409
Views
144
CrossRef citations to date
0
Altmetric
Research Article

MUC1 and the MUCs: A Family of Human Mucins with Impact in Cancer Biology

, &
Pages 189-231 | Published online: 29 Sep 2008

REFERENCES

  • Strous GJ, Dekker J. Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 1992; 27: 57–92.
  • Baldus SE, Hanisch FG. Biochemistry and pathological importance of mucin-associated antigens in gastrointestinal neoplasia. Adv Cancer Res 2000; 79: 201–48.
  • Hanisch FG, Müller S. MUC1: The polymorphic appearance of a human mucin. Glycobiology 2000; 10: 439–49.
  • Corfield AP, Carroll D, Myerscough N, et al. Mucins in the gastrointestinal tract in health and disease. Front Biosci 2001; 6: D1321–57.
  • Lamblin G, Boersma A, Lhermitte M, et al. Further characterization, by a combined high-performance liquid chromatography/1H-NMR approach, of the heterogeneity displayed by the neutral carbohydrate chains of human bronchial mucins. Eur J Biochem 1984; 143: 227–36.
  • Hanisch FG, Egge H, Peter-Katalinic J, et al. Primary structures and Lewis blood-group-dependent expression of major sialylated saccharides from mucus glycoproteins of human seminal plasma. Eur J Biochem 1985; 152: 343–51.
  • Hanisch FG, Egge H, Peter-Katalinic J, et al. Structure of neutral oligosaccharides derived from mucus glycoproteins of human seminal plasma. Eur J Biochem 1986; 155: 239–47.
  • Hounsell EF, Lawson AM, Feeney J, et al. Structural analysis of the O-glycosidically linked core-region oligosaccharides of human meconium glycoproteins which express oncofoetal antigens. Eur J Biochem 1985; 148: 367–77.
  • Hounsell EF, Lawson AM, Stoll MS, et al. Characterisation by mass spectrometry and 500-MHz proton nuclear magnetic resonance spectroscopy of penta- and hexasaccharide chains of human foetal gastrointestinal mucins (meconium glycoproteins). Eur J Biochem 1989; 186: 597–610.
  • Mutsaers JH, van Halbeek H, Vliegenthart JF, et al. Typing of core and backbone domains of mucin-type oligosaccharides from human ovarian-cyst glycoproteins by 500-MHz 1H-NMR spectroscopy. Eur J Biochem 1986; 157: 139–46.
  • Del Villano BC, Brennan S, Brock P, et al. Radioimmunometric assay for a monoclonal antibody-defined tumor marker, CA 19-9. Clin Chem 1983; 29: 549–52.
  • Magnani JL, Steplewski Z, Koprowski H, et al. Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res 1983; 43: 5489–92.
  • Johnson VG, Schlom J, Paterson AJ, et al. Analysis of a human tumor-associated glycoprotein (TAG-72) identified by monoclonal antibody B72.3. Cancer Res 1986; 46: 850–7.
  • Gero EJ, Colcher D, Ferroni P, et al. CA 72-4 radioimmunoassay for the detection of the TAG-72 carcinoma-associated antigen in serum of patients. J Clin Lab Anal 1989; 3: 360–9.
  • Heptner G, Domschke S, Domschke W. Comparison of CA 72-4 with CA 19-9 and carcinoembryonic antigen in the serodiagnostics of gastrointestinal malignancies. Scand J Gastroenterol 1989; 24: 745–50.
  • Ohuchi N, Takahashi K, Matoba N, et al. Comparison of serum assays for TAG-72, CA19-9 and CEA in gastrointestinal carcinoma patients. Jpn J Clin Oncol 1989; 19: 242–8.
  • Byrne DJ, Browning MC, Cuschieri A. CA72-4: A new tumour marker for gastric cancer. Br J Surg 1990; 77: 1010–3.
  • Shimizu Y, Shaw S. Cell adhesion: Mucins in the mainstream. Nature 1993; 366: 630–1.
  • Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, et al. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem 1990; 265: 15286–93.
  • Lan MS, Batra SK, Qi WN, et al. Cloning and sequencing of a human pancreatic tumor mucin cDNA. J Biol Chem 1990; 265: 15294–9.
  • Ligtenberg MJ, Vos HL, Gennissen AM, et al. Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative amino termini. J Biol Chem 1990; 265: 5573–8.
  • Wreschner DH, Hareuveni M, Tsarfaty I, et al. Human epithelial tumor antigen cDNA sequences: Differential splicing may generate multiple protein forms. Eur J Biochem 1990; 189: 463–73.
  • Taylor-Papadimitriou J. Report on the first international workshop on carcinoma-associated mucins. Int J Cancer 1991; 49: 1–5.
  • Ormerod MG, Monaghan P, Easty D, et al. Asymmetrical distribution of epithelial membrane antigen on the plasma membranes of human breast cell lines in culture. Diagn Histopathol 1981; 4: 89–93.
  • Shimizu M, Yamauchi K. Isolation and characterization of mucin-like glycoprotein in human milk fat globule membrane. J Biochem (Tokyo) 1982; 91: 515–24.
  • Metzgar RS, Gaillard MT, Levine SJ, et al. Antigens of human pancreatic adenocarcinoma cells defined by murine monoclonal antibodies. Cancer Res 1982; 42: 601–8.
  • Karlsson S, Swallow DM, Griffiths B, et al. A genetic polymorphism of a human urinary mucin. Ann Hum Genet 1983; 47: 263–9.
  • Bramwell ME, Bhavanandan VP, Wiseman G, et al. Structure and function of the Ca antigen. Br J Cancer 1983; 48: 177–83.
  • Ceriani RL, Peterson JA, Lee JY, et al. Characterization of cell surface antigens of human mammary epithelial cells with monoclonal antibodies prepared against human milk fat globule. Somatic Cell Genet 1983; 9: 415–27.
  • Ellis IO, Robins RA, Elston CW, et al. A monoclonal antibody, NCRC-11, raised to human breast carcinoma. 1. Production and immunohistological characterization. Histopathology 1984; 8: 501–16.
  • Harris H. The carapace of the cancer cell: The Osler oration 1984. J R Coll Physicians Lond 1984; 18: 161–5.
  • Kufe D, Inghirami G, Abe M, et al. Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors. Hybridoma 1984; 3: 223–32.
  • de Kretser TA, Thorne HJ, Jacobs DJ, et al. The sebaceous gland antigen defined by the OM-1 monoclonal antibody is expressed at high density on the surface of ovarian carcinoma cells. Eur J Cancer Clin Oncol 1985; 21: 1019–35.
  • Hilkens J, Kroezen V, Bonfrer JM, et al. MAM-6 antigen, a new serum marker for breast cancer monitoring. Cancer Res 1986; 46: 2582–7.
  • Gendler S, Taylor-Papadimitriou J, Duhig T, et al. A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J Biol Chem 1988; 263: 12820–3.
  • Keydar I, Chou CS, Hareuveni M, et al. Production and characterization of monoclonal antibodies identifying breast tumor-associated antigens. Proc Natl Acad Sci USA 1989; 86: 1362–6.
  • Porchet N, Nguyen VC, Dufosse J, et al. Molecular cloning and chromosomal localization of a novel human tracheo-bronchial mucin cDNA containing tandemly repeated sequences of 48 base pairs. Biochem Biophys Res Commun 1991; 175: 414–22.
  • Bobek LA, Tsai H, Biesbrock AR, et al. Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). J Biol Chem 1993; 268: 20563–9.
  • Toribara NW, Roberton AM, Ho SB, et al. Human gastric mucin: Identification of a unique species by expression cloning. J Biol Chem 1993; 268: 5879–85.
  • Gum JR, Jr., Hicks JW, Toribara NW, et al. Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to preprovon Willebrand factor. J Biol Chem 1994; 269: 2440–6.
  • Meezaman D, Charles P, Daskal E, et al. Cloning and analysis of cDNA encoding a major airway glycoprotein, human tracheobronchial mucin (MUC5). J Biol Chem 1994; 269: 12932–9.
  • Shankar V, Gilmore MS, Elkins RC, et al. A novel human airway mucin cDNA encodes a protein with unique tandem-repeat organization. Biochem J 1994; 300: 295–8.
  • Guyonnet Duperat V, Audie JP, Debailleul V, et al. Characterization of the human mucin gene MUC5AC: A consensus cysteine-rich domain for 11p15 mucin genes? Biochem J 1995; 305: 211–9.
  • Lapensee L, Paquette Y, Bleau G. Allelic polymorphism and chromosomal localization of the human oviductin gene (MUC9). Fertil Steril 1997; 68: 702–8.
  • Van Klinken BJ, Van Dijken TC, Oussoren E, et al. Molecular cloning of human MUC3 cDNA reveals a novel 59 amino acid tandem repeat region. Biochem Biophys Res Commun 1997; 238: 143–8.
  • Nollet S, Moniaux N, Maury J, et al. Human mucin gene MUC4: Organization of its 5′-region and polymorphism of its central tandem repeat array. Biochem J 1998; 332: 739–48.
  • Williams SJ, McGuckin MA, Gotley DC, et al. Two novel mucin genes down-regulated in colorectal cancer identified by differential display. Cancer Res 1999; 59: 4083–9.
