biol. 2015, 36, 3137–3145. DOI: 10.1007/s13277-015-3352-z.
  • Lei, Q.; Zhao, L.; Ye, S.; Sun, Y.; Xie, F.; Zhang, H.; Zhou, F.; Wu, S. Rapid and Quantitative Detection of Urinary Cyfra21-1 Using Fluorescent Nanosphere-Based Immunochromatographic Test Strip for Diagnosis and Prognostic Monitoring of Bladder Cancer. Artif. Cells. Nanomed. Biotechnol. 2019, 47, 4266–4272. DOI: 10.1080/21691401.2019.1687491.
  • Shi, J. J.; Chen, Z. C.; Zhao, C. Q.; Shen, M. Q.; Li, H.; Zhang, S. S.; Zhang, Z. Photoelectrochemical Biosensing Platforms for Tumor Marker Detection. Coord. Chem. Rev. 2022, 469, 214675. DOI: 10.1016/j.ccr.2022.214675.
  • Zhang, S.; Wang, C.; Wu, T.; Fan, D.; Hu, L.; Wang, H.; Wei, Q.; Wu, D. A Sandwiched Photoelectrochemical Biosensing Platform for Detecting Cytokeratin-19 Fragments Based on Ag2S-Sensitized BiOI/Bi2S3 Heterostructure Amplified by Sulfur and Nitrogen co-Doped Carbon Quantum Dots. Biosens. Bioelectron. 2022, 196, 113703. DOI: 10.1016/j.bios.2021.113703.
  • Chen, G.; Qin, Y.; Jiao, L.; Huang, J.; Wu, Y.; Hu, L.; Gu, W.; Xu, D.; Zhu, C. Nanozyme-Activated Synergistic Amplification for Ultrasensitive Photoelectrochemical Immunoassay. Anal. Chem. 2021, 93, 6881–6888. DOI: 10.1021/acs.analchem.1c01217.
  • Zhang, J. H.; Xue, X. D.; Du, Y. Z.; Zhao, J. X.; Ma, H. M.; Ren, X.; Wei, Q.; Ju, H. X. Antigen-Down Pec Immunosensor for CYFRA21-1 Detection Based on Photocurrent Polarity Switching Strategy. Anal. Chem. 2022, 94, 12368–12373. DOI: 10.1021/acs.analchem.2c01478.
  • Gumbiner, B. M. Cell Adhesion: The Molecular Basis of Tissue Architecture and Morphogenesis. Cell. 1996, 84, 345–357. DOI: 10.1016/s0092-8674(00)81279-9.
  • Bryan, R. T. Cell Adhesion and Urothelial Bladder Cancer: The Role of Cadherin Switching and Related Phenomena. Phil. Trans. R Soc. B 2015, 370, 20140042. DOI: 10.1098/rstb.2014.0042.
  • Martins-Lima, C.; Miranda-Gonçalves, V.; Lobo, J.; Constâncio, V.; Leite-Silva, P.; Guimarães-Teixeira, C.; Monteiro-Reis, S.; Sequeira, J. P.; Cantante, M.; Gonçalves, C. S.; et al. Cadherin Switches during Epithelial-Mesenchymal Transition: CDH4/RCAD Downregulation Reduces Bladder Cancer Progression. Cell. Oncol. (Dordr). 2022, 45, 135–149. DOI: 10.1007/s13402-021-00657-2.
  • Griffiths, T. R.; Brotherick, I.; Bishop, R. I.; White, M. D.; McKenna, D. M.; Horne, C. H.; Shenton, B. K.; Neal, D. E.; Mellon, J. K. Cell Adhesion Molecules in Bladder Cancer: Soluble Serum E-Cadherin Correlates with Predictors of Recurrence. Br. J. Cancer. 1996, 74, 579–584. DOI: 10.1038/bjc.1996.404.
  • Inoue, K.; Kamada, M.; Slaton, J. W.; Fukata, S.; Yoshikawa, C.; Tamboli, P.; Dinney, C. P.; Shuin, T. The Prognostic Value of Angiogenesis and Metastasis-Related Genes for Progression of Transitional Cell Carcinoma of the Renal Pelvis and Ureter. Clin. Cancer Res. 2002, 8, 1863–1870.
  • Muñoz-San Martín, C.; Pedrero, M.; de Villena, F. J. M.; Garranzo-Asensio, M.; Rodríguez, N.; Domínguez, G.; Barderas, R.; Campuzano, S.; Pingarrón, J. M. Disposable Amperometric Immunosensor for the Determination of the E-Cadherin Tumor Suppressor Protein in Cancer Cells and Human Tissues. Electroanalysis. 2019, 31, 309–317. DOI: 10.1002/elan.201800645.
  • Hautmann, S. H.; Lokeshwar, V. B.; Schroeder, G. L.; Civantos, F.; Duncan, R. C.; Gnann, R.; Friedrich, M. G.; Soloway, M. S. Elevated Tissue Expression of Hyaluronic Acid and Hyaluronidase Validates the HA-HAase Urine Test for Bladder Cancer. J. Urol. 2001, 165, 2068–2074. DOI: 10.1016/S0022-5347(05)66296-9.
  • Kramer, M. W.; Golshani, R.; Merseburger, A. S.; Knapp, J.; Garcia, A.; Hennenlotter, J.; Duncan, R. C.; Soloway, M. S.; Jorda, M.; Kuczyk, M. A.; et al. HYAL-1 Hyaluronidase: A Potential Prognostic Indicator for Progression to Muscle Invasion and Recurrence in Bladder Cancer. Eur. Urol. 2010, 57, 86–93. DOI: 10.1016/j.eururo.2009.03.057.
  • Morera, D. S.; Hennig, M. S.; Talukder, A.; Lokeshwar, S. D.; Wang, J.; Garcia-Roig, M.; Ortiz, N.; Yates, T. J.; Lopez, L. E.; Kallifatidis, G.; et al. Hyaluronic Acid Family in Bladder Cancer: Potential Prognostic Biomarkers and Therapeutic Targets. Br. J. Cancer. 2017, 117, 1507–1517. DOI: 10.1038/bjc.2017.318.
