736
Views
219
CrossRef citations to date
0
Altmetric
Research Article

DETECTION OF DISSEMINATED TUMOR CELLS IN PERIPHERAL BLOOD

, & , PhD
Pages 155-196 | Published online: 10 Oct 2008

REFERENCES

  • Timar J, Csuka O, Orosz Z, Jeney A, Kopper L. Molecular pathology of tumor metastasis. II. Molecular staging and differential diagnosis. Pathol Oncol Res 2002; 8: 204–219, [PUBMED], [INFOTRIEVE], [CSA]
  • Jiang W G, Martin T A, Mansel R E. Molecular detection of micro-metastasis in breast cancer. Crit Rev Oncol Hematol 2002; 43: 13–31, [PUBMED], [INFOTRIEVE], [CSA]
  • Braun S, Pantel K. Clinical significance of occult metastatic cells in bone marrow of breast cancer patients. Oncologist 2001; 6: 125–132, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Stathopoulou A, Mavroudis D, Perraki M, Apostolaki S, Vlachonikolis I, Lianidou E, Georgoulias V. Molecular detection of cancer cells in the peripheral blood of patients with breast cancer: comparison of CK-19, CEA and maspin as detection markers. Anticancer Res 2003; 23: 1883–1890, [PUBMED], [INFOTRIEVE], [CSA]
  • Vlems F A, Ruers T J, Punt C J, Wobbes T, Muijen G N., van. Relevance of disseminated tumour cells in blood and bone marrow of patients with solid epithelial tumours in perspective. Eur J Surg Oncol 2003; 29: 289–302, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Müller V, Pantel K. Clinical relevance of micrometastatic disease in patients with solid tumors. Am J Cancer 2003; 2: 77–86
  • Gradilone A, Gazzaniga P, Silvestri I, Gandini O, Trasatti L, Lauro S, Frati L, Agliano A M. Detection of CK19, CK20 and EGFR mRNAs in peripheral blood of carcinoma patients: correlation with clinical stage of disease. Oncol Rep 2003; 10: 217–222, [PUBMED], [INFOTRIEVE], [CSA]
  • Kostler W J, Brodowicz T, Hejna M, Wiltschke C, Zielinski C C. Detection of minimal residual disease in patients with cancer: a review of techniques, clinical implications, and emerging therapeutic consequences. Cancer Detect Prev 2000; 24: 376–403, [PUBMED], [INFOTRIEVE]
  • Pantel K, Muller V, Auer M, Nusser N, Harbeck N, Braun S. Detection and clinical implications of early systemic tumor cell dissemination in breast cancer. Clin Cancer Res 2003; 9: 6326–6334, [PUBMED], [INFOTRIEVE], [CSA]
  • Houten V M, van, Tabor M P, Brekel M W, van den, Denkers F, Wishaupt R G, Kummer J A, Snow G B, Brakenhoff R H. Molecular assays for the diagnosis of minimal residual head-and-neck cancer: methods, reliability, pitfalls, and solutions. Clin Cancer Res 2000; 6: 3803–3816, [PUBMED], [INFOTRIEVE], [CSA]
  • Borgen E, Beiske K, Trachsel S, Nesland J M, Kvalheim G, Herstad T K, Schlichting E, Qvist H, Naume B. Immunocytochemical detection of isolated epithelial cells in bone marrow: non-specific staining and contribution by plasma cells directly reactive to alkaline phosphatase. J Pathol 1998; 185: 427–434, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hinterberger W, Buxhofer V, Ogris E, Zelenka P, Kier P, Ruckser R, Dorner S, Habertheuer K H, Vedovelli H, Schindler S, Hinterberger-Fischer M. [Significance of minimal residual disease for the estimation of the prognosis and for therapeutic decisions in solid tumors]. Acta Med Austriaca 2002; 29: 2–8
  • Vogel I, Kalthoff H. Disseminated tumour cells. Their detection and significance for prognosis of gastrointestinal and pancreatic carcinomas. Virchows Arch 2001; 439: 109–117, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Ghossein R A, Bhattacharya S. Molecular detection and characterisation of circulating tumour cells and micrometastases in solid tumours. Eur J Cancer 2000; 36: 1681–1694, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hu X C, Loo W T, Chow L W. Surgery-related shedding of breast cancer cells as determined by RT-PCR assay. J Surg Oncol 2003; 82: 228–232, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kantor A B, Gibbons I, Miltenyi S, Schmitz J. Magnetic cell sorting with colloidal superparamagnetic particles. Cell Separation Methods and Applications, D Recktenwald, A Radbruch. Marcel Dekker, Inc. 1998; 153–173, 1998
  • Terstappen L W, Rao C, Gross S, Weiss A J. Peripheral blood tumor cell load reflects the clinical activity of the disease in patients with carcinoma of the breast. Int J Oncol 2000; 17: 573–578, [PUBMED], [INFOTRIEVE]
  • Witzig T E, Bossy B, Kimlinger T, Roche P C, Ingle J N, Grant C, Donohue J, Suman V J, Harrington D, Torre-Bueno J, Bauer K D. Detection of circulating cytokeratin-positive cells in the blood of breast cancer patients using immunomagnetic enrichment and digital microscopy. Clin Cancer Res 2002; 8: 1085–1091, [PUBMED], [INFOTRIEVE], [CSA]
  • Schittek B, Blaheta H J, Ellwanger U, Garbe C. Polymerase chain reaction in the detection of circulating tumour cells in peripheral blood of melanoma patients. Recent Results Cancer Res 2001; 158: 93–104, [PUBMED], [INFOTRIEVE], [CSA]
  • Vogelstein B, Kinzler K W. Digital PCR. Proc Natl Acad Sci USA 1999; 96: 9236–9241, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Zippelius A, Pantel K. RT-PCR-based detection of occult disseminated tumor cells in peripheral blood and bone marrow of patients with solid tumors. An overview. Ann NY Acad Sci 2000; 906: 110–123, [PUBMED], [INFOTRIEVE], [CSA]
  • Brakenhoff R H, Stroomer J G, Brink C, ten, Bree R, de, Weima S M, Snow G B, Dongen G A., van. Sensitive detection of squamous cells in bone marrow and blood of head and neck cancer patients by E48 reverse transcriptase-polymerase chain reaction. Clin Cancer Res 1999; 5: 725–732, [PUBMED], [INFOTRIEVE], [CSA]
  • Park S, Lee B, Kim I, Choi I, Hong K, Ryu Y, Rhim J, Shin J, Park S C, Chung H, Chung J. Immunobead RT-PCR versus regular RT-PCR amplification of CEA mRNA in peripheral blood. J Cancer Res Clin Oncol 2001; 127: 489–494, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhong X Y, Kaul S, Lin Y S, Eichler A, Bastert G. Sensitive detection of micrometastases in bone marrow from patients with breast cancer using immunomagnetic isolation of tumor cells in combination with reverse transcriptase/polymerase chain reaction for cytokeratin-19. J Cancer Res Clin Oncol 2000; 126: 212–218, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Gaforio J J, Serrano M J, Sanchez-Rovira P, Sirvent A, Delgado-Rodriguez M, Campos M, Torre N, de la, Algarra I, Duenas R, Lozano A. Detection of breast cancer cells in the peripheral blood is positively correlated with estrogen-receptor status and predicts for poor prognosis. Int J Cancer 2003; 107: 984–990, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Zehentner B K. Detection of disseminated tumor cells: strategies and diagnostic implications. Expert Rev Mol Diagn 2002; 2: 41–48, [CSA], [CROSSREF]