  • Williams SJ, Wreschner DH, Tran M, et al. Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J Biol Chem 2001; 276: 18327–36.
  • Yin BW, Lloyd KO. Molecular cloning of the CA125 ovarian cancer antigen: Identification as a new mucin, MUC16. J Biol Chem 2001; 276: 27371–5.
  • Yin BW, Dnistrian A, Lloyd KO. Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. Int J Cancer 2002; 98: 737–40.
  • Pallesen LT, Berglund L, Rasmussen LK, et al. Isolation and characterization of MUC15, a novel cell membrane-associated mucin. Eur J Biochem 2002; 269: 2755–63.
  • Gum JR, Jr., Crawley SC, Hicks JW, et al. MUC17, a novel membrane-tethered mucin. Biochem Biophys Res Commun 2002; 291: 466–75.
  • Forstner G, Zhang Y, McCool D, et al. Regulation of mucin secretion in T84 adenocarcinoma cells by forskolin: Relationship to Ca2+ and PKC. Am J Physiol 1994; 266: G606–12.
  • Gendler SJ, Spicer AP. Epithelial mucin genes. Annu Rev Physiol 1995; 57: 607–34.
  • Fox MF, Lahbib F, Pratt W, et al. Regional localization of the intestinal mucin gene MUC3 to chromosome 7q22. Ann Hum Genet 1992; 56: 281–7.
  • Williams SJ, Munster DJ, Quin RJ, et al. The MUC3 gene encodes a transmembrane mucin and is alternatively spliced. Biochem Biophys Res Commun 1999; 261: 83–9.
  • Pratt WS, Crawley S, Hicks J, et al. Multiple transcripts of MUC3: Evidence for two genes, MUC3A and MUC3B. Biochem Biophys Res Commun 2000; 275: 916–23.
  • Gross MS, Guyonnet-Duperat V, Porchet N, et al. Mucin 4 (MUC4) gene: Regional assignment (3q29) and RFLP analysis. Ann Genet 1992; 35: 21–6.
  • Higuchi T, Orita T, Nakanishi S, et al. Molecular cloning, genomic structure and expression analysis of MUC20, a novel Mucin protein, up-regulated in injured kidney. J Biol Chem 2004; 279: 1968–79.
  • Pigny P, Guyonnet-Duperat V, Hill AS, et al. Human mucin genes assigned to 11p15.5: Identification and organization of a cluster of genes. Genomics 1996; 38: 340–52.
  • Bobek LA, Liu J, Sait SN, et al. Structure and chromosomal localization of the human salivary mucin gene, MUC7. Genomics 1996; 31: 277–82.
  • Perez-Vilar J, Hill RL. The structure and assembly of secreted mucins. J Biol Chem 1999; 274: 31751–4.
  • Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem 1998; 67: 395–424.
  • Gum JR, Jr., Ho JJ, Pratt WS, et al. MUC3 human intestinal mucin. Analysis of gene structure, the carboxyl terminus, and a novel upstream repetitive region. J Biol Chem 1997; 272: 26678–86.
  • Moniaux N, Nollet S, Porchet N, et al. Complete sequence of the human mucin MUC4: A putative cell membrane-associated mucin. Biochem J 1999; 338: 325–33.
  • Patton S, Gendler SJ, Spicer AP. The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim Biophys Acta 1995; 1241: 407–23.
  • Carraway KL, Price-Schiavi SA, Komatsu M, et al. Multiple facets of sialomucin complex/MUC4, a membrane mucin and erbb2 ligand, in tumors and tissues (Y2K update). Front Biosci 2000; 5: D95–D107.
  • Crawley SC, Gum JR, Jr., Hicks JW, et al. Genomic organization and structure of the 3′ region of human MUC3: Alternative splicing predicts membrane-bound and soluble forms of the mucin. Biochem Biophys Res Commun 1999; 263: 728–36.
  • Leikauf GD, Borchers MT, Prows DR, et al. Mucin apoprotein expression in COPD. Chest 2002; 121: 166S–82S.
  • Corfield AP, Myerscough N, Longman R, et al. Mucins and mucosal protection in the gastrointestinal tract: New prospects for mucins in the pathology of gastrointestinal disease. Gut 2000; 47: 589–94.
  • Hanisch FG. O-glycosylation of the mucin type. Biol Chem 2001; 382: 143–9.
  • Brockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta 1999; 1473: 67–95.
  • Van den Steen P, Rudd PM, Dwek RA, et al. Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 1998; 33: 151–208.
  • Feizi T, Gooi HC, Childs RA, et al. Tumour-associated and differentiation antigens on the carbohydrate moieties of mucin-type glycoproteins. Biochem Soc Trans 1984; 12: 591–6.
  • Clausen H, Hakomori S. ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sang 1989; 56: 1–20.
  • Hounsell EF, Davies MJ, Renouf DV. O-linked protein glycosylation structure and function. Glycoconj J 1996; 13: 19–26.
  • Breg J, Van Halbeek H, Vliegenthart JF, et al. Primary structure of neutral oligosaccharides derived from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis, determined by combination of 500-MHz 1H-NMR spectroscopy and quantitative sugar analysis. 2. Structure of 19 oligosaccharides having the GlcNAc beta(1----3)GalNAc-ol core (type 3) or the GlcNAc beta(1----3)[GlcNAc beta(1----6)]GalNAc-ol core (type 4). Eur J Biochem 1988; 171: 643–54.
  • Podolsky DK. Oligosaccharide structures of isolated human colonic mucin species. J Biol Chem 1985; 260: 15510–5.
  • Podolsky DK. Oligosaccharide structures of human colonic mucin. J Biol Chem 1985; 260: 8262–71.
  • Kurosaka A, Nakajima H, Funakoshi I, et al. Structures of the major oligosaccharides from a human rectal adenocarcinoma glycoprotein. J Biol Chem 1983; 258: 11594–8.
  • Yamashita Y, Chung YS, Sawada T, et al. A new cancer-associated antigen defined by a monoclonal antibody against a synthetic carbohydrate chain. Int J Cancer 1994; 58: 349–55.
  • Chai WG, Hounsell EF, Cashmore GC, et al. Neutral oligosaccharides of bovine submaxillary mucin: A combined mass spectrometry and 1H-NMR study. Eur J Biochem 1992; 203: 257–68.
  • van Halbeek H, Strang AM, Lhermitte M, et al. Structures of monosialyl oligosaccharides isolated from the respiratory mucins of a non-secretor (O, Lea+b−) patient suffering from chronic bronchitis: Characterization of a novel type of mucin carbohydrate core structure. Glycobiology 1994; 4: 203–19.
  • Lloyd KO, Kabat EA. Immunochemical studies on blood groups. XLI. Proposed structures for the carbohydrate portions of blood group A, B, H, Lewis-a, and Lewis-b substances. Proc Natl Acad Sci USA 1968; 61: 1470–7.
  • Corfield AP, Wagner SA, Clamp JR, et al. Mucin degradation in the human colon: Production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun 1992; 60: 3971–8.
  • Corfield AP, Wagner SA, O’Donnell LJ, et al. The roles of enteric bacterial sialidase, sialate O-acetyl esterase and glycosulfatase in the degradation of human colonic mucin. Glycoconj J 1993; 10: 72–81.
  • Lloyd KO. Philip Levine award lecture: Blood group antigens as markers for normal differentiation and malignant change in human tissues. Am J Clin Pathol 1987; 87: 129–39.
  • Lloyd KO. The chemistry and immunochemistry of blood group A, B, H, and Lewis antigens: Past, present and future. Glycoconj J 2000; 17: 531–41.
  • Hilkens J, Buijs F. Biosynthesis of MAM-6, an epithelial sialomucin: Evidence for involvement of a rare proteolytic cleavage step in the endoplasmic reticulum. J Biol Chem 1988; 263: 4215–22.
  • Dekker J, Strous GJ. Covalent oligomerization of rat gastric mucin occurs in the rough endoplasmic reticulum, is N-glycosylation-dependent, and precedes initial O-glycosylation. J Biol Chem 1990; 265: 18116–22.
  • van Klinken BJ, Einerhand AW, Buller HA, et al. The oligomerization of a family of four genetically clustered human gastrointestinal mucins. Glycobiology 1998; 8: 67–75.
  • Asker N, Axelsson MA, Olofsson SO, et al. Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus. J Biol Chem 1998; 273: 18857–63.
  • Asker N, Axelsson MA, Olofsson SO, et al. Human MUC5AC mucin dimerizes in the rough endoplasmic reticulum, similarly to the MUC2 mucin. Biochem J 1998; 335: 381–7.
  • Sheehan JK, Thornton DJ, Howard M, et al. Biosynthesis of the MUC2 mucin: Evidence for a slow assembly of fully glycosylated units. Biochem J 1996; 315: 1055–60.
  • Litvinov SV, Hilkens J. The epithelial sialomucin, episialin, is sialylated during recycling. J Biol Chem 1993; 268: 21364–71.
  • Hanisch FG, Reis CA, Clausen H, et al. Evidence for glycosylation-dependent activities of polypeptide N-acetylgalactosaminyltransferases rGalNAc-T2 and -T4 on mucin glycopeptides. Glycobiology 2001; 11: 731–40.