  • Hautmann, S.; Toma, M.; Lorenzo Gomez, M. F.; Friedrich, M. G.; Jaekel, T.; Michl, U.; Schroeder, G. L.; Huland, H.; Juenemann, K. P.; Lokeshwar, V. B. Immunocyt and the HA-HAase Urine Tests for the Detection of Bladder Cancer: A Side-by-Side Comparison. Eur. Urol. 2004, 46, 466–471. DOI: 10.1016/j.eururo.2004.06.006.
  • Lokeshwar, V. B.; Obek, C.; Pham, H. T.; Wei, D.; Young, M. J.; Duncan, R. C.; Soloway, M. S.; Block, N. L. Urinary Hyaluronic Acid and Hyaluronidase: Markers for Bladder Cancer Detection and Evaluation of Grade. J. Urol. 2000, 163, 348–356. DOI: 10.1016/s0022-5347(05)68050-0.
  • Mehta, A.; Shapiro, M. D. Apolipoproteins in Vascular Biology and Atherosclerotic Disease. Nat. Rev. Cardiol. 2022, 19, 168–179. DOI: 10.1038/s41569-021-00613-5.
  • Chen, Y. T.; Chen, C. L.; Chen, H. W.; Chung, T.; Wu, C. C.; Chen, C. D.; Hsu, C. W.; Chen, M. C.; Tsui, K. H.; Chang, P. L.; et al. Discovery of Novel Bladder Cancer Biomarkers by Comparative Urine Proteomics Using iTRAQ Technology. J. Proteome Res. 2010, 9, 5803–5815. DOI: 10.1021/pr100576x.
  • Urquidi, V.; Goodison, S.; Ross, S.; Chang, M.; Dai, Y.; Rosser, C. J. Diagnostic Potential of Urinary α1-Antitrypsin and Apolipoprotein E in the Detection of Bladder Cancer. J. Urol. 2012, 188, 2377–2383. DOI: 10.1016/j.juro.2012.07.094.
  • Su, S.; Sun, Q.; Gu, X. D.; Xu, Y. Q.; Shen, J. L.; Zhu, D.; Chao, J.; Fan, C. H.; Wang, L. H. Two-Dimensional Nanomaterials for Biosensing Applications. Trac-Trends Anal. Chem. 2019, 119.115610.DOI10.1016/j.trac.2019.07.021
  • Sharifuzzaman, M.; Barman, S. C.; Zahed, M. A.; Sharma, S.; Yoon, H.; Nah, J. S.; Kim, H.; Park, J. Y. An Electrodeposited MXene-Ti(3)C(2)T(x) Nanosheets Functionalized by Task-Specific Ionic Liquid for Simultaneous and Multiplexed Detection of Bladder Cancer Biomarkers. Small. 2020, 16, e2002517. DOI: 10.1002/smll.202002517.
  • Chen, H.-C.; Chen, Y.-T.; Tsai, R.-Y.; Chen, M.-C.; Chen, S.-L.; Xiao, M.-C.; Chen, C.-L.; Hua, M.-Y. A Sensitive and Selective Magnetic Graphene Composite-Modified Polycrystalline-Silicon Nanowire Field-Effect Transistor for Bladder Cancer Diagnosis. Biosens. Bioelectron. 2015, 66, 198–207. DOI: 10.1016/j.bios.2014.11.019.
  • de Almeida, L. G. N.; Thode, H.; Eslambolchi, Y.; Chopra, S.; Young, D.; Gill, S.; Devel, L.; Dufour, A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol. Rev. 2022, 74, 712–768. DOI: 10.1124/pharmrev.121.000349.
  • Szarvas, T.; Vom Dorp, F.; Ergün, S.; Rübben, H. Matrix Metalloproteinases and Their Clinical Relevance in Urinary Bladder Cancer. Nat. Rev. Urol. 2011, 8, 241–254. DOI: 10.1038/nrurol.2011.44.
  • Fouad, H.; Salem, H.; Ellakwa, D. E.; Abdel-Hamid, M. MMP-2 and MMP-9 as Prognostic Markers for the Early Detection of Urinary Bladder Cancer. J. Biochem. Mol. Toxicol. 2019, 33, e22275. DOI: 10.1002/jbt.22275.
  • Kubik, A.; das Virgens, I. P. A.; Szabó, A.; Váradi, M.; Csizmarik, A.; Keszthelyi, A.; Majoros, A.; Fehérvári, P.; Hegyi, P.; Ács, N.; et al. Comprehensive Analysis of the Prognostic Value of Circulating MMP-7 Levels in Urothelial Carcinoma: A Combined Cohort Analysis, Systematic Review, and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 7859. DOI: 10.3390/ijms24097859.
  • Kowalczyk, A.; Nisiewicz, M. K.; Bamburowicz-Klimkowska, M.; Kasprzak, A.; Ruzycka-Ayoush, M.; Koszytkowska-Stawińska, M.; Nowicka, A. M. Effective Voltammetric Tool for Simultaneous Detection of MMP-1, MMP-2, and MMP-9: Important Non-Small Cell Lung Cancer Biomarkers. Biosens. Bioelectron. 2023, 229, 115212. DOI: 10.1016/j.bios.2023.115212.
  • Tell, G.; Quadrifoglio, F.; Tiribelli, C.; Kelley, M. R. The Many Functions of APE1/Ref-1: Not Only a DNA Repair Enzyme. Antioxid. Redox Signal. 2009, 11, 601–620. DOI: 10.1089/ars.2008.2194.
  • Choi, S.; Shin, J. H.; Lee, Y. R.; Joo, H. K.; Song, K. H.; Na, Y. G.; Chang, S. J.; Lim, J. S.; Jeon, B. H. Urinary APE1/Ref-1: A Potential Bladder Cancer Biomarker. Dis. Markers. 2016, 2016, 7276502–7276508. DOI: 10.1155/2016/7276502.