  • Partridge M, Phillips E, Francis R, Li S R. Immunomagnetic separation for enrichment and sensitive detection of disseminated tumour cells in patients with head and neck SCC. J Pathol 1999; 189: 368–377, [PUBMED], [INFOTRIEVE]
  • Gertler R, Rosenberg R, Fuehrer K, Dahm M, Nekarda H, Siewert J R. Detection of circulating tumor cells in blood using an optimized density gradient centrifugation. Recent Results Cancer Res 2003; 162: 149–155, [PUBMED], [INFOTRIEVE], [CSA]
  • Berois N, Varangot M, Osinaga E, Babino A, Caignault L, Muse I, Roseto A. Detection of rare human breast cancer cells. Comparison of an immunomagnetic separation method with immunocytochemistry and RT-PCR. Anticancer Res 1997; 17: 2639–2646, [PUBMED], [INFOTRIEVE], [CSA]
  • Naume B, Borgen E, Beiske K, Herstad T K, Ravnas G, Renolen A, Trachsel S, Thrane-Steen K, Funderud S, Kvalheim G. Immunomagnetic techniques for the enrichment and detection of isolated breast carcinoma cells in bone marrow and peripheral blood. J Hematother 1997; 6: 103–114, [PUBMED], [INFOTRIEVE], [CSA]
  • Fellowes V S, Husebekk A, Gress R E, Vance B A. Minimal residual disease detection in breast cancer: improved sensitivity using cytokeratin 19 and epidermal growth factor receptor RT-PCR. Int J Oncol 2004; 24: 861–867, [PUBMED], [INFOTRIEVE]
  • Kielhorn E, Schofield K, Rimm D L. Use of magnetic enrichment for detection of carcinoma cells in fluid specimens. Cancer 2002; 94: 205–211, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kim S S, Ikeda N, Shiba E, Takamura Y, Noguchi S. Detection of breast cancer micrometastases in peripheral blood using immunomagnetic separation and immunocytochemistry. Breast Cancer 2001; 8: 63–69, [PUBMED], [INFOTRIEVE]
  • Zigeuner R E, Riesenberg R, Pohla H, Hofstetter A, Oberneder R. Isolation of circulating cancer cells from whole blood by immunomagnetic cell enrichment and unenriched immunocytochemistry in vitro. J Urol 2003; 169: 701–705, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Böckmann B, Grill H, Giesing M. Molecular characterization of minimal residual cancer cells in patients with solid tumors. Biomol Eng 2001; 17: 95–111, [CSA], [CROSSREF]
  • Vlems F A, Diepstra J H, Cornelissen I M, Ligtenberg M J, Wobbes T, Punt C J, Krieken J H, van, Ruers T J, Muijen G N., van. Investigations for a multi-marker RT-PCR to improve sensitivity of disseminated tumor cell detection. Anticancer Res 2003; 23: 179–186, [PUBMED], [INFOTRIEVE], [CSA]
  • Mitsuhashi A, Tanaka N, Suzuka K, Matsui H, Seki K, Sekiya S. Detection of epidermal growth factor receptor mRNA in peripheral blood of cervical cancer patients. Gynecol Oncol 2003; 89: 480–485, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Guller U, Zajac P, Schnider A, Bosch B, Vorburger S, Zuber M, Spagnoli G C, Oertli D, Maurer R, Metzger U, Harder F, Heberer M, Marti W R. Disseminated single tumor cells as detected by real-time quantitative polymerase chain reaction represent a prognostic factor in patients undergoing surgery for colorectal cancer. Ann Surg 2002; 236: 768–775, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Gazzaniga P, Gandini O, Giuliani L, Magnanti M, Gradilone A, Silvestri I, Gianni W, Gallucci M, Frati L, Agliano A M. Detection of epidermal growth factor receptor mRNA in peripheral blood: a new marker of circulating neoplastic cells in bladder cancer patients. Clin Cancer Res 2001; 7: 577–583, [PUBMED], [INFOTRIEVE], [CSA]
  • O'Hara S M, Moreno J G, Zweitzig D R, Gross S, Gomella L G, Terstappen L W. Multigene reverse transcription–PCR profiling of circulating tumor cells in hormone-refractory prostate cancer. Clin Chem 2004; 50: 826–835, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bosma A J, Weigelt B, Lambrechts A C, Verhagen O J, Pruntel R, Hart A A, Rodenhuis S, Veer L J., van 't. Detection of circulating breast tumor cells by differential expression of marker genes. Clin Cancer Res 2002; 8: 1871–1877, [PUBMED], [INFOTRIEVE], [CSA]
  • Taback B, Chan A D, Kuo C T, Bostick P J, Wang H J, Giuliano A E, Hoon D S. Detection of occult metastatic breast cancer cells in blood by a multimolecular marker assay: correlation with clinical stage of disease. Cancer Res 2001; 61: 8845–8850, [PUBMED], [INFOTRIEVE]
  • Taback B, Morton D L, O'Day S J, Nguyen D H, Nakayama T, Hoon D S. The clinical utility of multimarker RT-PCR in the detection of occult metastasis in patients with melanoma. Recent Results Cancer Res 2001; 158: 78–92, [PUBMED], [INFOTRIEVE], [CSA]
  • Weigelt B, Bosma A J, Hart A A, Rodenhuis S, Veer L J., van't. Marker genes for circulating tumour cells predict survival in metastasized breast cancer patients. Br J Cancer 2003; 88: 1091–1094, [PUBMED], [INFOTRIEVE]
  • Straub B, Muller M, Krause H, Schrader M, Goessl C, Heicappell R, Miller K. Detection of prostate-specific antigen RNA before and after radical retropubic prostatectomy and transurethral resection of the prostate using “Light-Cycler”-based quantitative real-time polymerase chain reaction. Urology 2001; 58: 815–820, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Pao C C, Hor J J, Yang F P, Lin C Y, Tseng C J. Detection of human papillomavirus mRNA and cervical cancer cells in peripheral blood of cervical cancer patients with metastasis. J Clin Oncol 1997; 15: 1008–1012, [PUBMED], [INFOTRIEVE]
  • Woodman A C, Sugiyama M, Yoshida K, Sugino T, Borgya A, Goodison S, Matsumura Y, Tarin D. Analysis of anomalous CD44 gene expression in human breast, bladder, and colon cancer and correlation of observed mRNA and protein isoforms. Am J Pathol 1996; 149: 1519–1530, [PUBMED], [INFOTRIEVE]
  • Doeberitz M, von Knebel, Lacroix J. Nucleic acid based techniques for the detection of rare cancer cells in clinical samples. Cancer Metastasis Rev 1999; 18: 43–64, [CROSSREF]
  • Guadagni F, Kantor J, Aloe S, Carone M D, Spila A, Alessandro R, D', Abbolito M R, Cosimelli M, Graziano F, Carboni F, Carlini S, Perri P, Sciarretta F, Greiner J W, Kashmiri S V, Steinberg S M, Roselli M, Schlom J. Detection of blood-borne cells in colorectal cancer patients by nested reverse transcription-polymerase chain reaction for carcinoembryonic antigen messenger RNA: longitudinal analyses and demonstration of its potential importance as an adjunct to multiple serum markers. Cancer Res 2001; 61: 2523–2532, [PUBMED], [INFOTRIEVE]
  • Goldenberg D M, Sharkey R M, Primus F J. Carcinoembryonic antigen in histopathology: immunoperoxidase staining of conventional tissue sections. J Natl Cancer Inst 1976; 57: 11–22, [PUBMED], [INFOTRIEVE]