  • Clausen H, Bennett EP. A family of UDP-GalNAc: Polypeptide N-acetylgalactosaminyltransferases control the initiation of mucin-type O-linked glycosylation. Glycobiology 1996; 6: 635–46.
  • Bennett EP, Hassan H, Mandel U, et al. Cloning of a human UDP-N-acetyl-alpha-D-Galactosamine: Polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O-glycosylation of the MUC1 tandem repeat. J Biol Chem 1998; 273: 30472–81.
  • Bennett EP, Hassan H, Mandel U, et al. Cloning and characterization of a close homologue of human UDP-N-acetyl-alpha-D-galactosamine: Polypeptide N-acetylgalactosaminyltransferase-T3, designated GalNAc-T6: Evidence for genetic but not functional redundancy. J Biol Chem 1999; 274: 25362–70.
  • Ten Hagen KG, Tetaert D, Hagen FK, et al. Characterization of a UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase that displays glycopeptide N-acetylgalactosaminyltransferase activity. J Biol Chem 1999; 274: 27867–74.
  • Wandall HH, Hassan H, Mirgorodskaya E, et al. Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem 1997; 272: 23503–14.
  • Hanisch FG, Müller S, Hassan H, et al. Dynamic epigenetic regulation of initial O-glycosylation by UDP-N-Acetylgalactosamine: peptide N-acetylgalactosaminyltransferases: Site-specific glycosylation of MUC1 repeat peptide influences the substrate qualities at adjacent or distant Ser/Thr positions. J Biol Chem 1999; 274: 9946–54.
  • Nishimori I, Johnson NR, Sanderson SD, et al. Influence of acceptor substrate primary amino acid sequence on the activity of human UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase: Studies with the MUC1 tandem repeat. J Biol Chem 1994; 269: 16123–30.
  • Stadie TR, Chai W, Lawson AM, et al. Studies on the order and site specificity of GalNAc transfer to MUC1 tandem repeats by UDP-GalNAc: Polypeptide N-acetylgalactosaminyltransferase from milk or mammary carcinoma cells. Eur J Biochem 1995; 229: 140–7.
  • Kinarsky L, Suryanarayanan G, Prakash O, et al. Conformational studies on the MUC1 tandem repeat glycopeptides: Implication for the enzymatic O-glycosylation of the mucin protein core. Glycobiology 2003; 13: 929–39.
  • Brockhausen I, Toki D, Brockhausen J, et al. Specificity of O-glycosylation by bovine colostrum UDP-GalNAc: Polypeptide alpha-N-acetylgalactosaminyltransferase using synthetic glycopep-tide substrates. Glycoconj J 1996; 13: 849–56.
  • Brockhausen I. Biosynthesis and functions of O-glycans and regulation of mucin antigen expression in cancer. Biochem Soc Trans 1997; 25: 871–4.
  • Loppnow H. Zytokine: Klassifikation, Rezeptoren, Wirkungsmechanismen. Internist (Berl) 2001; 42: 13–4, 17–27.
  • Cavaillon JM. Pro- versus anti-inflammatory cytokines: Myth or reality. Cell Mol Biol (Noisy-le-grand) 2001; 47: 695–702.
  • Oppenheim JJ. Cytokines: Past, present, and future. Int J Hematol 2001; 74: 3–8.
  • Playford RJ. Peptides and gastrointestinal mucosal integrity. Gut 1995; 37: 595–7.
  • Clark S, McGuckin MA, Hurst T, et al. Effect of interferon-gamma and TNF-alpha on MUC1 mucin expression in ovarian carcinoma cell lines. Dis Markers 1994; 12: 43–50.
  • Lagow EL, Carson DD. Synergistic stimulation of MUC1 expression in normal breast epithelia and breast cancer cells by interferon-gamma and tumor necrosis factor-alpha. J Cell Biochem 2002; 86: 759–72.
  • Lin J, Haruta A, Kawano H, et al. Induction of mucin gene expression in middle ear of rats by tumor necrosis factor-alpha: Potential cause for mucoid otitis media. J Infect Dis 2000; 182: 882–7.
  • Smirnova MG, Birchall JP, Pearson JP. TNF-alpha in the regulation of MUC5AC secretion: Some aspects of cytokine-induced mucin hypersecretion on the in vitro model. Cytokine 2000; 12: 1732–6.
  • Levine SJ, Larivee P, Logun C, et al. Tumor necrosis factor-alpha induces mucin hypersecretion and MUC-2 gene expression by human airway epithelial cells. Am J Respir Cell Mol Biol 1995; 12: 196–204.
  • Delmotte P, Degroote S, Merten MD, et al. Influence of TNFalpha on the sialylation of mucins produced by a transformed cell line MM-39 derived from human tracheal gland cells. Glycoconj J 2001; 18: 487–97.
  • Delmotte P, Degroote S, Lafitte JJ, et al. Tumor necrosis factor alpha increases the expression of glycosyltransferases and sulfotransferases responsible for the biosynthesis of sialylated and/or sulfated Lewis x epitopes in the human bronchial mucosa. J Biol Chem 2002; 277: 424–31.
  • Cornberg M, Enss ML, Makkink MK, et al. Variation of human mucin gene expression in gastric cancer cell lines and gastric mucous cell primary cultures. Eur J Cell Biol 1999; 78: 832–41.
  • Grohmann GP, Schirmacher P, Manzke O, et al. Modulation of MUC1 and blood group antigen expression in gastric adenocarcinoma cells by cytokines. Cytokine 2003; 23: 86–93.
  • Shimada S, Ogawa M, Schlom J, et al. Comparison of the interferon-gamma-mediated regulation of tumor-associated antigens expressed by human gastric carcinoma cells. In Vivo 1993; 7: 1–8.
  • Enss ML, Cornberg M, Wagner S, et al. Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180. Inflamm Res 2000; 49: 162–9.
  • Novotny-Smith CL, Zorbas MA, McIsaac AM, et al. Down-modulation of epidermal growth factor receptor accompanies TNF-induced differentiation of the DiFi human adenocarcinoma cell line toward a goblet-like phenotype. J Cell Physiol 1993; 157: 253–62.
  • Seregni E, Botti C, Bajetta E, et al. Hormonal regulation of MUC1 expression. Int J Biol Markers 1999; 14: 29–35.
  • Lancaster CA, Peat N, Duhig T, et al. Structure and expression of the human polymorphic epithelial mucin gene: An expressed VNTR unit. Biochem Biophys Res Commun 1990; 173: 1019–29.
  • Abe M, Siddiqui J, Kufe D. Sequence analysis of the 5′ region of the human DF3 breast carcinoma-associated antigen gene. Biochem Biophys Res Commun 1989; 165: 644–9.
  • Abe M, Kufe D. Characterization of cis-acting elements regulating transcription of the human DF3 breast carcinoma-associated antigen (MUC1) gene. Proc Natl Acad Sci USA 1993; 90: 282–6.
  • Tsarfaty I, Hareuveni M, Horev J, et al. Isolation and characterization of an expressed hyper-variable gene coding for a breast-cancer-associated antigen. Gene 1990; 93: 313–8.
  • Kovarik A, Peat N, Wilson D, et al. Analysis of the tissue-specific promoter of the MUC1 gene. J Biol Chem 1993; 268: 9917–26.
  • Gollub EG, Waksman H, Goswami S, et al. Mucin genes are regulated by estrogen and dexamethasone. Biochem Biophys Res Commun 1995; 217: 1006–14.
  • Botti C, Seregni E, Lombardo C, et al. Effects of steroid-free fetal serum and steroid supplementation on MUC1 gene expression in human breast cancer cell line MCF7. Anticancer Res 1997; 17: 205–8.
  • McGuckin MA, Quin RJ, Ward BG. Progesterone stimulates production and secretion of MUC1 epithelial mucin in steroid-responsive breast cancer cell lines. Int J Oncol 1998; 12: 939–45.
  • Siddiqui J, Abe M, Hayes D, et al. Isolation and sequencing of a cDNA coding for the human DF3 breast carcinoma-associated antigen. Proc Natl Acad Sci USA 1988; 85: 2320–3.
  • Müller S, Alving K, Peter-Katalinic J, et al. High density O-glycosylation on tandem repeat peptide from secretory MUC1 of T47D breast cancer cells. J Biol Chem 1999; 274: 18165–72.
  • Engelmann K, Baldus SE, Hanisch FG. Identification and topology of variant sequences within individual repeat domains of the human epithelial tumor mucin MUC1. J Biol Chem 2001; 276: 27764–9.
  • Fowler JC, Teixeira AS, Vinall LE, et al. Hypervariability of the membrane-associated mucin and cancer marker MUC1. Hum Genet 2003; 113: 473–9.
  • Wreschner DH, McGuckin MA, Williams SJ, et al. Generation of ligand-receptor alliances by ”SEA” module-mediated cleavage of membrane-associated mucin proteins. Protein Sci 2002; 11: 698–706.