  • Wang, X.; Meng, J.; Zhang, H.; Mou, J.; Xiong, J.; Wang, H.; Su, X.; Zhang, Y. Electrochemical Biosensor Based on Bipedal DNA Walker for Highly Sensitive Amplification Detection of Apurinic/Apyrimidinic Endonuclease 1. Sens. Actuators, B. 2023, 381, 133425. DOI: 10.1016/j.snb.2023.133425.
  • Li, G.; Li, J.; Li, Q. Biodegradable MnO2 Nanosheet Mediated Hybridization Chain Reaction for Imaging of Human Apurinic/Apyrimidinic Endonuclease 1 Activity in Living Cells. Nanoscale. 2019, 11, 20456–20460. DOI: 10.1039/c9nr06436b.
  • Kedmi, R.; Peer, D. Zooming in on Selectins in Cancer. Sci. Transl. Med. 2016, 8, 345fs11. DOI: 10.1126/scitranslmed.aag1802.
  • Choudhary, D.; Hegde, P.; Voznesensky, O.; Choudhary, S.; Kopsiaftis, S.; Claffey, K. P.; Pilbeam, C. C.; Taylor, J. A. 3rd, Increased Expression of L-Selectin (CD62L) in High-Grade Urothelial Carcinoma: A Potential Marker for Metastatic Disease. Urol. Oncol. 2015, 33, 387.e17-27–387.e27. DOI: 10.1016/j.urolonc.2014.12.009.
  • Phadke, G. S.; Satterwhite-Warden, J. E.; Choudhary, D.; Taylor, J. A.; Rusling, J. F. A Novel and Accurate Microfluidic Assay of CD62L in Bladder Cancer Serum Samples. Analyst. 2018, 143, 5505–5511. DOI: 10.1039/c8an01463a.
  • Zhang, Z.; Pang, S. T.; Kasper, K. A.; Luan, C.; Wondergem, B.; Lin, F.; Chuang, C. K.; Teh, B. T.; Yang, X. J. FXYD3: A Promising Biomarker for Urothelial Carcinoma. Biomark. Insights. 2011, 6, 17–26. DOI: 10.4137/BMI.S6487.
  • Zhang, D.; Ding, C.-P.; Zheng, X.-Y.; Ye, J.-Z.; Chen, Z.-H.; Li, J.-H.; Yan, Z.-J.; Jiang, J.-H.; Huang, Y.-J. Ultrasensitive and Accurate Diagnosis of Urothelial Cancer by Plasmonic AuNRs-Enhanced Fluorescence of near-Infrared Ag2S Quantum Dots. Rare Met. 2022, 41, 3828–3838. DOI: 10.1007/s12598-022-02074-2.
  • Hsu, Y.-P.; Yang, H.-W.; Li, N.-S.; Chen, Y.-T.; Pang, H.-H.; Pang, S.-T. Instrument-Free Detection of FXYD3 Using Vial-Based Immunosensor for Earlier and Faster Urothelial Carcinoma Diagnosis. ACS Sens. 2020, 5, 928–935. DOI: 10.1021/acssensors.9b02013.
  • Altieri, D. C. Survivin, Cancer Networks and Pathway-Directed Drug Discovery. Nat. Rev. Cancer. 2008, 8, 61–70. DOI: 10.1038/nrc2293.
  • Konopka, K.; Spain, C.; Yen, A.; Overlid, N.; Gebremedhin, S.; Düzgüneş, N. Correlation between the Levels of Survivin and Survivin Promoter-Driven Gene Expression in Cancer and Non-Cancer Cells. Cell. Mol. Biol. Lett. 2009, 14, 70–89. DOI: 10.2478/s11658-008-0034-5.
  • Ferrario, A.; Rucker, N.; Wong, S.; Luna, M.; Gomer, C. J. Survivin, a Member of the Inhibitor of Apoptosis Family, Is Induced by Photodynamic Therapy and Is a Target for Improving Treatment Response. Cancer Res. 2007, 67, 4989–4995. DOI: 10.1158/0008-5472.CAN-06-4785.
  • Garg, H.; Suri, P.; Gupta, J. C.; Talwar, G. P.; Dubey, S. Survivin: A Unique Target for Tumor Therapy. Cancer Cell Int. 2016, 16, 49. DOI: 10.1186/s12935-016-0326-1.
  • Ku, J. H.; Godoy, G.; Amiel, G. E.; Lerner, S. P. Urine Survivin as a Diagnostic Biomarker for Bladder Cancer: A Systematic Review. BJU Int. 2012, 110, 630–636. DOI: 10.1111/j.1464-410X.2011.10884.x.
  • Shariat, S. F.; Ashfaq, R.; Karakiewicz, P. I.; Saeedi, O.; Sagalowsky, A. I.; Lotan, Y. Survivin Expression is Associated with Bladder Cancer Presence, Stage, Progression, and Mortality. Cancer. 2007, 109, 1106–1113. DOI: 10.1002/cncr.22521.
  • Smith, S. D.; Wheeler, M. A.; Plescia, J.; Colberg, J. W.; Weiss, R. M.; Altieri, D. C. Urine Detection of Survivin and Diagnosis of Bladder Cancer. JAMA. 2001, 285, 324–328. DOI: 10.1001/jama.285.3.324.
  • Karam, J. A.; Lotan, Y.; Karakiewicz, P. I.; Ashfaq, R.; Sagalowsky, A. I.; Roehrborn, C. G.; Shariat, S. F. Use of Combined Apoptosis Biomarkers for Prediction of Bladder Cancer Recurrence and Mortality after Radical Cystectomy. Lancet Oncol. 2007, 8, 128–136. DOI: 10.1016/S1470-2045(07)70002-5.
  • Zhou, Z.; Zou, L.; Guan, Y.; Jiang, L.; Liu, Y.; Zhang, X.; Huang, X.; Ren, H.; Li, Z.; Niu, H.; et al. Survivin as a Potential Biomarker in the Diagnosis of Bladder Cancer: A Systematic Review and Meta-Analysis. Urol. Oncol. 2024, 42, 133–143. DOI: 10.1016/j.urolonc.2024.01.018.