  • Vogel I, Francksen H, Soeth E, Henne-Bruns D, Kremer B, Juhl H. The carcinoembryonic antigen and its prognostic impact on immunocytologically detected intraperitoneal colorectal cancer cells. Am J Surg 2001; 181: 188–193, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Grem J. The prognostic importance of tumor markers in adenocarcinomas of the gastrointestinal tract. Curr Opin Oncol 1997; 9: 380–387, [PUBMED], [INFOTRIEVE], [CSA]
  • Gangopadhyay A, Lazure D A, Thomas P. Adhesion of colorectal carcinoma cells to the endothelium is mediated by cytokines from CEA stimulated Kupffer cells. Clin Exp Metastasis 1998; 16: 703–712, [PUBMED], [INFOTRIEVE], [CSA]
  • Benchimol S, Fuks A, Jothy S, Beauchemin N, Shirota K, Stanners C P. Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 1989; 57: 327–334, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Wirth T, Soeth E, Czubayko F, Juhl H. Inhibition of endogenous carcinoembryonic antigen (CEA) increases the apoptotic rate of colon cancer cells and inhibits metastatic tumor growth. Clin Exp Metastasis 2002; 19: 155–160, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Soeth E, Wirth T, List H J, Kumbhani S, Petersen A, Neumaier M, Czubayko F, Juhl H. Controlled ribozyme targeting demonstrates an antiapoptotic effect of carcinoembryonic antigen in HT29 colon cancer cells. Clin Cancer Res 2001; 7: 2022–2030, [PUBMED], [INFOTRIEVE], [CSA]
  • Guadagni F, Roselli M, Cosimelli M, Spila A, Cavaliere F, Arcuri R, Alessandro R, D', Fracasso P L, Casale V, Vecchione A, Casciani C U, Greiner J W, Schlom J. Quantitative analysis of CEA expression in colorectal adenocarcinoma and serum: lack of correlation. Int J Cancer 1997; 72: 949–954, [PUBMED], [INFOTRIEVE]
  • Hampton R, Walker M, Marshall J, Juhl H. Differential expression of carcinoembryonic antigen (CEA) splice variants in whole blood of colon cancer patients and healthy volunteers: implication for the detection of circulating colon cancer cells. Oncogene 2002; 21: 7817–7823, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Ko Y, Klinz M, Totzke G, Gouni-Berthold I, Sachinidis A, Vetter H. Limitations of the reverse transcription-polymerase chain reaction method for the detection of carcinoembryonic antigen-positive tumor cells in peripheral blood. Clin Cancer Res 1998; 4: 2141–2146, [PUBMED], [INFOTRIEVE], [CSA]
  • Castells A, Boix L, Bessa X, Gargallo L, Pique J M. Detection of colonic cells in peripheral blood of colorectal cancer patients by means of reverse transcriptase and polymerase chain reaction. Br J Cancer 1998; 78: 1368–1372, [PUBMED], [INFOTRIEVE]
  • Hammarstrom S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 1999; 9: 67–81, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Thompson J, Zimmermann W, Nollau P, Neumaier M, Weber-Arden J, Schrewe H, Craig I, Willcocks T. CGM2, a member of the carcinoembryonic antigen gene family is down-regulated in colorectal carcinomas. J Biol Chem 1994; 269: 32924–32931, [PUBMED], [INFOTRIEVE]
  • Moll R. Diversity of cytokeratins in carcinomas. Acta Histochem Suppl 1987; 34: 37–44, [PUBMED], [INFOTRIEVE]
  • Pierga J Y, Bonneton C, Vincent-Salomon A, Cremoux P, de, Nos C, Blin N, Pouillart P, Thiery J P, Magdelenat H. Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin Cancer Res 2004; 10: 1392–1400, [PUBMED], [INFOTRIEVE], [CSA]
  • Taubert H, Blumke K, Bilkenroth U, Meye A, Kutz A, Bartel F, Lautenschlager C, Ulbrich E J, Nass N, Holzhausen H J, Koelbl H, Lebrecht A. Detection of disseminated tumor cells in peripheral blood of patients with breast cancer: correlation to nodal status and occurrence of metastases. Gynecol Oncol 2004; 92: 256–261, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Datta Y H, Adams P T, Drobyski W R, Ethier S P, Terry V H, Roth M S. Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase chain reaction. J Clin Oncol 1994; 12: 475–482, [PUBMED], [INFOTRIEVE]
  • Aerts J, Wynendaele W, Paridaens R, Christiaens M R, Bogaert W, van den, Oosterom A T, van, Vandekerckhove F. A real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) to detect breast carcinoma cells in peripheral blood. Ann Oncol 2001; 12: 39–46, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kahn H J, Yang L Y, Blondal J, Lickley L, Holloway C, Hanna W, Narod S, McCready D R, Seth A, Marks A. RT-PCR amplification of CK19 mRNA in the blood of breast cancer patients: correlation with established prognostic parameters. Breast Cancer Res Treat 2000; 60: 143–151, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Trummer A, Kadar J, Arseniev L, Petersen D, Ganser A, Lichtinghagen R. Competitive cytokeratin 19 RT-PCR for quantification of breast cancer cells in blood cell suspensions. J Hematother Stem Cell Res 2000; 9: 275–284, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhong X Y, Kaul S, Diel I, Eichler A, Bastert G. Analysis of sensitivity and specificity of cytokeratin 19 reverse transcriptase/polymerase chain reaction for detection of occult breast cancer in bone marrow and leukapheresis products. J Cancer Res Clin Oncol 1999; 125: 286–291, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Stathopoulou A, Angelopoulou K, Perraki M, Georgoulias V, Malamos N, Lianidou E. Quantitative RT-PCR luminometric hybridization assay with an RNA internal standard for cytokeratin-19 mRNA in peripheral blood of patients with breast cancer. Clin Biochem 2001; 34: 651–659, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Stathopoulou A, Vlachonikolis I, Mavroudis D, Perraki M, Kouroussis C, Apostolaki S, Malamos N, Kakolyris S, Kotsakis A, Xenidis N, Reppa D, Georgoulias V. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J Clin Oncol 2002; 20: 3404–3412, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Wong I H, Yeo W, Chan A T, Johnson P J. Quantitative correlation of cytokeratin 19 mRNA level in peripheral blood with disease stage and metastasis in breast cancer patients: potential prognostic implications. Int J Oncol 2001; 18: 633–638, [PUBMED], [INFOTRIEVE]