  • Zrihan-Licht S, Vos HL, Baruch A, et al. Characterization and molecular cloning of a novel MUC1 protein, devoid of tandem repeats, expressed in human breast cancer tissue. Eur J Biochem 1994; 224: 787–95.
  • Baruch A, Hartmann M, Yoeli M, et al. The breast cancer-associated MUC1 gene generates both a receptor and its cognate binding protein. Cancer Res 1999; 59: 1552–61.
  • Obermair A, Schmid BC, Packer LM, et al. Expression of MUC1 splice variants in benign and malignant ovarian tumours. Int J Cancer 2002; 100: 166–71.
  • Agrawal B, Krantz MJ, Parker J, et al. Expression of MUC1 mucin on activated human T cells: Implications for a role of MUC1 in normal immune regulation. Cancer Res 1998; 58: 4079–81.
  • Agrawal B, Krantz MJ, Reddish MA, et al. Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nat Med 1998; 4: 43–9.
  • Dent GA, Civalier CJ, Brecher ME, et al. MUC1 expression in hematopoietic tissues. Am J Clin Pathol 1999; 111: 741–7.
  • Müller S, Goletz S, Packer N, et al. Localization of O-glycosylation sites on glycopeptide fragments from lactation-associated MUC1: All putative sites within the tandem repeat are glycosylation targets in vivo. J Biol Chem 1997; 272: 24780–93.
  • Altschuler Y, Kinlough CL, Poland PA, et al. Clathrin-mediated endocytosis of MUC1 is modulated by its glycosylation state. Mol Biol Cell 2000; 11: 819–31.
  • Ligtenberg MJ, Kruijshaar L, Buijs F, et al. Cell-associated episialin is a complex containing two proteins derived from a common precursor. J Biol Chem 1992; 267: 6171–7.
  • Bork P, Patthy L. The SEA module: A new extracellular domain associated with O-glycosylation. Protein Sci 1995; 4: 1421–5.
  • Schuster O, Klich G, Sinnwell V, et al. “Wave-type” structure of a synthetic hexaglycosylated decapeptide: A part of the extracellular domain of human glycophorin A. J Biomol NMR 1999; 14: 33–45.
  • Hinojosa-Kurtzberg AM, Johansson ME, Madsen CS, et al. Novel MUC1 splice variants contribute to mucin overexpression in CFTR-deficient mice. Am J Physiol Gastrointest Liver Physiol 2003; 284: G853–62.
  • Ligtenberg MJ, Buijs F, Vos HL, et al. Suppression of cellular aggregation by high levels of episialin. Cancer Res 1992; 52: 2318–24.
  • Hilkens J, Ligtenberg MJ, Vos HL, et al. Cell membrane-associated mucins and their adhesion-modulating property. Trends Biochem Sci 1992; 17: 359–63.
  • Kemperman H, Wijnands Y, Wesseling J, et al. The mucin epiglycanin on TA3/Ha carcinoma cells prevents alpha 6 beta 4-mediated adhesion to laminin and kalinin and E-cadherin-mediated cell-cell interaction. J Cell Biol 1994; 127: 2071–80.
  • Wesseling J, van der Valk SW, Vos HL, et al. Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J Cell Biol 1995; 129: 255–65.
  • Regimbald LH, Pilarski LM, Longenecker BM, et al. The breast mucin MUCI as a novel adhesion ligand for endothelial intercellular adhesion molecule 1 in breast cancer. Cancer Res 1996; 56: 4244–9.
  • Yamamoto M, Bharti A, Li Y, et al. Interaction of the DF3/MUC1 breast carcinoma-associated antigen and beta-catenin in cell adhesion. J Biol Chem 1997; 272: 12492–4.
  • Lowe JB, Stoolman LM, Nair RP, et al. ELAM-1–dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell 1990; 63: 475–84.
  • Phillips ML, Nudelman E, Gaeta FC, et al. ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 1990; 250: 1130–2.
  • Tiemeyer M, Swiedler SJ, Ishihara M, et al. Carbohydrate ligands for endothelial-leukocyte adhesion molecule 1. Proc Natl Acad Sci USA 1991; 88: 1138–42.
  • Walz G, Aruffo A, Kolanus W, et al. Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science 1990; 250: 1132–5.
  • Tyrrell D, James P, Rao N, et al. Structural requirements for the carbohydrate ligand of E-selectin. Proc Natl Acad Sci USA 1991; 88: 10372–6.
  • Takada A, Ohmori K, Takahashi N, et al. Adhesion of human cancer cells to vascular endothelium mediated by a carbohydrate antigen, sialyl Lewis A. Biochem Biophys Res Commun 1991; 179: 713–9.
  • Berg EL, Robinson MK, Mansson O, et al. A carbohydrate domain common to both sialyl Le(a) and sialyl Le(X) is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1. J Biol Chem 1991; 266: 14869–72.
  • Takada A, Ohmori K, Yoneda T, et al. Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endothelium. Cancer Res 1993; 53: 354–61.
  • Hayashi T, Takahashi T, Motoya S, et al. MUC1 mucin core protein binds to the domain 1 of ICAM-1. Digestion 2001; 63(Suppl. 1): 87–92.
  • Kam JL, Regimbald LH, Hilgers JH, et al. MUC1 synthetic peptide inhibition of intercellular adhesion molecule-1 and MUC1 binding requires six tandem repeats. Cancer Res 1998; 58: 5577–81.
  • Ciborowski P, Finn OJ. Non-glycosylated tandem repeats of MUC1 facilitate attachment of breast tumor cells to normal human lung tissue and immobilized extracellular matrix proteins (ECM) in vitro: Potential role in metastasis. Clin Exp Metastasis 2002; 19: 339–45.
  • Zrihan-Licht S, Baruch A, Elroy-Stein O, et al. Tyrosine phosphorylation of the MUC1 breast cancer membrane proteins: Cytokine receptor-like molecules. FEBS Lett 1994; 356: 130–6.
  • Spicer AP, Rowse GJ, Lidner TK, et al. Delayed mammary tumor progression in Muc-1 null mice. J Biol Chem 1995; 270: 30093–101.
  • Pandey P, Kharbanda S, Kufe D. Association of the DF3/MUC1 breast cancer antigen with Grb2 and the Sos/Ras exchange protein. Cancer Res 1995; 55: 4000–3.
  • Li Y, Kuwahara H, Ren J, et al. The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3 beta and beta-catenin. J Biol Chem 2001; 276: 6061–4.
  • Ren J, Li Y, Kufe D. Protein kinase C delta regulates function of the DF3/MUC1 carcinoma antigen in beta-catenin signaling. J Biol Chem 2002; 277: 17616–22.
  • Li Y, Ren J, Yu W, et al. The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and beta-catenin. J Biol Chem 2001; 276: 35239–42.
  • Li Y, Chen W, Ren J, et al. DF3/MUC1 Signaling in multiple myeloma cells is regulated by interleukin-7. Cancer Biol Ther 2003; 2: 187–93.
  • Li Y, Bharti A, Chen D, et al. Interaction of glycogen synthase kinase 3beta with the DF3/MUC1 carcinoma-associated antigen and beta-catenin. Mol Cell Biol 1998; 18: 7216–24.
  • Wen Y, Caffrey TC, Wheelock MJ, et al. Nuclear association of the cytoplasmic tail of MUC1 and beta-catenin. J Biol Chem 2003; 278: 38029–39.
  • Huang L, Ren J, Chen D, et al. MUC1 Cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. Cancer Biol Ther 2003; 2: 702–6.
  • Li Y, Yu WH, Ren J, et al. Heregulin targets gamma-catenin to the nucleolus by a mechanism dependent on the DF3/MUC1 oncoprotein. Mol Cancer Res 2003; 1: 765–75.
  • Carraway KL, Ramsauer VP, Haq B, et al. Cell signaling through membrane mucins. Bioessays 2003; 25: 66–71.
  • Li Y, Liu D, Chen D, et al. Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Oncogene 2003; 22: 6107–10.
  • Brockhausen I, Romero PA, Herscovics A. Glycosyltransferase changes upon differentiation of CaCo-2 human colonic adenocarcinoma cells. Cancer Res 1991; 51: 3136–42.
  • Hanisch FG, Uhlenbruck G, Peter-Katalinic J, et al. Structures of neutral O-linked polylactosaminoglycans on human skim milk mucins: A novel type of linearly extended poly-N-acetyllactosamine backbones with Gal beta(1–4)GlcNAc beta(1–6) repeating units. J Biol Chem 1989; 264: 872–83.
  • Hanisch FG, Peter-Katalinic J, Egge H, et al. Structures of acidic O-linked polylactosaminoglycans on human skim milk mucins. Glycoconj J 1990; 7: 525–43.
  • Hanisch FG, Stadie TR, Deutzmann F, et al. MUC1 glycoforms in breast cancer—cell line T47D as a model for carcinoma-associated alterations of 0-glycosylation. Eur J Biochem 1996; 236: 318–27.
  • Lloyd KO, Burchell J, Kudryashov V, et al. Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines: Demonstration of simpler and fewer glycan chains in tumor cells. J Biol Chem 1996; 271: 33325–34.
  • Müller S, Hanisch FG. Recombinant MUC1 probe authentically reflects cell-specific O-glycosylation profiles of endogenous breast cancer mucin: High-density and prevalent core; 2-based glycosylation. J Biol Chem 2002; 277: 26103–12.