  • Srivastava, A. K.; Singh, P. K.; Srivastava, K.; Singh, D.; Dalela, D.; Rath, S. K.; Goel, M. M.; Brahma Bhatt, M. L. Diagnostic Role of Survivin in Urinary Bladder Cancer. Asian Pac. J. Cancer Prev. 2013, 14, 81–85. DOI: 10.7314/apjcp.2013.14.1.81.
  • Stobiecka, M.; Ratajczak, K.; Jakiela, S. Toward Early Cancer Detection: Focus on Biosensing Systems and Biosensors for an anti-Apoptotic Protein Survivin and Survivin mRNA. Biosens. Bioelectron. 2019, 137, 58–71. DOI: 10.1016/j.bios.2019.04.060.
  • Roake, C. M.; Artandi, S. E. Regulation of Human Telomerase in Homeostasis and Disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 384–397. DOI: 10.1038/s41580-020-0234-z.
  • Peng, L.; Li, J.; Meng, C.; Li, J.; Tang, D.; Guan, F.; Xu, P.; Wei, T.; Li, Y. Diagnostic Value of Telomerase Activity in Patients With Bladder Cancer: A Meta-Analysis of Diagnostic Test. Front. Oncol. 2020, 10, 570127. DOI: 10.3389/fonc.2020.570127.
  • Zhou, X.; Xing, D. Assays for Human Telomerase Activity: Progress and Prospects. Chem. Soc. Rev. 2012, 41, 4643–4656. DOI: 10.1039/c2cs35045a.
  • Woo Kim, K.; Shin, Y.; Promoda Perera, A.; Liu, Q.; Sheng Kee, J.; Han, K.; Yoon, Y.-J. K.; Park, M. Label-Free, PCR-Free Chip-Based Detection of Telomerase Activity in Bladder Cancer Cells. Biosens. Bioelectron. 2013, 45, 152–157. DOI: 10.1016/j.bios.2013.02.001.
  • Feng, E.; Zheng, T.; Tian, Y. Dual-Mode Au Nanoprobe Based on Surface Enhancement Raman Scattering and Colorimetry for Sensitive Determination of Telomerase Activity Both in Cell Extracts and in the Urine of Patients. ACS Sens. 2018, 4, 211–217. DOI: 10.1021/acssensors.8b01244.
  • Guo, Y.; Liu, S.; Yang, H.; Wang, P.; Feng, Q. Proximity Binding-Triggered Multipedal DNA Walker for the Electrochemiluminescence Detection of Telomerase Activity. Anal. Chim. Acta. 2021, 1144, 68–75. DOI: 10.1016/j.aca.2020.12.004.
  • Wang, G.; Wang, H.; Cao, S.; Xiang, W.; Li, T.; Yang, M. Electrochemical Determination of the Activity and Inhibition of Telomerase Based on the Interaction of DNA with Molybdate. Microchim. Acta. 2019, 186,96. DOI: 10.1007/s00604-018-3223-6.
  • Dai, Z.; Yang, L.; Li, Y.; Zhao, C.; Guo, J.; Gao, Z.; Song, Y.-Y. A Portable Dual-Mode Sensor Based on a TiO2 Nanotube Membrane for the Evaluation of Telomerase Activity. Chem. Commun. (Camb). 2019, 55, 10571–10574. DOI: 10.1039/c9cc05332h.
  • Chen, C.; Wei, M.; Liu, Y.; Xu, E.; Wei, W.; Zhang, Y.; Liu, S. Visual and Fluorometric Determination of Telomerase Activity by Using a Cationic Conjugated Polymer and Fluorescence Resonance Energy Transfer. Microchim. Acta. 2017, 184, 3453–3460. DOI: 10.1007/s00604-017-2362-5.
  • Ou, X.; Hong, F.; Zhang, Z.; Cheng, Y.; Zhao, Z.; Gao, P.; Lou, X.; Xia, F.; Wang, S. A Highly Sensitive and Facile Graphene Oxide-Based Nucleic Acid Probe: Label-Free Detection of Telomerase Activity in Cancer Patient’s Urine Using AIEgens. Biosens. Bioelectron. 2017, 89, 417–421. DOI: 10.1016/j.bios.2016.05.035.
  • Chen, C. K.; Liao, J.; Li, M. S.; Khoo, B. L. Urine Biopsy Technologies: Cancer and Beyond. Theranostics. 2020, 10, 7872–7888. DOI: 10.7150/thno.44634.
  • Zhu, X.; Qin, R.; Qu, K.; Wang, Z.; Zhao, X.; Xu, W. Atomic Force Microscopy-Based Assessment of Multimechanical Cellular Properties for Classification of Graded Bladder Cancer Cells and Cancer Early Diagnosis Using Machine Learning Analysis. Acta Biomater. 2023, 158, 358–373. DOI: 10.1016/j.actbio.2022.12.035.
  • Bryan, R. T.; Shimwell, N. J.; Wei, W.; Devall, A. J.; Pirrie, S. J.; James, N. D.; Zeegers, M. P.; Cheng, K. K.; Martin, A.; Ward, D. G. Urinary EpCAM in Urothelial Bladder Cancer Patients: Characterisation and Evaluation of Biomarker Potential. Br. J. Cancer. 2014, 110, 679–685. DOI: 10.1038/bjc.2013.744.
  • MacGregor, M.; Safizadeh Shirazi, H.; Chan, K. M.; Ostrikov, K.; McNicholas, K.; Jay, A.; Chong, M.; Staudacher, A. H.; Michl, T. D.; Zhalgasbaikyzy, A.; et al. Cancer Cell Detection Device for the Diagnosis of Bladder Cancer from Urine. Biosens. Bioelectron. 2021, 171, 112699. DOI: 10.1016/j.bios.2020.112699.