  • Ko Y, Grunewald E, Totzke G, Klinz M, Fronhoffs S, Gouni-Berthold I, Sachinidis A, Vetter H. High percentage of false-positive results of cytokeratin 19 RT-PCR in blood: a model for the analysis of illegitimate gene expression. Oncology 2000; 59: 81–88, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Bustin S A, Gyselman V G, Williams N S, Dorudi S. Detection of cytokeratins 19/20 and guanylyl cyclase C in peripheral blood of colorectal cancer patients. Br J Cancer 1999; 79: 1813–1820, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lambrechts A C, Bosma A J, Klaver S G, Top B, Perebolte L, Veer L J, van't, Rodenhuis S. Comparison of immunocytochemistry, reverse transcriptase polymerase chain reaction, and nucleic acid sequence-based amplification for the detection of circulating breast cancer cells. Breast Cancer Res Treat 1999; 56: 219–231, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Ruud P, Fodstad O, Hovig E. Identification of a novel cytokeratin 19 pseudogene that may interfere with reverse transcriptase-polymerase chain reaction assays used to detect micrometastatic tumor cells. Int J Cancer 1999; 80: 119–125, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Savtchenko E S, Schiff T A, Jiang C K, Freedberg I M, Blumenberg M. Embryonic expression of the human 40-kD keratin: evidence from a processed pseudogene sequence. Am J Hum Genet 1988; 43: 630–637, [PUBMED], [INFOTRIEVE], [CSA]
  • Novaes M, Bendit I, Garicochea B, Giglio A., del. Reverse transcriptase-polymerase chain reaction analysis of cytokeratin 19 expression in the peripheral blood mononuclear cells of normal female blood donors. Mol Pathol 1997; 50: 209–211, [PUBMED], [INFOTRIEVE]
  • Chelly J, Concordet J P, Kaplan J C, Kahn A. Illegitimate transcription: transcription of any gene in any cell type. Proc Natl Acad Sci USA 1989; 86: 2617–2621, [PUBMED], [INFOTRIEVE], [CSA]
  • Grunewald K, Haun M, Urbanek M, Fiegl M, Muller-Holzner E, Gunsilius E, Dunser M, Marth C, Gastl G. Mammaglobin gene expression: a superior marker of breast cancer cells in peripheral blood in comparison to epidermal-growth-factor receptor and cytokeratin-19. Lab Invest 2000; 80: 1071–1077, [PUBMED], [INFOTRIEVE], [CSA]
  • Jung R, Kruger W, Hosch S, Holweg M, Kroger N, Gutensohn K, Wagener C, Neumaier M, Zander A R. Specificity of reverse transcriptase polymerase chain reaction assays designed for the detection of circulating cancer cells is influenced by cytokines in vivo and in vitro. Br J Cancer 1998; 78: 1194–1198, [PUBMED], [INFOTRIEVE]
  • Crisan D, Ruark D S, Decker D A, Drevon A M, Dicarlo R G. Detection of circulating epithelial cells after surgery for benign breast disease. Mol Diagn 2000; 5: 33–38, [PUBMED], [INFOTRIEVE], [CSA]
  • Lukyanchuk V V, Friess H, Kleeff J, Osinsky S P, Ayuni E, Candinas D, Roggo A. Detection of circulating tumor cells by cytokeratin 20 and prostate stem cell antigen RT-PCR in blood of patients with gastrointestinal cancers. Anticancer Res 2003; 23: 2711–2716, [PUBMED], [INFOTRIEVE], [CSA]
  • Ascoli V, Taccogna S, Scalzo C C, Nardi F. Utility of cytokeratin 20 in identifying the origin of metastatic carcinomas in effusions. Diagn Cytopathol 1995; 12: 303–308, [PUBMED], [INFOTRIEVE], [CSA]
  • Moll R, Lowe A, Laufer J, Franke W W. Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol 1992; 140: 427–447, [PUBMED], [INFOTRIEVE]
  • Kummar S, Fogarasi M, Canova A, Mota A, Ciesielski T. Cytokeratin 7 and 20 staining for the diagnosis of lung and colorectal adenocarcinoma. Br J Cancer 2002; 86: 1884–1887, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Moll R, Zimbelmann R, Goldschmidt M D, Keith M, Laufer J, Kasper M, Koch P J, Franke W W. The human gene encoding cytokeratin 20 and its expression during fetal development and in gastrointestinal carcinomas. Differentiation 1993; 53: 75–93, [PUBMED], [INFOTRIEVE], [CSA]
  • Miettinen M. Keratin 20: immunohistochemical marker for gastrointestinal, urothelial, and Merkel cell carcinomas. Mod Pathol 1995; 8: 384–388, [PUBMED], [INFOTRIEVE], [CSA]
  • Funaki N O, Tanaka J, Sugiyama T, Ohshio G, Nonaka A, Yotsumoto F, Furutani M, Imamura M. Perioperative quantitative analysis of cytokeratin 20 mRNA in peripheral venous blood of patients with colorectal adenocarcinoma. Oncol Rep 2000; 7: 271–276, [PUBMED], [INFOTRIEVE], [CSA]
  • Chausovsky G, Luchansky M, Figer A, Shapira J, Gottfried M, Novis B, Bogelman G, Zemer R, Zimlichman S, Klein A. Expression of cytokeratin 20 in the blood of patients with disseminated carcinoma of the pancreas, colon, stomach, and lung. Cancer 1999; 86: 2398–2405, [PUBMED], [INFOTRIEVE]
  • Fujii Y, Kageyama Y, Kawakami S, Kihara K, Oshima H. Detection of disseminated urothelial cancer cells in peripheral venous blood by a cytokeratin 20-specific nested reverse transcriptase-polymerase chain reaction. Jpn J Cancer Res 1999; 90: 753–757, [PUBMED], [INFOTRIEVE], [CSA]
  • Kawamata H, Uchida D, Nakashiro K, Hino S, Omotehara F, Yoshida H, Sato M. Haematogenous cytokeratin 20 mRNA as a predictive marker for recurrence in oral cancer patients. Br J Cancer 1999; 80: 448–452, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Funaki N O, Tanaka J, Ohshio G, Onodera H, Maetani S, Imamura M. Cytokeratin 20 mRNA in peripheral venous blood of colorectal carcinoma patients. Br J Cancer 1998; 77: 1327–1332, [PUBMED], [INFOTRIEVE]
  • Gunn J, McCall J L, Yun K, Wright P A. Detection of micrometastases in colorectal cancer patients by K19 and K20 reverse-transcription polymerase chain reaction. Lab Invest 1996; 75: 611–616, [PUBMED], [INFOTRIEVE], [CSA]
  • Chen X M, Chen G Y, Wang Z R, Zhu F S, Wang X L, Zhang X. Detection of micrometastasis of gastric carcinoma in peripheral blood circulation. World J Gastroenterol 2004; 10: 804–808, [PUBMED], [INFOTRIEVE], [CSA]
  • Huang P, Wang J, Guo Y, Xie W. Molecular detection of disseminated tumor cells in the peripheral blood in patients with gastrointestinal cancer. J Cancer Res Clin Oncol 2003; 129: 192–198, [PUBMED], [INFOTRIEVE], [CSA]
  • Silva A L, Diamond J, Silva M R, Passos-Coelho J L. Cytokeratin 20 is not a reliable molecular marker for occult breast cancer cell detection in hematological tissues. Breast Cancer Res Treat 2001; 66: 59–66, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Champelovier P, Mongelard F, Seigneurin D. CK20 gene expression: technical limits for the detection of circulating tumor cells. Anticancer Res 1999; 19: 2073–2078, [PUBMED], [INFOTRIEVE], [CSA]
  • Jung R, Petersen K, Kruger W, Wolf M, Wagener C, Zander A, Neumaier M. Detection of micrometastasis by cytokeratin 20 RT-PCR is limited due to stable background transcription in granulocytes. Br J Cancer 1999; 81: 870–873, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Schuster R, Max N, Mann B, Heufelder K, Thilo F, Grone J, Rokos F, Buhr H J, Thiel E, Keilholz U. Quantitative real-time RT-PCR for detection of disseminated tumor cells in peripheral blood of patients with colorectal cancer using different mRNA markers. Int J Cancer 2004; 108: 219–227, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Vlems F A, Diepstra J H, Cornelissen I M, Ruers T J, Ligtenberg M J, Punt C J, Krieken J H, van, Wobbes T, Muijen G N., van. Limitations of cytokeratin 20 RT-PCR to detect disseminated tumour cells in blood and bone marrow of patients with colorectal cancer: expression in controls and downregulation in tumour tissue. Mol Pathol 2002; 55: 156–163, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Wildi S, Kleeff J, Maruyama H, Maurer C A, Friess H, Buchler M W, Lander A D, Korc M. Characterization of cytokeratin 20 expression in pancreatic and colorectal cancer. Clin Cancer Res 1999; 5: 2840–2847, [PUBMED], [INFOTRIEVE], [CSA]