  • Singhal AK. Histo-blood group antigens in cancer. Semin Cancer Biol 1991; 2: 379–88.
  • Baldus SE, Mönig SP, Hanisch FG, et al. Comparative evaluation of the prognostic value of MUC1, MUC2, sialyl-Lewis(a) and sialyl-Lewis(x) antigens in colorectal adenocarcinoma. Histopathology 2002; 40: 440–9.
  • Baldus SE, Zirbes TK, Mönig SP, et al. Histopathological subtypes and prognosis of gastric cancer are correlated with the expression of mucin-associated sialylated antigens: Sialosyl-Lewis(a), Sialosyl-Lewis(x) and sialosyl-Tn. Tumour Biol 1998; 19: 445–53.
  • Burdick MD, Harris A, Reid CJ, et al. Oligosaccharides expressed on MUC1 produced by pancreatic and colon tumor cell lines. J Biol Chem 1997; 272: 24198–202.
  • Varki A. Selectin ligands. Proc Natl Acad Sci USA 1994; 91: 7390–7.
  • Brockhausen I, Yang JM, Burchell J, et al. Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur J Biochem 1995; 233: 607–17.
  • Miles DW, Taylor-Papadimitriou J. Therapeutic aspects of polymorphic epithelial mucin in adenocarcinoma. Pharmacol Ther 1999; 82: 97–106.
  • Kotera Y, Fontenot JD, Pecher G, et al. Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res 1994; 54: 2856–60.
  • Richards ER, Devine PL, Quin RJ, et al. Antibodies reactive with the protein core of MUC1 mucin are present in ovarian cancer patients and healthy women. Cancer Immunol Immunother 1998; 46: 245–52.
  • Nakamura H, Hinoda Y, Nakagawa N, et al. Detection of circulating anti-MUC1 mucin core protein antibodies in patients with colorectal cancer. J Gastroenterol 1998; 33: 354–61.
  • Karsten U, Diotel C, Klich G, et al. Enhanced binding of antibodies to the DTR motif of MUC1 tandem repeat peptide is mediated by site-specific glycosylation. Cancer Res 1998; 58: 2541–9.
  • Petrarca C, Casalino B, von Mensdorff-Pouilly S, et al. Isolation of MUC1-primed B lymphocytes from tumour-draining lymph nodes by immunomagnetic beads. Cancer Immunol Immunother 1999; 47: 272–7.
  • Agrawal B, Reddish MA, Krantz MJ, et al. Does pregnancy immunize against breast cancer? Cancer Res 1995; 55: 2257–61.
  • Croce MV, Isla-Larrain MT, Capafons A, et al. Humoral immune response induced by the protein core of MUC1 mucin in pregnant and healthy women. Breast Cancer Res Treat 2001; 69: 1–11.
  • McGuckin MA, Devine PL, Ramm LE, et al. Factors affecting the measurement of tumor-associated MUC1 mucins in serum. Tumour Biol 1994; 15: 33–44.
  • Croce MV, Isla-Larrain MT, Price MR, et al. Detection of circulating mammary mucin (Muc1) and MUC1 immune complexes (Muc1-CIC) in healthy women. Int J Biol Markers 2001; 16: 112–20.
  • Agrawal B, Reddish MA, Longenecker BM. In vitro induction of MUC-1 peptide-specific type 1 T lymphocyte and cytotoxic T lymphocyte responses from healthy multiparous donors. J Immunol 1996; 157: 2089–95.
  • von Mensdorff-Pouilly S, Petrakou E, Kenemans P, et al. Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and n-acetylgalactosamine (GalNAc) peptides. Int J Cancer 2000; 86: 702–12.
  • Snijdewint FG, von Mensdorff-Pouilly S, Karuntu-Wanamarta AH, et al. Antibody-dependent cell-mediated cytotoxicity can be induced by MUC1 peptide vaccination of breast cancer patients. Int J Cancer 2001; 93: 97–106.
  • Dokurno P, Bates PA, Band HA, et al. Crystal structure at 1.95 A resolution of the breast tumour-specific antibody SM3 complexed with its peptide epitope reveals novel hypervariable loop recognition. J Mol Biol 1998; 284: 713–28.
  • von Mensdorff-Pouilly S, Snijdewint FG, Verstraeten AA, et al. Human MUC1 mucin: A multifaceted glycoprotein. Int J Biol Markers 2000; 15: 343–56.
  • Gendler SJ. MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia 2001; 6: 339–53.
  • Taylor-Papadimitriou J, Burchell JM, Plunkett T, et al. MUC1 and the immunobiology of cancer. J Mammary Gland Biol Neoplasia 2002; 7: 209–21.
  • Agrawal B, Gendler SJ, Longenecker BM. The biological role of mucins in cellular interactions and immune regulation: Prospects for cancer immunotherapy. Mol Med Today 1998; 4: 397–403.
  • Apostolopoulos V, Pietersz GA, McKenzie IF. MUC1 and breast cancer. Curr Opin Mol Ther 1999; 1: 98–103.
  • Zhang K, Sikut R, Hansson GC. A MUC1 mucin secreted from a colon carcinoma cell line inhibits target cell lysis by natural killer cells. Cell Immunol 1997; 176: 158–65.
  • van de Wiel-van Kemenade E, Ligtenberg MJ, de Boer AJ, et al. Episialin (MUC1) inhibits cytotoxic lymphocyte-target cell interaction. J Immunol 1993; 151: 767–76.
  • Hayes DF, Silberstein DS, Rodrique SW, et al. DF3 antigen, a human epithelial cell mucin, inhibits adhesion of eosinophils to antibody-coated targets. J Immunol 1990; 145: 962–70.
  • Nath D, Hartnell A, Happerfield L, et al. Macrophage-tumour cell interactions: Identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin. Immunology 1999; 98: 213–9.
  • Jerome KR, Barnd DL, Bendt KM, et al. Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res 1991; 51: 2908–16.
  • Jerome KR, Domenech N, Finn OJ. Tumor-specific cytotoxic T cell clones from patients with breast and pancreatic adenocarcinoma recognize EBV-immortalized B cells transfected with polymorphic epithelial mucin complementary DNA. J Immunol 1993; 151: 1654–62.
  • Ioannides CG, Fisk B, Jerome KR, et al. Cytotoxic T cells from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides. J Immunol 1993; 151: 3693–703.
  • Barnd DL, Lan MS, Metzgar RS, et al. Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc Natl Acad Sci USA 1989; 86: 7159–63.
  • Domenech N, Henderson RA, Finn OJ. Identification of an HLA-A11-restricted epitope from the tandem repeat domain of the epithelial tumor antigen mucin. J Immunol 1995; 155: 4766–74.
  • Apostolopoulos V, Haurum JS, McKenzie IF. MUC1 peptide epitopes associated with five different H-2 class I molecules. Eur J Immunol 1997; 27: 2579–87.
  • Apostolopoulos V, Karanikas V, Haurum JS, et al. Induction of HLA-A2-restricted CTLs to the mucin 1 human breast cancer antigen. J Immunol 1997; 159: 5211–8.
  • Magarian-Blander J, Ciborowski P, Hsia S, et al. Intercellular and intracellular events following the MHC-unrestricted TCR recognition of a tumor-specific peptide epitope on the epithelial antigen MUC1. J Immunol 1998; 160: 3111–20.
  • Hiltbold EM, Ciborowski P, Finn OJ. Naturally processed class II epitope from the tumor antigen MUC1 primes human CD4+ T cells. Cancer Res 1998; 58: 5066–70.
  • Vlad AM, Müller S, Cudic M, et al. Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: Processing of tumor antigen MUC1 glycopeptides for presentation to major histocompatibility complex class II-restricted T cells. J Exp Med 2002; 196: 1435–46.
  • Hanisch FG, Schwientek T, Von Bergwelt-Baildon MS, et al. O-Linked glycans control glycoprotein processing by antigen-presenting cells: A biochemical approach to the molecular aspects of MUC1 processing by dendritic cells. Eur J Immunol 2003; 33: 3242–54.
  • Stenman UH, Heikkinen R. Serum markers for breast cancer. Scand J Clin Lab Invest Suppl 1991; 206: 52–9.
  • Lamerz R, Stieber P, Fateh-Moghadam A. Serum marker combinations in human breast cancer (review). In Vivo 1993; 7: 607–13.
  • Devine PL, McGuckin MA, Ramm LE, et al. Serum mucin antigens CASA and MSA in tumors of the breast, ovary, lung, pancreas, bladder, colon, and prostate. A blind trial with 420 patients. Cancer 1993; 72: 2007–15.
  • Devine PL, McGuckin MA, Quin RJ, et al. Serum markers CASA and CA 15-3 in ovarian cancer: All MUC1 assays are not the same. Tumour Biol 1994; 15: 337–44.
  • Duffy MJ. Clinical uses of tumor markers: A critical review. Crit Rev Clin Lab Sci 2001; 38: 225–62.
  • Petrakou E, Murray A, Price MR. Epitope mapping of anti-MUC1 mucin protein core monoclonal antibodies. Tumour Biol 1998; 19(Suppl. 1): 21–9.