  • Khetrapal, P.; Lee, M. W. L.; Tan, W. S.; Dong, L.; de Winter, P.; Feber, A.; Kelly, J. D. The Role of Circulating Tumour Cells and Nucleic Acids in Blood for the Detection of Bladder Cancer: A Systematic Review. Cancer Treat. Rev. 2018, 66, 56–63. DOI: 10.1016/j.ctrv.2018.03.007.
  • Pinho, S. S.; Reis, C. A. Glycosylation in Cancer: Mechanisms and Clinical Implications. Nat. Rev. Cancer. 2015, 15, 540–555. DOI: 10.1038/nrc3982.
  • Ohtsubo, K.; Marth, J. D. Glycosylation in Cellular Mechanisms of Health and Disease. Cell 2006, 126, 855–867. DOI: 10.1016/j.cell.2006.08.019.
  • Wilczak, M.; Surman, M.; Przybyło, M. Altered Glycosylation in Progression and Management of Bladder Cancer. Molecules. 2023, 28, 3436. DOI: 10.3390/molecules28083436.
  • Wang, J.; Li, J.; Yan, G.; Gao, M.; Zhang, X. Preparation of a Thickness-Controlled Mg-MOFs-Based Magnetic Graphene Composite as a Novel Hydrophilic Matrix for the Effective Identification of the Glycopeptide in the Human Urine. Nanoscale. 2019, 11, 3701–3709. DOI: 10.1039/c8nr10074h.
  • Carapito, Â.; Roque, A. C. A.; Carvalho, F.; Pinto, J.; Guedes de Pinho, P. Exploiting Volatile Fingerprints for Bladder Cancer Diagnosis: A Scoping Review of Metabolomics and Sensor-Based Approaches. Talanta. 2024, 268, 125296. DOI: 10.1016/j.talanta.2023.125296.
  • Putluri, N.; Shojaie, A.; Vasu, V. T.; Vareed, S. K.; Nalluri, S.; Putluri, V.; Thangjam, G. S.; Panzitt, K.; Tallman, C. T.; Butler, C.; et al. Metabolomic Profiling Reveals Potential Markers and Bioprocesses Altered in Bladder Cancer Progression. Cancer Res. 2011, 71, 7376–7386. DOI: 10.1158/0008-5472.CAN-11-1154.
  • Zong, C.; Xu, M. X.; Xu, L. J.; Wei, T.; Ma, X.; Zheng, X. S.; Hu, R.; Ren, B. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem. Rev. 2018, 118, 4946–4980. DOI: 10.1021/acs.chemrev.7b00668.
  • Luo, R.; Popp, J.; Bocklitz, T. Deep Learning for Raman Spectroscopy: A Review. Analytica 2022, 3, 287–301. DOI: 10.3390/analytica3030020.
  • Cui, X.; Liu, T.; Xu, X.; Zhao, Z.; Tian, Y.; Zhao, Y.; Chen, S.; Wang, Z.; Wang, Y.; Hu, D.; et al. Label-Free Detection of Multiple Genitourinary Cancers from Urine by Surface-Enhanced Raman Spectroscopy. Spectrochim. Acta, Part A. 2020, 240, 118543. DOI: 10.1016/j.saa.2020.118543.
  • Xiong, C.-C.; Zhu, S.-S.; Yan, D.-H.; Yao, Y.-D.; Zhang, Z.; Zhang, G.-J.; Chen, S. Rapid and Precise Detection of Cancers via Label-Free SERS and Deep Learning. Anal. Bioanal. Chem. 2023, 415, 3449–3462. DOI: 10.1007/s00216-023-04730-7.
  • Weber, C. M.; Cauchi, M.; Patel, M.; Bessant, C.; Turner, C.; Britton, L. E.; Willis, C. M. Evaluation of a Gas Sensor Array and Pattern Recognition for the Identification of Bladder Cancer from Urine Headspace. Analyst. 2011, 136, 359–364. DOI: 10.1039/c0an00382d.
  • Stone, L. Urinary VOCs as Bladder Cancer Biomarkers. Nat. Rev. Urol. 2022, 19, 256. DOI: 10.1038/s41585-022-00595-0.
  • Belugina, R.; Karpushchenko, E.; Sleptsov, A.; Protoshchak, V.; Legin, A.; Kirsanov, D. Developing Non-Invasive Bladder Cancer Screening Methodology through Potentiometric Multisensor Urine Analysis. Talanta. 2021, 234, 122696. DOI: 10.1016/j.talanta.2021.122696.
  • Jian, Y.; Zhang, N.; Liu, T.; Zhu, Y.; Wang, D.; Dong, H.; Guo, L.; Qu, D.; Jiang, X.; Du, T.; et al. Artificially Intelligent Olfaction for Fast and Noninvasive Diagnosis of Bladder Cancer from Urine. ACS Sens. 2022, 7, 1720–1731. DOI: 10.1021/acssensors.2c00467.
  • Matsumoto, K.; Murakami, Y.; Shimizu, Y.; Hirayama, T.; Ishikawa, W.; Iwamura, M. Electronic Nose to Distinguish Bladder Cancer by Urinary Odour Feature: A Pilot Study. Cancer Biomark. 2020, 28, 33–39. DOI: 10.3233/CBM-190466.
  • Bassi, P.; Di Gianfrancesco, L.; Salmaso, L.; Ragonese, M.; Palermo, G.; Sacco, E.; Giancristofaro, R. A.; Ceccato, R.; Racioppi, M. Improved Non-Invasive Diagnosis of Bladder Cancer with an Electronic Nose: A Large Pilot Study. J. Clin. Med. 2021, 10, 4984. DOI: 10.3390/jcm10214984.
  • Lett, L.; George, M.; Slater, R.; De Lacy Costello, B.; Ratcliffe, N.; García-Fiñana, M.; Lazarowicz, H.; Probert, C. Investigation of Urinary Volatile Organic Compounds as Novel Diagnostic and Surveillance Biomarkers of Bladder Cancer. Br. J. Cancer. 2022, 127, 329–336. DOI: 10.1038/s41416-022-01785-8.