  • Prigent S A, Lemoine N R. The type 1 (EGFR-related) family of growth factor receptors and their ligands. Prog Growth Factor Res 1992; 4: 1–24, [PUBMED], [INFOTRIEVE], [CSA]
  • Pawlowski V, Revillion F, Hebbar M, Hornez L, Peyrat J P. Prognostic value of the type I growth factor receptors in a large series of human primary breast cancers quantified with a real-time reverse transcription-polymerase chain reaction assay. Clin Cancer Res 2000; 6: 4217–4225, [PUBMED], [INFOTRIEVE], [CSA]
  • Suo Z, Risberg B, Kalsson M G, Willman K, Tierens A, Skovlund E, Nesland J M. EGFR family expression in breast carcinomas. c-erbB-2 and c-erbB-4 receptors have different effects on survival. J Pathol 2002; 196: 17–25, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Brabender J, Danenberg K D, Metzger R, Schneider P M, Park J, Salonga D, Holscher A H, Danenberg P V. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer Is correlated with survival. Clin Cancer Res 2001; 7: 1850–1855, [PUBMED], [INFOTRIEVE], [CSA]
  • Salomon D S, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19: 183–232, [PUBMED], [INFOTRIEVE], [CSA]
  • Tsongalis G J, Ried A, Jr. HER2: the neu prognostic marker for breast cancer. Crit Rev Clin Lab Sci 2001; 38: 167–182, [PUBMED], [INFOTRIEVE], [CSA]
  • Leitzel K, Lieu B, Curley E, Smith J, Chinchilli V, Rychlik W, Lipton A. Detection of cancer cells in peripheral blood of breast cancer patients using reverse transcription-polymerase chain reaction for epidermal growth factor receptor. Clin Cancer Res 1998; 4: 3037–3043, [PUBMED], [INFOTRIEVE], [CSA]
  • Raynor M, Stephenson S A, Walsh D, Pittman K, Dobrovic A. Optimisation of the RT-PCR detection of immunomagnetically enriched carcinoma cells. BMC Cancer 2002; 2: 14, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Hildebrandt M, Mapara M Y, Korner I J, Bargou R C, Moldenhauer G, Dorken B. Reverse transcriptase-polymerase chain reaction (RT-PCR)-controlled immunomagnetic purging of breast cancer cells using the magnetic cell separation (MACS) system: a sensitive method for monitoring purging efficiency. Exp Hematol 1997; 25: 57–65, [PUBMED], [INFOTRIEVE], [CSA]
  • Clarke L E, Leitzel K, Smith J, Ali S M, Lipton A. Epidermal growth factor receptor mRNA in peripheral blood of patients with pancreatic, lung, and colon carcinomas detected by RT-PCR. Int J Oncol 2003; 22: 425–430, [PUBMED], [INFOTRIEVE]
  • Luca A, De, Pignata S, Casamassimi A, Antonio A, D', Gridelli C, Rossi A, Cremona F, Parisi V, Matteis A, De, Normanno N. Detection of circulating tumor cells in carcinoma patients by a novel epidermal growth factor receptor reverse transcription-PCR assay. Clin Cancer Res 2000; 6: 1439–1444, [PUBMED], [INFOTRIEVE], [CSA]
  • Corradini P, Voena C, Astolfi M, Delloro S, Pilotti S, Arrigoni G, Bregni M, Pileri A, Gianni A M. Maspin and mammaglobin genes are specific markers for RT-PCR detection of minimal residual disease in patients with breast cancer. Ann Oncol 2001; 12: 1693–1698, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Ady N, Morat L, Fizazi K, Soria J C, Mathieu M C, Prapotnich D, Sabatier L, Chauveinc L. Detection of HER-2/neu-positive circulating epithelial cells in prostate cancer patients. Br J Cancer 2004; 90: 443–448, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Wasserman L, Dreilinger A, Easter D, Wallace A. A seminested RT-PCR assay for HER2/neu: initial validation of a new method for the detection of disseminated breast cancer cells. Mol Diagn 1999; 4: 21–28, [PUBMED], [INFOTRIEVE], [CSA]
  • Fonseca F L, Soares H P, Manhani A R, Bendit I, Novaes M, Zatta S M, Arias V, Pinhal M A, Weinschenker P, Giglio A., del. Peripheral blood c-erbB-2 expression by reverse transcriptase-polymerase chain reaction in breast cancer patients receiving chemotherapy. Clin Breast Cancer 2002; 3: 201–205, [PUBMED], [INFOTRIEVE], [CSA]
  • Leone F, Perissinotto E, Viale A, Cavalloni G, Taraglio S, Capaldi A, Piacibello W, Torchio B, Aglietta M. Detection of breast cancer cell contamination in leukapheresis product by real-time quantitative polymerase chain reaction. Bone Marrow Transplant 2001; 27: 517–523, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Leij L, De, Helrich W, Stein R, Mattes M J. SCLC-cluster-2 antibodies detect the pancarcinoma/epithelial glycoprotein EGP-2. Int J Cancer Suppl 1994; 8: 60–63, [PUBMED], [INFOTRIEVE], [CSA]
  • Kosterink J G, Jonge M W, de, Smit E F, Piers D A, Kengen R A, Postmus P E, Shochat D, Groen H J, The H T, Leij L., de. Pharmacokinetics and scintigraphy of indium-111-DTPA-MOC-31 in small-cell lung carcinoma. J Nucl Med 1995; 36: 2356–2362, [PUBMED], [INFOTRIEVE]
  • Kroesen B J, Buter J, Sleijfer D T, Janssen R A, Graaf W T, van der, The T H, Leij L, de, Mulder N H. Phase I. Br J Cancer 1994; 70: 652–661, [PUBMED], [INFOTRIEVE]
  • Litvinov S V, tudy of intravenously applied bispecific antibody in renal cell cancer patients receiving subcutaneous interleukin, Bakker H A, Gourevitch M M, Velders M P, Warnaar S O. Evidence for a role of the epithelial glycoprotein 40 (Ep-CAM) in epithelial cell-cell adhesion. Cell Adhes Commun 1994; 2: 417–428, [PUBMED], [INFOTRIEVE], [CSA]
  • Pantel K, Izbicki J R, Angstwurm M, Braun S, Passlick B, Karg O, Thetter O, Riethmuller G. Immunocytological detection of bone marrow micrometastasis in operable non-small cell lung cancer. Cancer Res 1993; 53: 1027–1031, [PUBMED], [INFOTRIEVE]
  • Helfrich W, Poele R, ten, Meersma G J, Mulder N H, Vries E G, de, Leij L, de, Smit E F. A quantitative reverse transcriptase polymerase chain reaction-based assay to detect carcinoma cells in peripheral blood. Br J Cancer 1997; 76: 29–35, [PUBMED], [INFOTRIEVE]