  • Bon GG, van Kamp GJ, Verstraeten RA, et al. Quantification of MUC1 in breast cancer patients: A method comparison study. Eur J Obstet Gynecol Reprod Biol 1999; 83: 67–75.
  • Norum LF, Varaas T, Kierulf B, et al. Carcinoma-associated MUC1 detected by immunoradio-metric assays. Tumour Biol 1998; 19(Suppl. 1): 134–46.
  • Norum LF, Nilsson O, Nustad K. Automated immunofluorometric assay for MUC1. Tumour Biol 2001; 22: 169–75.
  • Norum LF, Sauren AM, Rye PD, et al. New immunoassays for MUC1 in breast cancer. Tumour Biol 2001; 22: 216–22.
  • Bjerner J, Norum LF, Nilsson O, et al. MUC1 serum assays in breast cancer: Tumor specificities and reference levels. Tumour Biol 2002; 23: 315–23.
  • Bast RC, Jr, Klug TL, St John E, et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med 1983; 309: 883–7.
  • Bast RC, Jr, Xu FJ, Yu YH, et al. CA 125: The past and the future. Int J Biol Markers 1998; 13: 179–87.
  • Bast RC, Jr. Status of tumor markers in ovarian cancer screening. J Clin Oncol 2003; 21: 200–5.
  • Gourevitch MM, von Mensdorff-Pouilly S, Litvinov SV, et al. Polymorphic epithelial mucin (MUC-1)-containing circulating immune complexes in carcinoma patients. Br J Cancer 1995; 72: 934–8.
  • von Mensdorff-Pouilly S, Gourevitch MM, Kenemans P, et al. Humoral immune response to polymorphic epithelial mucin (MUC-1) in patients with benign and malignant breast tumours. Eur J Cancer 1996; 32A: 1325–31.
  • von Mensdorff-Pouilly S, Gourevitch MM, Kenemans P, et al. An enzyme-linked immunosor-bent assay for the measurement of circulating antibodies to polymorphic epithelial mucin (MUC1). Tumour Biol 1998; 19: 186–95.
  • von Mensdorff-Pouilly S, Verstraeten AA, Kenemans P, et al. Survival in early breast cancer patients is favorably influenced by a natural humoral immune response to polymorphic epithelial mucin. J Clin Oncol 2000; 18: 574–83.
  • Hirasawa Y, Kohno N, Yokoyama A, et al. Natural autoantibody to MUC1 is a prognostic indicator for non-small cell lung cancer. Am J Respir Crit Care Med 2000; 161: 589–94.
  • Hamanaka Y, Suehiro Y, Fukui M, et al. Circulating anti-MUC1 IgG antibodies as a favorable prognostic factor for pancreatic cancer. Int J Cancer 2003; 103: 97–100.
  • Treon SP, Maimonis P, Bua D, et al. Elevated soluble MUC1 levels and decreased anti-MUC1 antibody levels in patients with multiple myeloma. Blood 2000; 96: 3147–53.
  • Ellis IO, Hinton CP, MacNay J, et al. Immunocytochemical staining of breast carcinoma with the monoclonal antibody NCRC 11: A new prognostic indicator. Br Med J (Clin Res Ed) 1985; 290: 881–3.
  • Ellis IO, Bell J, Todd JM, et al. Evaluation of immunoreactivity with monoclonal antibody NCRC 11 in breast carcinoma. Br J Cancer 1987; 56: 295–9.
  • Walker RA. Assessment of milk fat globule membrane antibodies and lectins as markers of short-term prognosis in breast cancer. Br J Cancer 1990; 62: 462–6.
  • Hayes DF, Mesa-Tejada R, Papsidero LD, et al. Prediction of prognosis in primary breast cancer by detection of a high molecular weight mucin-like antigen using monoclonal antibodies DF3, F36/22, and CU18: A Cancer and Leukemia Group B study. J Clin Oncol 1991; 9: 1113–23.
  • Byrne J, Horgan PG, England S, et al. An evaluation of the usefulness of primary tumour expression of MCA and CA15-3 as prognostic indicators in breast carcinoma. Eur J Surg Oncol 1992; 18: 230–4.
  • McGuckin MA, Walsh MD, Hohn BG, et al. Prognostic significance of MUC1 epithelial mucin expression in breast cancer. Hum Pathol 1995; 26: 432–9.
  • Luna-More S, Rius F, Weil B, et al. EMA: A differentiation antigen related to node metastatic capacity of breast carcinomas. Pathol Res Pract 2001; 197: 419–25.
  • Rahn JJ, Dabbagh L, Pasdar M, et al. The importance of MUC1 cellular localization in patients with breast carcinoma: An immunohistologic study of 71 patients and review of the literature. Cancer 2001; 91: 1973–82.
  • Ceriani RL, Chan CM, Baratta FS, et al. Levels of expression of breast epithelial mucin detected by monoclonal antibody BrE-3 in breast-cancer prognosis. Int J Cancer 1992; 51: 343–54.
  • Croce MV, Isla-Larrain MT, Rua CE, et al. Patterns of MUC1 tissue expression defined by an anti-MUC1 cytoplasmic tail monoclonal antibody in breast cancer. J Histochem Cytochem 2003; 51: 781–8.
  • Hanson JM, BroweIl DA, Cunliffe WJ, et al. MUC1 expression in primary breast cancer: The effect of tamoxifen treatment. Breast Cancer Res Treat 2001; 67: 215–22.
  • Walsh MD, McGuckin MA, Devine PL, et al. Expression of MUC2 epithelial mucin in breast carcinoma. J Clin Pathol 1993; 46: 922–5.
  • Matsukita S, Nomoto M, Kitajima S, et al. Expression of mucins (MUC1, MUC2, MUC5AC and MUC6) in mucinous carcinoma of the breast: Comparison with invasive ductal carcinoma. Histopathology 2003; 42: 26–36.
  • Adsay NV, Merati K, Nassar H, et al. Pathogenesis of colloid (pure mucinous) carcinoma of exocrine organs: Coupling of gel-forming mucin (MUC2) production with altered cell polarity and abnormal cell-stroma interaction may be the key factor in the morphogenesis and indolent behavior of colloid carcinoma in the breast and pancreas. Am J Surg Pathol 2003; 27: 571–8.
  • Springer GF. Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med 1997; 75: 594–602.
  • Wang BL, Springer GF, Carlstedt SC. Quantitative computerized image analysis of Tn and T (Thomsen-Friedenreich) epitopes in prognostication of human breast carcinoma. J Histochem Cytochem 1997; 45: 1393–400.
  • Leivonen M, Nordling S, Lundin J, et al. STn and prognosis in breast cancer. Oncology 2001; 61: 299–305.
  • Kinney AY, Sahin A, Vernon SW, et al. The prognostic significance of sialyl-Tn antigen in women treated with breast carcinoma treated with adjuvant chemotherapy. Cancer 1997; 80: 2240–9.
  • Yamaguchi A, Ding K, Maehara M, et al. Expression of nm23-H1 gene and Sialyl Lewis X antigen in breast cancer. Oncology 1998; 55: 357–62.
  • Nakagoe T, Fukushima K, Itoyanagi N, et al. Expression of ABH/Lewis-related antigens as prognostic factors in patients with breast cancer. J Cancer Res Clin Oncol 2002; 128: 257–64.
  • Inufusa H, Nakatani Y, Adachi T, et al. Correlation of prognosis of breast cancer patients and expression of Ley which acts as a cofactor of tumor procoagulant. Int J Oncol 1998; 13: 481–7.
  • Sakamoto H, Yonezawa S, Utsunomiya T, et al. Mucin antigen expression in gastric carcinomas of young and old adults. Hum Pathol 1997; 28: 1056–65.
  • Baldus SE, Zirbes TK, Engel S, et al. Correlation of the immunohistochemical reactivity of mucin peptide cores MUC1 and MUC2 with the histopathological subtype and prognosis of gastric carcinomas. Int J Cancer 1998; 79: 133–8.
  • Utsunomiya T, Yonezawa S, Sakamoto H, et al. Expression of MUC1 and MUC2 mucins in gastric carcinomas: Its relationship with the prognosis of the patients. Clin Cancer Res 1998; 4: 2605–14.
  • Baldus SE, Zirbes TK, Glossmann J, et al. Immunoreactivity of monoclonal antibody BW835 represents a marker of progression and prognosis in early gastric cancer. Oncology 2001; 61: 147–55.
  • Reis CA, David L, Seixas M, et al. Expression of fully and under-glycosylated forms of MUC1 mucin in gastric carcinoma. Int J Cancer 1998; 79: 402–10.
  • Bara J, Chastre E, Mahiou J, et al. Gastric M1 mucin, an early oncofetal marker of colon carcinogenesis, is encoded by the MUC5AC gene. Int J Cancer 1998; 75: 767–73.
  • Baldus SE, Mönig SP, Arkenau V, et al. Correlation of MUC5AC immunoreactivity with histopathological subtypes and prognosis of gastric carcinoma. Ann Surg Oncol 2002; 9: 887–93.