  • Zhu, S.; Corsetti, S.; Wang, Q.; Li, C.; Huang, Z.; Nabi, G. Optical Sensory Arrays for the Detection of Urinary Bladder Cancer-Related Volatile Organic Compounds. J. Biophoton. 2019, 12, e201800165. DOI: 10.1002/jbio.201800165.
  • Doménech-Carbó, A.; Pontones, J. L.; Doménech-Casasús, C.; Ramos, D. Asymptotic Modeling of Electrochemical Signaling: Testing Zn in Urine for Non-Invasive Bladder Cancer Diagnosis. Sens. Actuators, B. 2021, 347, 130646. DOI: 10.1016/j.snb.2021.130646.
  • Yang, Y. B.; Wang, J. F.; Huang, W. T.; Wan, G. J.; Xia, M. M.; Chen, D.; Zhang, Y.; Wang, Y. M.; Guo, F. D.; Tan, J.; et al. Integrated Urinalysis Devices Based on Interface-Engineered Field-Effect Transistor Biosensors Incorporated With Electronic Circuits. Adv. Mater. 2022, 34, 2203224.DOI: 10.1002/adma.202203224.
  • Qiu, H.; Wang, J.; Zhi, Y.; Yan, B.; Huang, Y.; Li, J.; Shen, C.; Dai, L.; Fang, Q.; Shi, C.; Li, W. Hyaluronic Acid-Conjugated Fluorescent Probe-Shielded Polydopamine Nanomedicines for Targeted Imaging and Chemotherapy of Bladder Cancer. ACS Appl. Mater. Interf. 2023, 15, 46668–46680. DOI: 10.1021/acsami.3c09564.
  • Grimm, M.-O.; Bex, A.; De Santis, M.; Ljungberg, B.; Catto, J. W. F.; Rouprêt, M.; Hussain, S. A.; Bellmunt, J.; Powles, T.; Wirth, M.; Van Poppel, H. Safe Use of Immune Checkpoint Inhibitors in the Multidisciplinary Management of Urological Cancer: The European Association of Urology Position in 2019. Eur. Urol. 2019, 76, 368–380. DOI: 10.1016/j.eururo.2019.05.041.
  • Faraj, S. F.; Munari, E.; Guner, G.; Taube, J.; Anders, R.; Hicks, J.; Meeker, A.; Schoenberg, M.; Bivalacqua, T.; Drake, C.; Netto, G. J. Assessment of Tumoral PD-L1 Expression and Intratumoral CD8+ T Cells in Urothelial Carcinoma. Urology. 2015, 85, 703.e1-703–e6. DOI: 10.1016/j.urology.2014.10.020.
  • Wuethrich, A.; Rajkumar, A. R.; Shanmugasundaram, K. B.; Reza, K. K.; Dey, S.; Howard, C. B.; Sina, A. A. I.; Trau, M. Single Droplet Detection of Immune Checkpoints on a Multiplexed Electrohydrodynamic Biosensor. Analyst. 2019, 144, 6914–6921. DOI: 10.1039/c9an01450k.
  • Zhan, H.; Xie, H.; Zhou, Q.; Liu, Y.; Huang, W. Synthesizing a Genetic Sensor Based on CRISPR-Cas9 for Specifically Killing p53-Deficient Cancer Cells. ACS Synth. Biol. 2018, 7, 1798–1807. DOI: 10.1021/acssynbio.8b00202.
  • Shi, J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer Nanomedicine: Progress, Challenges and Opportunities. Nat. Rev. Cancer. 2017, 17, 20–37. DOI: 10.1038/nrc.2016.108.
  • Dosio, F.; Arpicco, S.; Stella, B.; Fattal, E. Hyaluronic Acid for Anticancer Drug and Nucleic Acid Delivery. Adv. Drug Deliv. Rev. 2016, 97, 204–236. DOI: 10.1016/j.addr.2015.11.011.
  • Kaur, B.; Kumar, S.; Kaushik, B. K. Recent Advancements in Optical Biosensors for Cancer Detection. Biosens. Bioelectron. 2022, 197, 113805. DOI: 10.1016/j.bios.2021.113805.
  • Li, C.; Cui, Y. Z.; Ren, J. Y.; Zou, J. C.; Kuang, W.; Sun, X. Z.; Hu, X.; Yan, Y. Q.; Ling, X. M. Novel Cells-Based Electrochemical Sensor for Investigating the Interactions of Cancer Cells with Molecules and Screening Multitarget Anticancer Drugs. Anal. Chem. 2021, 93, 1480–1488. DOI: 10.1021/acs.analchem.0c03566.
  • Wang, Y.; Li, Z.; Lin, Q.; Wei, Y.; Wang, J.; Li, Y.; Yang, R.; Yuan, Q. Highly Sensitive Detection of Bladder Cancer-Related miRNA in Urine Using Time-Gated Luminescent Biochip. ACS Sens. 2019, 4, 2124–2130. DOI: 10.1021/acssensors.9b00927.
  • Masterson, A. N.; Liyanage, T.; Berman, C.; Kaimakliotis, H.; Johnson, M.; Sardar, R. A Novel Liquid Biopsy-Based Approach for Highly Specific Cancer Diagnostics: Mitigating False Responses in Assaying Patient Plasma-Derived Circulating microRNAs through Combined SERS and Plasmon-Enhanced Fluorescence Analyses. Analyst. 2020, 145, 4173–4180. DOI: 10.1039/d0an00538j.
  • Rong, S. Z.; Zou, L. N.; Zhu, Y.; Zhang, Z.; Liu, H. F.; Zhang, Y. C.; Zhang, H.; Gao, H. M.; Guan, H. J.; Dong, J.; et al. 2D/3D Material Amplification Strategy for Disposable Label-Free Electrochemical Immunosensor Based on rGO-TEPA@Cu-MOFs@SiO2@AgNPs Composites for NMP22 Detection. Microchem. J. 2021, 168, 106410. DOI: 10.1016/j.microc.2021.106410.