  • Schroder C P, Ruiters M H, Jong S, de, Tiebosch A T, Wesseling J, Veenstra R, Vries J, de, Hoekstra H J, Leij L F, de, Vries E G., de. Detection of micrometastatic breast cancer by means of real time quantitative RT-PCR and immunostaining in perioperative blood samples and sentinel nodes. Int J Cancer 2003; 106: 611–618, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Zhong X Y, Kaul S, Bastert G. Evaluation of MUC1 and EGP40 in bone marrow and peripheral blood as a marker for occult breast cancer. Arch Gynecol Obstet 2001; 264: 177–181, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhong X Y, Kaul S, Eichler A, Bastert G. Evaluating GA733-2 mRNA as a marker for the detection of micrometastatic breast cancer in peripheral blood and bone marrow. Arch Gynecol Obstet 1999; 263: 2–6, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Bostick P J, Chatterjee S, Chi D D, Huynh K T, Giuliano A E, Cote R, Hoon D S. Limitations of specific reverse-transcriptase polymerase chain reaction markers in the detection of metastases in the lymph nodes and blood of breast cancer patients. J Clin Oncol 1998; 16: 2632–2640, [PUBMED], [INFOTRIEVE]
  • Graaf H, de, Maelandsmo G M, Ruud P, Forus A, Oyjord T, Fodstad O, Hovig E. Ectopic expression of target genes may represent an inherent limitation of RT-PCR assays used for micrometastasis detection: studies on the epithelial glycoprotein gene EGP-2. Int J Cancer 1997; 72: 191–196, [PUBMED], [INFOTRIEVE]
  • Watson M A, Fleming T P. Mammaglobin, a mammary-specific member of the uteroglobin gene family, is overexpressed in human breast cancer. Cancer Res 1996; 56: 860–865, [PUBMED], [INFOTRIEVE]
  • Klug J, Beier H M, Bernard A, Chilton B S, Fleming T P, Lehrer R I, Miele L, Pattabiraman N, Singh G. Uteroglobin/Clara cell 10-kDa family of proteins: nomenclature committee report. Ann NY Acad Sci 2000; 923: 348–354, [PUBMED], [INFOTRIEVE]
  • Ni J, Kalff-Suske M, Gentz R, Schageman J, Beato M, Klug J. All human genes of the uteroglobin family are localized on chromosome 11q12.2 and form a dense cluster. Ann NY Acad Sci 2000; 923: 25–42, [PUBMED], [INFOTRIEVE]
  • Zehentner B K, Carter D. Mammaglobin: a candidate diagnostic marker for breast cancer. Clin Biochem 2004; 37: 249–257, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Zach O, Kasparu H, Krieger O, Hehenwarter W, Girschikofsky M, Lutz D. Detection of circulating mammary carcinoma cells in the peripheral blood of breast cancer patients via a nested reverse transcriptase polymerase chain reaction assay for mammaglobin mRNA. J Clin Oncol 1999; 17: 2015–2019, [PUBMED], [INFOTRIEVE]
  • Zach O, Kasparu H, Wagner H, Krieger O, Lutz D. Mammaglobin as a marker for the detection of tumor cells in the peripheral blood of breast cancer patients. Ann NY Acad Sci 2000; 923: 343–345, [PUBMED], [INFOTRIEVE]
  • Houghton R L, Dillon D C, Molesh D A, Zehentner B K, Xu J, Jiang J, Schmidt C, Frudakis A, Repasky E, Filho A, Maltez, Nolasco M, Badaro R, Zhang X, Roche P C, Persing D H, Reed S G. Transcriptional complementarity in breast cancer: application to detection of circulating tumor cells. Mol Diagn 2001; 6: 79–91, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Lin Y C, Chou Y H, Wu, Liao I C, Cheng A J. The expression of mammaglobin mRNA in peripheral blood of metastatic breast cancer patients as an adjunct to serum tumor markers. Cancer Lett 2003; 191: 93–99, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Kruger W H, Jung R, Detlefsen B, Mumme S, Badbaran A, Brandner J, Renges H, Kroger N, Zander A R. Interference of cytokeratin-20 and mammaglobin-reverse-transcriptase polymerase chain assays designed for the detection of disseminated cancer cells. Med Oncol 2001; 18: 33–38, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Silva A L, Tome M J, Correia A E, Passos-Coelho J L. Human mammaglobin RT-PCR assay for detection of occult breast cancer cells in hematopoietic products. Ann Oncol 2002; 13: 422–429, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Ho S B, Niehans G A, Lyftogt C, Yan P S, Cherwitz D L, Gum E T, Dahiya R, Kim Y S. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res 1993; 53: 641–651, [PUBMED], [INFOTRIEVE]
  • Zotter S, Hageman P C, Lossnitzer A, Tweel J, van den, Hilkens J, Mooi W J, Hilgers J. Monoclonal antibodies to epithelial sialomucins recognize epitopes at different cellular sites in adenolymphomas of the parotid gland. Int J Cancer Suppl 1988; 3: 38–44, [PUBMED], [INFOTRIEVE]
  • Hiraga Y, Tanaka S, Haruma K, Yoshihara M, Sumii K, Kajiyama G, Shimamoto F, Kohno N. Immunoreactive MUC1 expression at the deepest invasive portion correlates with prognosis of colorectal cancer. Oncology 1998; 55: 307–319, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Jarrard J A, Linnoila R I, Lee H, Steinberg S M, Witschi H, Szabo E. MUC1 is a novel marker for the type II pneumocyte lineage during lung carcinogenesis. Cancer Res 1998; 58: 5582–5589, [PUBMED], [INFOTRIEVE]
  • Dong Y, Walsh M D, Cummings M C, Wright R G, Khoo S K, Parsons P G, McGuckin M A. Expression of MUC1 and MUC2 mucins in epithelial ovarian tumours. J Pathol 1997; 183: 311–317, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • McGuckin M A, Walsh M D, Hohn B G, Ward B G, Wright R G. Prognostic significance of MUC1 epithelial mucin expression in breast cancer. Hum Pathol 1995; 26: 432–439, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Wesseling J, Valk S W, van der, Vos H L, Sonnenberg A, Hilkens J. Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J Cell Biol 1995; 129: 255–265, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Ligtenberg M J, Buijs F, Vos H L, Hilkens J. Suppression of cellular aggregation by high levels of episialin. Cancer Res 1992; 52: 2318–2324, [PUBMED], [INFOTRIEVE]
  • Taylor-Papadimitriou J, Burchell J M, Plunkett T, Graham R, Correa I, Miles D, Smith M. MUC1 and the immunobiology of cancer. J Mammary Gland Biol Neoplasia 2002; 7: 209–221, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Correa I, Plunkett T, Vlad A, Mungul A, Candelora-Kettel J, Burchell J M, Taylor-Papadimitriou J, Finn O J. Form and pattern of MUC1 expression on T cells activated in vivo or in vitro suggests a function in T-cell migration. Immunology 2003; 108: 32–41, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Agrawal B, Krantz M J, Parker J, Longenecker B M. Expression of MUC1 mucin on activated human T cells: implications for a role of MUC1 in normal immune regulation. Cancer Res 1998; 58: 4079–4081, [PUBMED], [INFOTRIEVE]
  • Leong C F, Raudhawati O, Cheong S K, Sivagengei K, Hamidah H., Noor. Epithelial membrane antigen (EMA) or MUC1 expression in monocytes and monoblasts. Pathology 2003; 35: 422–427, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Wykes M, Donald K P, Ma, Tran M, Quin R J, Xing P X, Gendler S J, Hart D N, McGuckin M A. MUC1 epithelial mucin (CD227) is expressed by activated dendritic cells. J Leukoc Biol 2002; 72: 692–701, [PUBMED], [INFOTRIEVE], [CSA]