  • Machado JC, Nogueira AM, Carneiro F, et al. Gastric carcinoma exhibits distinct types of cell differentiation: An immunohistochemical study of trefoil peptides (TFF1 and TFF2) and mucins (MUC1, MUC2, MUC5AC, and MUC6). J Pathol 2000; 190: 437–43.
  • Werther JL, Tatematsu M, Klein R, et al. Sialosyl-Tn antigen as a marker of gastric cancer progression: An international study. Int J Cancer 1996; 69: 193–9.
  • Chung YS, Yamashita Y, Kato Y, et al. Prognostic significance of T antigen expression in patients with gastric carcinoma. Cancer 1996; 77: 1768–73.
  • Nakamori S, Furukawa H, Hiratsuka M, et al. Expression of carbohydrate antigen sialyl Le(a): A new functional prognostic factor in gastric cancer. J Clin Oncol 1997; 15: 816–25.
  • Muto T, Bussey HJ, Morson BC. The evolution of cancer of the colon and rectum. Cancer 1975; 36: 2251–70.
  • Zotter S, Lossnitzer A, Hageman PC, et al. Immunohistochemical localization of the epithelial marker MAM-6 in invasive malignancies and highly dysplastic adenomas of the large intestine. Lab Invest 1987; 57: 193–9.
  • Andrews CW, Jr., Jessup JM, Goldman H, et al. Localization of tumor-associated glycoprotein DF3 in normal, inflammatory, and neoplastic lesions of the colon. Cancer 1993; 72: 3185–90.
  • Ho SB, Niehans GA, Lyftogt C, et al. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res 1993; 53: 641–51.
  • Baldus SE, Hanisch FG, Kotlarek GM, et al. Coexpression of MUC1 mucin peptide core and the Thomsen-Friedenreich antigen in colorectal neoplasms. Cancer 1998; 82: 1019–27.
  • Ajioka Y, Watanabe H, Jass JR. MUC1 and MUC2 mucins in flat and polypoid colorectal adenomas. J Clin Pathol 1997; 50: 417–21.
  • Cao Y, Schlag PM, Karsten U. Immunodetection of epithelial mucin (MUC1, MUC3) and mucin-associated glycotopes (TF, Tn, and sialosyl-Tn) in benign and malignant lesions of colonic epithelium: Apolar localization corresponds to malignant transformation. Virchows Arch 1997; 431: 159–66.
  • Boland CR, Montgomery CK, Kim YS. Alterations in human colonic mucin occurring with cellular differentiation and malignant transformation. Proc Natl Acad Sci USA 1982; 79: 2051–5.
  • Cooper HS, Reuter VE. Peanut lectin-binding sites in polyps of the colon and rectum: Adenomas, hyperplastic polyps, and adenomas with in situ carcinoma. Lab Invest 1983; 49: 655–61.
  • McGarrity TJ, Peiffer LP, Abt AB. Lectin histochemistry of adenomatous polyps: Not a predictor of metachronous lesions. Cancer 1989; 64: 1708–13.
  • Yuan M, Itzkowitz SH, Boland CR, et al. Comparison of T-antigen expression in normal, premalignant, and malignant human colonic tissue using lectin and antibody immunohistochemistry. Cancer Res 1986; 46: 4841–7.
  • Wolf BC, D’Emilia JC, Salem RR, et al. Detection of the tumor-associated glycoprotein antigen (TAG-72) in premalignant lesions of the colon. J Natl Cancer Inst 1989; 81: 1913–7.
  • Itzkowitz SH, Bloom EJ, Lau TS, et al. Mucin associated Tn and sialosyl-Tn antigen expression in colorectal polyps. Gut 1992; 33: 518–23.
  • Kim YS, Yuan M, Itzkowitz SH, et al. Expression of LeY and extended LeY blood group-related antigens in human malignant, premalignant, and nonmalignant colonic tissues. Cancer Res 1986; 46: 5985–92.
  • Yuan M, Itzkowitz SH, Ferrell LD, et al. Expression of LewisX and sialylated LewisX antigens in human colorectal polyps. J Natl Cancer Inst 1987; 78: 479–88.
  • Baldus SE, Vierbuchen M, Hanisch FG, et al. Expression of alpha-3/4-monofucosylated polylactosaminoglycan epitope, as defined by monoclonal antibody FW6, is a marker of the colorectal adenoma-carcinoma sequence. Cancer 1995; 76: 954–60.
  • Baldus SE, Hanisch FG, Pütz C, et al. Immunoreactivity of Lewis blood group and mucin peptide core antigens: Correlations with grade of dysplasia and malignant transformation in the colorectal adenoma-carcinoma sequence. Histol Histopathol 2002; 17: 191–8.
  • Hanski C, Bornhoeft G, Topf N, et al. Detection of a mucin marker for the adenoma-carcinoma sequence inhuman colonic mucosa by monoclonal antibody AM-3. J Clin Pathol 1990; 43: 379–84.
  • Nakamori S, Ota DM, Cleary KR, et al. MUC1 mucin expression as a marker of progression and metastasis of human colorectal carcinoma. Gastroenterology 1994; 106: 353–61.
  • Hiraga Y, Tanaka S, Haruma K, et al. Immunoreactive MUC1 expression at the deepest invasive portion correlates with prognosis of colorectal cancer. Oncology 1998; 55: 307–19.
  • Kimura T, Tanaka S, Haruma K, et al. Clinical significance of MUC1 and E-cadherin expression, cellular proliferation, and angiogenesis at the deepest invasive portion of colorectal cancer. Int J Oncol 2000; 16: 55–64.
  • Manne U, Weiss HL, Grizzle WE. Racial differences in the prognostic usefulness of MUC1 and MUC2 in colorectal adenocarcinomas. Clin Cancer Res 2000; 6: 4017–25.
  • Blank M, Klussmann E, Krüger-Krasagakes S, et al. Expression of MUC2-mucin in colorectal adenomas and carcinomas of different histological types. Int J Cancer 1994; 59: 301–6.
  • Ajioka Y, Allison LJ, Jass JR. Significance of MUC1 and MUC2 mucin expression in colorectal cancer. J Clin Pathol 1996; 49: 560–4.
  • Baldus SE, Zirbes TK, Hanisch FG, et al. Thomsen-Friedenreich antigen presents as a prognostic factor in colorectal carcinoma: A clinicopathologic study of 264 patients. Cancer 2000; 88: 1536–43.
  • Itzkowitz SH, Bloom EJ, Kokal WA, et al. Sialosyl-Tn. A novel mucin antigen associated with prognosis in colorectal cancer patients. Cancer 1990; 66: 1960–6.
  • Vierbuchen MJ, Fruechtnicht W, Brackrock S, et al. Quantitative lectin-histochemical and immunohistochemical studies on the occurrence of alpha(2,3)- and alpha(2,6)-linked sialic acid residues in colorectal carcinomas: Relation to clinicopathologic features. Cancer 1995; 76: 727–35.
  • Nakayama T, Watanabe M, Katsumata T, et al. Expression of sialyl Lewis(a) as a new prognostic factor for patients with advanced colorectal carcinoma. Cancer 1995; 75: 2051–6.
  • Nakamori S, Kameyama M, Imaoka S, et al. Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: Clinicopathological and immunohistochemical study. Cancer Res 1993; 53: 3632–7.
  • Nakagoe T, Fukushima K, Nanashima A, et al. Expression of Lewis(a), sialyl Lewis(a), Lewis(x) and sialyl Lewis(x) antigens as prognostic factors in patients with colorectal cancer. Can J Gastroenterol 2000; 14: 753–60.
  • Byrd JC, Ho JJ, Lamport DT, et al. Relationship of pancreatic cancer apomucin to mammary and intestinal apomucins. Cancer Res 1991; 51: 1026–33.
  • Osako M, Yonezawa S, Siddiki B, et al. Immunohistochemical study of mucin carbohydrates and core proteins in human pancreatic tumors. Cancer 1993; 71: 2191–9.
  • Terada T, Ohta T, Sasaki M, et al. Expression of MUC apomucins in normal pancreas and pancreatic tumours. J Pathol 1996; 180: 160–5.
  • Masaki Y, Oka M, Ogura Y, et al. Sialylated MUC1 mucin expression in normal pancreas, benign pancreatic lesions, and pancreatic ductal adenocarcinoma. Hepatogastroenterology 1999; 46: 2240–5.
  • Hanski C, Hofmeier M, Schmitt-Gräff A, et al. Overexpression or ectopic expression of MUC2 is the common property of mucinous carcinomas of the colon, pancreas, breast, and ovary. J Pathol 1997; 182: 385–91.
  • Lüttges J, Zamboni G, Longnecker D, et al. The immunohistochemical mucin expression pattern distinguishes different types of intraductal papillary mucinous neoplasms of the pancreas and determines their relationship to mucinous noncystic carcinoma and ductal adenocarcinoma. Am J Surg Pathol 2001; 25: 942–8.
  • Terris B, Dubois S, Buisine MP, et al. Mucin gene expression in intraductal papillary-mucinous pancreatic tumours and related lesions. J Pathol 2002; 197: 632–7.