  • Shen, J. B. Electrochemical DNA Biosensor Based on thiolated-MWCNTs Modified Glassy Carbon Electrode for Determination of Protein and Hemoglobin in Urine at Exercise Training Levels. Int. J. Electrochem. Sci. 2021, 16, 210913. DOI: 10.20964/2021.09.12.
  • Wang, D. D.; Luo, L. X.; Deng, D. T.; Gong, G. A.; Qin, J. Y.; Cai, K.; Gu, Y. Y.; Mei, Y. Electrochemical Immunosensor for the Determination of Nuclear Matrix Protein 22 in Urine Using Carboxylated MWCNTs and Zeolitic Imidazolate Framework Modified with AgNPs. ACS Appl. Nano Mater. 2023, 6, 18328–18336. DOI: 10.1021/acsanm.3c03603.
  • Feng, Y. K.; Qu, X. Y.; Peng, Y.; Xu, X. Y.; Zhang, J.; Wang, Y.; Zhu, S.; Li, M. L.; Li, C.; Feng, N. H. Iodide-Enhanced Perovskite Nanozyme-Based Colorimetric Platform for Detection of Urinary Nuclear Matrix Protein 22. ACS Appl. Mater. Interf. 2023, 15, 27742–27749. DOI: 10.1021/acsami.3c05437.
  • Yang, Z. Y.; Chang, W. H.; Chiu, Y. C.; Lin, C. H. Noninvasive Detection of Bladder Cancer Markers Based on Gold Nanomushrooms and Sandwich Immunoassays. ACS Appl. Nano Mater. 2023, 6, 5557–5567. DOI: 10.1021/acsanm.2c05600.
  • Guan, X. L.; Lu, D.; Chen, Z. G.; Wang, Z. Y.; Zhou, G.; Fan, Y. B. Non-Invasive Detection of Bladder Cancer via Microfluidic Immunoassay of the Protein Biomarker NMP22. Anal. Methods. 2023, 15, 3275–3285. DOI: 10.1039/d3ay00664f.
  • Yola, M. L.; Atar, N.; Özcan, N. A Novel Electrochemical Lung Cancer Biomarker Cytokeratin 19 Fragment Antigen 21-1 Immunosensor Based on Si(3)N(4)/MoS(2) Incorporated MWCNTs and Core-Shell Type Magnetic Nanoparticles. Nanoscale. 2021, 13, 4660–4669. DOI: 10.1039/d1nr00244a.
  • Cheng, J.; Hu, K.; Liu, Q.; Liu, Y.; Yang, H.; Kong, J. Electrochemical Ultrasensitive Detection of CYFRA21-1 Using Ti3C2Tx-MXene as Enhancer and Covalent Organic Frameworks as Labels. Anal. Bioanal. Chem. 2021, 413, 2543–2551. DOI: 10.1007/s00216-021-03212-y.
  • Zhou, L.; Yang, L.; Wang, C.; Jia, H.; Xue, J.; Wei, Q.; Ju, H. Copper Doped Terbium Metal Organic Framework as Emitter for Sensitive Electrochemiluminescence Detection of CYFRA 21-1. Talanta. 2022, 238, 123047. DOI: 10.1016/j.talanta.2021.123047.
  • Feng, J. H.; Wu, T. T.; Cheng, Q.; Ma, H. M.; Ren, X.; Wang, X. Y.; Lee, J. Y.; Wei, Q.; Ju, H. X. A Microfluidic Cathodic Photoelectrochemical Biosensor Chip for the Targeted Detection of Cytokeratin 19 Fragments 21-1. Lab. Chip. 2021, 21, 378–384. DOI: 10.1039/d0lc01063d.
  • Lv, X.; Bi, M.; Xu, X.; Li, Y.; Geng, C.; Cui, B.; Fang, Y. An Ultrasensitive Ratiometric Immunosensor Based on the Ratios of Conjugated Distyrylbenzene Derivative Nanosheets with AIECL Properties and Electrochemical Signal for CYFRA21-1 Detection. Anal. Bioanal. Chem. 2022, 414, 1389–1402. DOI: 10.1007/s00216-021-03764-z.
  • Qu, L.; Yang, L.; Li, Y.; Ren, X.; Wang, H.; Fan, D.; Wang, X.; Wei, Q.; Ju, H. Dual-Signaling Electrochemical Ratiometric Method for Competitive Immunoassay of CYFRA21-1 Based on Urchin-like Fe3O4@PDA-Ag and Ni3Si2O5(OH)4-Au Absorbed Methylene Blue Nanotubes. ACS Appl. Mater. Interf. 2021, 13, 5795–5802. DOI: 10.1021/acsami.0c20049.
  • Zhang, S.; Wang, C.; Chi, H.; Hu, L.; Wang, H.; Wei, Q.; Wu, D. A Photoelectrochemical Biosensor for Detecting Cytokeratin-19 Fragments Based on CdS/Ni(OH)2 Core-Shell Nanosphere Composites Amplified by CdSe@MoSe2. Sens. Actuators, B. 2022, 360, 131643. DOI: 10.1016/j.snb.2022.131643.
  • Liu, S.; Dong, H.; Jiang, F.; Li, Y.; Wei, Q. Self-Powered Photoelectrochemical Biosensor with Inherent Potential for Charge Carriers Drive. Biosens. Bioelectron. 2022, 211, 114361. DOI: 10.1016/j.bios.2022.114361.
  • Feng, Y. G.; He, J. W.; Chen, D. N.; Jiang, L. Y.; Wang, A. J.; Bao, N.; Feng, J. J. A Sandwich-Type Electrochemical Immunosensor for CYFRA 21-1 Based on Probe-Confined in PtPd/Polydopamine/Hollow Carbon Spheres Coupled with Dendritic Au@Rh Nanocrystals. Microchim. Acta. 2022, 189,271. DOI: 10.1007/s00604-022-05372-9.