  • Cremoux P, de, Extra J M, Denis M G, Pierga J Y, Bourstyn E, Nos C, Clough K B, Boudou E, Martin E C, Muller A, Pouillart P, Magdelenat H. Detection of MUC1-expressing mammary carcinoma cells in the peripheral blood of breast cancer patients by real-time polymerase chain reaction. Clin Cancer Res 2000; 6: 3117–3122, [PUBMED], [INFOTRIEVE], [CSA]
  • Hardingham J E, Hewett P J, Sage R E, Finch J L, Nuttall J D, Kotasek D, Dobrovic A. Molecular detection of blood-borne epithelial cells in colorectal cancer patients and in patients with benign bowel disease. Int J Cancer 2000; 89: 8–13, [PUBMED], [INFOTRIEVE]
  • Felton T, Harris G C, Pinder S E, Snead D R, Carter G I, Bell J A, Haines A, Kollias J, Robertson J F, Elston C W, Ellis I O. Identification of carcinoma cells in peripheral blood samples of patients with advanced breast carcinoma using RT-PCR amplification of CK7 and MUC1. Breast 2004; 13: 35–41, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Berois N, Varangot M, Aizen B, Estrugo R, Zarantonelli L, Fernandez P, Krygier G, Simonet F, Barrios E, Muse I, Osinaga E. Molecular detection of cancer cells in bone marrow and peripheral blood of patients with operable breast cancer. Comparison of CK19, MUC1 and CEA using RT-PCR. Eur J Cancer 2000; 36: 717–723, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Stimpfl M, Schmid B C, Obermair A, Tong D, Schiebel I, Gitsch G, Leodolter S, Zeillinger R. Comparison of flow cytometry and RT-PCR for the detection of ovarian cancer cells in peripheral blood. Oncol Res 1999; 11: 367–373, [PUBMED], [INFOTRIEVE], [CSA]
  • Eltahir E M, Mallinson D S, Birnie G D, Hagan C, George W D, Purushotham A D. Putative markers for the detection of breast carcinoma cells in blood. Br J Cancer 1998; 77: 1203–1207, [PUBMED], [INFOTRIEVE]
  • Shin J H, Chung J, Kim H O, Kim Y H, Hur Y M, Rhim J H, Chung H K, Park S C, Park J G, Yang H K. Detection of cancer cells in peripheral blood of stomach cancer patients using RT-PCR amplification of tumour-specific mRNAs. Aliment Pharmacol Ther 2002; 16: 137–144, (Suppl 2)[PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Shay J W, Gazdar A F. Telomerase in the early detection of cancer. J Clin Pathol 1997; 50: 106–109, [PUBMED], [INFOTRIEVE]
  • Villa R, Zaffaroni N, Folini M, Martelli G, Palo G, De, Daidone M G, Silvestrini R. Telomerase activity in benign and malignant breast lesions: a pilot prospective study on fine-needle aspirates. J Natl Cancer Inst 1998; 90: 537–539, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Sugino T, Yoshida K, Bolodeoku J, Tahara H, Buley I, Manek S, Wells C, Goodison S, Ide T, Suzuki T, Tahara E, Tarin D. Telomerase activity in human breast cancer and benign breast lesions: diagnostic applications in clinical specimens, including fine needle aspirates. Int J Cancer 1996; 69: 301–306, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hiyama E, Gollahon L, Kataoka T, Kuroi K, Yokoyama T, Gazdar A F, Hiyama K, Piatyszek M A, Shay J W. Telomerase activity in human breast tumors. J Natl Cancer Inst 1996; 88: 116–122, [PUBMED], [INFOTRIEVE]
  • Carey L A, Hedican C A, Henderson G S, Umbricht C B, Dome J S, Varon D, Sukumar S. Careful histological confirmation and microdissection reveal telomerase activity in otherwise telomerase-negative breast cancers. Clin Cancer Res 1998; 4: 435–440, [PUBMED], [INFOTRIEVE], [CSA]
  • Soria J C, Gauthier L R, Raymond E, Granotier C, Morat L, Armand J P, Boussin F D, Sabatier L. Molecular detection of telomerase-positive circulating epithelial cells in metastatic breast cancer patients. Clin Cancer Res 1999; 5: 971–975, [PUBMED], [INFOTRIEVE], [CSA]
  • Maass N, Hojo T, Rosel F, Ikeda T, Jonat W, Nagasaki K. Down regulation of the tumor suppressor gene maspin in breast carcinoma is associated with a higher risk of distant metastasis. Clin Biochem 2001; 34: 303–307, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Sabbatini R, Federico M, Morselli M, Depenni R, Cagossi K, Luppi M, Torelli G, Silingardi V. Detection of circulating tumor cells by reverse transcriptase polymerase chain reaction of maspin in patients with breast cancer undergoing conventional-dose chemotherapy. J Clin Oncol 2000; 18: 1914–1920, [PUBMED], [INFOTRIEVE]
  • Luppi M, Morselli M, Bandieri E, Federico M, Marasca R, Barozzi P, Ferrari M G, Savarino M, Frassoldati A, Torelli G. Sensitive detection of circulating breast cancer cells by reverse- transcriptase polymerase chain reaction of maspin gene. Ann Oncol 1996; 7: 619–624, [PUBMED], [INFOTRIEVE]
  • Lopez-Guerrero J A, Gilabert P B, Gonzalez E B, Alonso M A, Sanz, Perez J P, Talens A S, Oraval E A, Comos J, de la Rubia, Boix S B. Use of reverse-transcriptase polymerase chain reaction (RT-PCR) for carcinoembryonic antigen, cytokeratin 19, and maspin in the detection of tumor cells in leukapheresis products from patients with breast cancer: comparison with immunocytochemistry. J Hematother 1999; 8: 53–61, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Bertucci F, Viens P, Hingamp P, Nasser V, Houlgatte R, Birnbaum D. Breast cancer revisited using DNA array-based gene expression profiling. Int J Cancer 2003; 103: 565–571, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Nacht M, Ferguson A T, Zhang W, Petroziello J M, Cook B P, Gao Y H, Maguire S, Riley D, Coppola G, Landes G M, Madden S L, Sukumar S. Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res 1999; 59: 5464–5470, [PUBMED], [INFOTRIEVE]
  • Kominsky S L, Argani P, Korz D, Evron E, Raman V, Garrett E, Rein A, Sauter G, Kallioniemi O P, Sukumar S. Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 2003; 22: 2021–2033, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • McManus L M, Naughton M A, Martinez-Hernandez A. Human chorionic gonadotropin in human neoplastic cells. Cancer Res 1976; 36: 3476–3481, [PUBMED], [INFOTRIEVE]
  • Madersbacher S, Kratzik C, Gerth R, Dirnhofer S, Berger P. Human chorionic gonadotropin (hCG) and its free subunits in hydrocele fluids and neoplastic tissue of testicular cancer patients: insights into the in vivo hCG-secretion pattern. Cancer Res 1994; 54: 5096–5100, [PUBMED], [INFOTRIEVE]
  • Marcillac I, Troalen F, Bidart J M, Ghillani P, Ribrag V, Escudier B, Malassagne B, Droz J P, Lhomme C, Rougier P, et al. Free human chorionic gonadotropin beta subunit in gonadal and nongonadal neoplasms. Cancer Res 1992; 52: 3901–3907, [PUBMED], [INFOTRIEVE]