  • Higashi M, Yonezawa S, Ho JJ, et al. Expression of MUC1 and MUC2 mucin antigens in intrahepatic bile duct tumors: Its relationship with a new morphological classification of cholangiocarcinoma. Hepatology 1999; 30: 1347–55.
  • Matsumura N, Yamamoto M, Aruga A, et al. Correlation between expression of MUC1 core protein and outcome after surgery in mass-forming intrahepatic cholangiocarcinoma. Cancer 2002; 94: 1770–6.
  • Takao S, Uchikura K, Yonezawa S, et al. Mucin core protein expression in extrahepatic bile duct carcinoma is associated with metastases to the liver and poor prognosis. Cancer 1999; 86: 1966–75.
  • Tamada S, Goto M, Nomoto M, et al. Expression of MUC1 and MUC2 mucins in extrahepatic bile duct carcinomas: Its relationship with tumor progression and prognosis. Pathol Int 2002; 52: 713–23.
  • Kashiwagi H, Kijima H, Dowaki S, et al. MUC1 and MUC2 expression in human gallbladder carcinoma: A clinicopathological study and relationship with prognosis. Oncol Rep 2001; 8: 485–9.
  • Kawamoto T, Shoda J, Irimura T, et al. Expression of MUC1 mucins in the subserosal layer correlates with postsurgical prognosis of pathological tumor stage 2 carcinoma of the gallbladder. Clin Cancer Res 2001; 7: 1333–42.
  • Guddo F, Giatromanolaki A, Koukourakis MI, et al. MUC1 (episialin) expression in non-small cell lung cancer is independent of EGFR and c-erbB-2 expression and correlates with poor survival in node positive patients. J Clin Pathol 1998; 51: 667–71.
  • Giatromanolaki A, Koukourakis MI, Sivridis E, et al. Coexpression of MUC1 glycoprotein with multiple angiogenic factors in non-small cell lung cancer suggests coactivation of angiogenic and migration pathways. Clin Cancer Res 2000; 6: 1917–21.
  • Takanami I. Expression of Thomsen-Friedenreich antigen as a marker of poor prognosis in pulmonary adenocarcinoma. Oncol Rep 1999; 6: 341–4.
  • Miyake M, Taki T, Hitomi S, et al. Correlation of expression of H/Le(y)/Le(b) antigens with survival in patients with carcinoma of the lung. N Engl J Med 1992; 327: 14–8.
  • Tanaka F, Miyahara R, Ohtake Y, et al. Lewis Y antigen expression and postoperative survival in non-small cell lung cancer. Ann Thorac Surg 1998; 66: 1745–50.
  • Mehdi SA, Tatum AH, Newman NB, et al. Prognostic significance of Lewis y antigen in resected stage I and II non-small cell lung cancer. Chest 1998; 114: 1309–15.
  • Ogawa J, Iwazaki M, Inoue H, et al. Relation of ABH blood group antigen expression to prognosis in lung carcinoma. Tokai J Exp Clin Med 1987; 12: 49–54.
  • Matsumoto H, Muramatsu H, Shimotakahara T, et al. Correlation of expression of ABH blood group carbohydrate antigens with metastatic potential in human lung carcinomas. Cancer 1993; 72: 75–81.
  • Lee JS, Ro JY, Sahin AA, et al. Expression of blood-group antigen A—a favorable prognostic factor in non-small-cell lung cancer. N Engl J Med 1991; 324: 1084–90.
  • Giuntoli RL, 2nd, Rodriguez GC, Whitaker RS, et al. Mucin gene expression in ovarian cancers. Cancer Res 1998; 58: 5546–50.
  • Dong Y, Walsh MD, Cummings MC, et al. Expression of MUC1 and MUC2 mucins in epithelial ovarian tumours. J Pathol 1997; 183: 311–7.
  • Tashiro Y, Yonezawa S, Kim YS, et al. Immunohistochemical study of mucin carbohydrates and core proteins in human ovarian tumors. Hum Pathol 1994; 25: 364–72.
  • Feng H, Ghazizadeh M, Konishi H, et al. Expression of MUC1 and MUC2 mucin gene products in human ovarian carcinomas. Jpn J Clin Oncol 2002; 32: 525–9.
  • Friedlander M, Leary J, Russell P. An evaluation of CA125, CA1 and peanut lectin immunore-activity in epithelial ovarian neoplasms: Correlation with histopathological features, prognostic variables and patient outcome. Pathology 1988; 20: 38–44.
  • Holschneider CH, Berek JS. Ovarian cancer: Epidemiology, biology, and prognostic factors. Semin Surg Oncol 2000; 19: 3–10.
  • Ghazizadeh M, Ogawa H, Sasaki Y, et al. Mucin carbohydrate antigens (T, Tn, and sialyl-Tn) in human ovarian carcinomas: Relationship with histopathology and prognosis. Hum Pathol 1997; 28: 960–6.
  • Ogawa H, Ghazizadeh M, Araki T. Tn and sialyl-Tn antigens as potential prognostic markers in human ovarian carcinoma. Gynecol Obstet Invest 1996; 41: 278–83.
  • Davidson B, Gotlieb WH, Ben-Baruch G, et al. Expression of carbohydrate antigens in advanced-stage ovarian carcinomas and their metastases—a clinicopathologic study. Gynecol Oncol 2000; 77: 35–43.
  • Welshinger M, Finstad CL, Venkatraman E, et al. Expression of A, B, and H blood group antigens in epithelial ovarian cancer: Relationship to tumor grade and patient survival. Gynecol Oncol 1996; 62: 106–12.
  • Sloane JP, Hughes F, Ormerod MG. An assessment of the value of epithelial membrane antigen and other epithelial markers in solving diagnostic problems in tumour histopathology. Histochem J 1983; 15: 645–54.
  • Delsol G, Gatter KC, Stein H, et al. Human lymphoid cells express epithelial membrane antigen: Implications for diagnosis of human neoplasms. Lancet 1984; 2: 1124–9.
  • Paydas S, Sahin B, Gonlusen G, et al. MUC1 expression in plasmacytoma. Leuk Res 2001; 25: 221–5.
  • Noto H, Takahashi T, Makiguchi Y, et al. Cytotoxic T lymphocytes derived from bone marrow mononuclear cells of multiple myeloma patients recognize an underglycosylated form of MUC1 mucin. Int Immunol 1997; 9: 791–8.
  • Treon SP, Raje N, Anderson KC. Immunotherapeutic strategies for the treatment of plasma cell malignancies. Semin Oncol 2000; 27: 598–613.
  • Burton J, Mishina D, Cardillo T, et al. Epithelial mucin-1 (MUC1) expression and MA5 anti-MUC1 monoclonal antibody targeting in multiple myeloma. Clin Cancer Res 1999; 5: 3065s–72s.
  • Delsol G, Al Saati T, Gatter KC, et al. Coexpression of epithelial membrane antigen (EMA), Ki-1, and interleukin-2 receptor by anaplastic large cell lymphomas: Diagnostic value in so-called malignant histiocytosis. Am J Pathol 1988; 130: 59–70.
  • Benharroch D, Meguerian-Bedoyan Z, Lamant L, et al. ALK-positive lymphoma: A single disease with a broad spectrum of morphology. Blood 1998; 91: 2076–84.
  • Delsol G, Lamant L, Mariame B, et al. A new subtype of large B-cell lymphoma expressing the ALK kinase and lacking the 2; 5 translocation. Blood 1997; 89: 1483–90.
  • Dyomin VG, Palanisamy N, Lloyd KO, et al. MUC1 is activated in a B-cell lymphoma by the t(1;14)(q21;q32) translocation and is rearranged and amplified in B-cell lymphoma subsets. Blood 2000; 95: 2666–71.
  • Gilles F, Goy A, Remache Y, et al. MUC1 dysregulation as the consequence of a t(1;14)(q21;q32) translocation in an extranodal lymphoma. Blood 2000; 95: 2930–6.
  • ten Berge RL, Snijdewint FG, von Mensdorff-Pouilly S, et al. MUC1 (EMA) is preferentially expressed by ALK positive anaplastic large cell lymphoma, in the normally glycosylated or only partly hypoglycosylated form. J Clin Pathol 2001; 54: 933–9.
  • Zhang A, Ohshima K, Sato K, et al. Prognostic clinicopathologic factors, including immunologic expression in diffuse large B-cell lymphomas. Pathol Int 1999; 49: 1043–52.
  • Anagnostopoulos I, Hansmann ML, Franssila K, et al. European Task Force on Lymphoma project on lymphocyte predominance Hodgkin disease: Histologic and immunohistologic analysis of submitted cases reveals 2 types of Hodgkin disease with a nodular growth pattern and abundant lymphocytes. Blood 2000; 96: 1889–99.
  • Brugger W, Buhring HJ, Grunebach F, et al. Expression of MUC-1 epitopes on normal bone marrow: Implications for the detection of micrometastatic tumor cells. J Clin Oncol 1999; 17: 1535–44.
  • Rughetti A, Biffoni M, Pierelli L, et al. Regulated expression of MUC1 epithelial antigen in erythropoiesis. Br J Haematol 2003; 120: 344–52.
  • Brossart P, Schneider A, Dill P, et al. The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes. Cancer Res 2001; 61: 6846–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.