  • Wu, T.; Song, X.; Ren, X.; Dai, L.; Ma, H.; Wu, D.; Li, Y.; Wei, Q.; Ju, H. Catalytic Decomposition of the Hole-Derived H2O2 by AgBiS2@Ag Nanozyme to Enhance the Photocurrent of Z-Scheme BiVO4/ZnIn2S4 Photoelectrode in Microfluidic Immunosensing Platform. Anal. Chem. 2022, 94, 12127–12135. DOI: 10.1021/acs.analchem.2c02181.
  • Cai, K.; Pi, W.; Qin, J.; Peng, C.; Wang, D.; Gu, Y.; Mei, Y. Detection of CYFRA 21-1 in Human Serum by an Electrochemical Immunosensor Based on UiO-66-NH2@CMWCNTs and CS@AuNPs. Colloids Surf. B Biointerf. 2023, 230, 113517. DOI: 10.1016/j.colsurfb.2023.113517.
  • Li, X.; Zhou, Z.; Tang, Y.; Cheng Zhang, C.; Zheng, Y.; Gao, J.; Wang, Q. Modulation of Assembly and Disassembly of a New Tetraphenylethene Based Nanosensor for Highly Selective Detection of Hyaluronidase. Sens. Actuators, B. 2018, 276, 95–100. DOI: 10.1016/j.snb.2018.08.093.
  • Si, Y.; Li, L.; He, B.; Li, J. A Novel Surface-Enhanced Raman Scattering-Based Ratiometric Approach for Detection of Hyaluronidase in Urine. Talanta. 2020, 215, 120915. DOI: 10.1016/j.talanta.2020.120915.
  • Mobed, A.; Kohansal, F.; Dolati, S.; Hasanzadeh, M. A Novel Immuno-Device Based on the Specific Binding of AuNP-Supported CTAB with Biotinylated Antibody of Hyaluronic Acid toward an Early-Stage Recognition of a Biomarker: A Bioanalytical Assay in Real Samples Using Disposal Biosensor Technology. RSC Adv. 2022, 12, 28473–28488. DOI: 10.1039/d2ra04984h.
  • Ge, M.; Sun, J.; Chen, M.; Tian, J.; Yin, H.; Yin, J. A Hyaluronic Acid Fluorescent Hydrogel Based on Fluorescence Resonance Energy Transfer for Sensitive Detection of Hyaluronidase. Anal. Bioanal. Chem. 2020, 412, 1915–1923. DOI: 10.1007/s00216-020-02443-9.
  • Zhao, B.; Qi, L.; Tai, W.; Zhao, M.; Chen, X.; Yu, L.; Shi, J.; Wang, X.; Lin, J.-M.; Hu, Q. Paper-Based Flow Sensor for the Detection of Hyaluronidase via an Enzyme Hydrolysis-Induced Viscosity Change in a Polymer Solution. Anal. Chem. 2022, 94, 4643–4649. DOI: 10.1021/acs.analchem.1c04552.
  • Mobed, A.; Kohansal, F.; Dolati, S.; Hasanzadeh, M.; Shakouri, S. K. An Innovative Electrochemical Immuno-Platform for Monitoring Chronic Conditions Using the Biosensing of Hyaluronic Acid in Human Plasma Samples. Chemosensors. 2023, 11, 367. DOI: 10.3390/chemosensors11070367.
  • Li, Z.; Huang, X.; Liu, H.; Luo, F.; Qiu, B.; Lin, Z.; Chen, H. Electrochemiluminescence Biosensor for Hyaluronidase Based on the Adjustable Electrostatic Interaction between the Surface-Charge-Controllable Nanoparticles and Negatively Charged Electrode. ACS Sens. 2022, 7, 2012–2019. DOI: 10.1021/acssensors.2c00801.
  • Hu, Q.; Su, L.; Mao, Y.; Gan, S.; Bao, Y.; Qin, D.; Wang, W.; Zhang, Y.; Niu, L. Electrochemically Induced Grafting of Ferrocenyl Polymers for Ultrasensitive Cleavage-Based Interrogation of Matrix Metalloproteinase Activity. Biosens. Bioelectron. 2021, 178, 113010. DOI: 10.1016/j.bios.2021.113010.
  • Nisiewicz, M. K.; Gajda, A.; Kowalczyk, A.; Cupriak, A.; Kasprzak, A.; Bamburowicz-Klimkowska, M.; Grudzinski, I. P.; Nowicka, A. M. Novel Electrogravimetric Biosensors for the Ultrasensitive Detection of Plasma Matrix Metalloproteinase-2 Considered a Potential Tumor Biomarker. Anal. Chim. Acta. 2022, 1191, 339290. DOI: 10.1016/j.aca.2021.339290.
  • Palomar, Q.; Xu, X.; Selegård, R.; Aili, D.; Zhang, Z. Peptide Decorated Gold Nanoparticle/Carbon Nanotube Electrochemical Sensor for Ultrasensitive Detection of Matrix Metalloproteinase-7. Sens. Actuators, B. 2020, 325, 128789. DOI: 10.1016/j.snb.2020.128789.
  • Xiang, L.; Cheng, W.; Zhang, J.; Li, X.; Khan, A.; Yi, Y.; Li, J. Signal-off Electrochemical Sensor for Matrix Metalloproteinase 9 Detection Based on Sacrificial FeMOF and Host-Guest Strategy. Biosens. Bioelectron. 2023, 237, 115455. DOI: 10.1016/j.bios.2023.115455.
  • Park, J. A.; Park, E.; Kwon, Y.; Lee, W.; Ahn, J. H.; Kim, T.-H.; Jang, M.; Min, J.; Kim, Y.; Lee, T. Synthesis of Au-Decorated Boron Nitride Nanotubes and Its Application to Pretreatment-Free Electrochemical Biosensor for Matrix metalloproteinase9 in Clinical Sample. Sens. Actuators, B. 2024, 399, 134876. DOI: 10.1016/j.snb.2023.134876.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.