  • Acevedo H F, Tong J Y, Hartsock R J. Human chorionic gonadotropin-beta subunit gene expression in cultured human fetal and cancer cells of different types and origins. Cancer 1995; 76: 1467–1475, [PUBMED], [INFOTRIEVE]
  • Doi F, Chi D D, Charuworn B B, Conrad A J, Russell J, Morton D L, Hoon D S. Detection of beta-human chorionic gonadotropin mRNA as a marker for cutaneous malignant melanoma. Int J Cancer 1996; 65: 454–459, [PUBMED], [INFOTRIEVE]
  • Hu X C, Chow L W. Detection of circulating breast cancer cells by reverse transcriptase polymerase chain reaction (RT-PCR). Eur J Surg Oncol 2000; 26: 530–535, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Hu X C, Chow L W. Detection of circulating breast cancer cells with multiple-marker RT-PCR. Anticancer Res 2001; 21: 421–424, [PUBMED], [INFOTRIEVE], [CSA]
  • Yousef G M, ssa, Diamandis E P. The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev 2001; 22: 184–204, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Diamandis E P, Yousef G M, Luo L Y, Magklara A, Obiezu C V. The new human kallikrein gene family: implications in carcinogenesis. Trends Endocrinol Metab 2000; 11: 54–60, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Diamandis E P, Okui A, Mitsui S, Luo L Y, Soosaipillai A, Grass L, Nakamura T, Howarth D J, Yamaguchi N. Human kallikrein 11: a new biomarker of prostate and ovarian carcinoma. Cancer Res 2002; 62: 295–300, [PUBMED], [INFOTRIEVE]
  • Yousef G M, Scorilas A, Jung K, Ashworth L K, Diamandis E P. Molecular cloning of the human kallikrein 15 gene (KLK15). Up-regulation in prostate cancer. J Biol Chem 2001; 276: 53–61, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Barry M J. Clinical practice. Prostate-specific-antigen testing for early diagnosis of prostate cancer. N Engl J Med 2001; 344: 1373–1377, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Magklara A, Scorilas A, Catalona W J, Diamandis E P. The combination of human glandular kallikrein and free prostate-specific antigen (PSA) enhances discrimination between prostate cancer and benign prostatic hyperplasia in patients with moderately increased total PSA. Clin Chem 1999; 45: 1960–1966, [PUBMED], [INFOTRIEVE], [CSA]
  • Rittenhouse H G, Finlay J A, Mikolajczyk S D, Partin A W. Human kallikrein 2 (hK2) and prostate-specific antigen (PSA): two closely related, but distinct, kallikreins in the prostate. Crit Rev Clin Lab Sci 1998; 35: 275–368, [PUBMED], [INFOTRIEVE], [CSA]
  • Yousef G M, Chang A, Diamandis E P. Identification and characterization of KLK-L4, a new kallikrein-like gene that appears to be down-regulated in breast cancer tissues. J Biol Chem 2000; 275: 11891–11898, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Yousef G M, Magklara A, Diamandis E P. KLK12 is a novel serine protease and a new member of the human kallikrein gene family-differential expression in breast cancer. Genomics 2000; 69: 331–341, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Darson M F, Pacelli A, Roche P, Rittenhouse H G, Wolfert R L, Saeid M S, Young C Y, Klee G G, Tindall D J, Bostwick D G. Human glandular kallikrein 2 expression in prostate adenocarcinoma and lymph node metastases. Urology 1999; 53: 939–944, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Halabi S, Small E J, Hayes D F, Vogelzang N J, Kantoff P W. Prognostic significance of reverse transcriptase polymerase chain reaction for prostate-specific antigen in metastatic prostate cancer: a nested study within CALGB 9583. J Clin Oncol 2003; 21: 490–495, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Gewanter R M, Katz A E, Olsson C A, Benson M C, Singh A, Schiff P B, Ennis R D. RT-PCR for PSA as a prognostic factor for patients with clinically localized prostate cancer treated with radiotherapy. Urology 2003; 61: 967–971, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kantoff P W, Halabi S, Farmer D A, Hayes D F, Vogelzang N A, Small E J. Prognostic significance of reverse transcriptase polymerase chain reaction for prostate-specific antigen in men with hormone-refractory prostate cancer. J Clin Oncol 2001; 19: 3025–3028, [PUBMED], [INFOTRIEVE]
  • Xu T, Chen X, Wang X F, Hou S K, Zhu J C, Zhang X D, Huang X B. Study of PSA, PSMA and hK2 mRNA in peripheral blood of prostate cancer patients and its clinical implications. Beijing Da Xue Xue Bao 2004; 36: 164–168, [PUBMED], [INFOTRIEVE]
  • Gao C L, Rawal S K, Sun L, Ali A, Connelly R R, Banez L L, Sesterhenn I A, McLeod D G, Moul J W, Srivastava S. Diagnostic potential of prostate-specific antigen expressing epithelial cells in blood of prostate cancer patients. Clin Cancer Res 2003; 9: 2545–2550, [PUBMED], [INFOTRIEVE], [CSA]
  • Mejean A, Vona G, Nalpas B, Damotte D, Brousse N, Chretien Y, Dufour B, Lacour B, Brechot C, Paterlini-Brechot P. Detection of circulating prostate derived cells in patients with prostate adenocarcinoma is an independent risk factor for tumor recurrence. J Urol 2000; 163: 2022–2029, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Normanno N, Luca A, De, Castaldo A, Casamassimi A, Popolo A, Di, Zarrilli R, Porcellini A, Acquaviva A M, Avvedimento V E, Pignata S. Apolipoprotein A-I reverse transcriptase-polymerase chain reaction analysis for detection of hematogenous colon cancer dissemination. Int J Oncol 1998; 13: 443–447, [PUBMED], [INFOTRIEVE]
  • Zach O, Kasparu H, Wagner H, Krieger O, Lutz D. Prognostic value of tumour cell detection in peripheral blood of breast cancer patients. Acta Med Austriaca 2002; 29: 32–34
  • Brandt B, Schmitt H, Feldner J C, Lelle R J, Semjonow A, Beckmann A. Blood-borne cancer cells—quo vadis. Int J Biol Markers 2000; 15: 111–113, [PUBMED], [INFOTRIEVE], [CSA]
  • Giatromanolaki A, Koukourakis M I, Kakolyris S, Mavroudis D, Kouroussis C, Mavroudi C, Perraki M, Sivridis E, Georgoulias V. Assessment of highly angiogenic and disseminated in the peripheral blood disease in breast cancer patients predicts for resistance to adjuvant chemotherapy and early relapse. Int J Cancer 2004; 108: 620–627, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bosch B, Guller U, Schnider A, Maurer R, Harder F, Metzger U, Marti W R. Perioperative detection of disseminated tumour cells is an independent prognostic factor in patients with colorectal cancer. Br J Surg 2003; 90: 882–888, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Fujita S, Kudo N, Akasu T, Moriya Y. Detection of cytokeratin 19 and 20 mRNA in peripheral and mesenteric blood from colorectal cancer patients and their prognosis. Int J Colorectal Dis 2001; 16: 141–146, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Etoh T, Ueo H, Inoue H, Sato K, Utsunomiya T, Barnard G F, Kitano S, Mori M. Clinical significance of K-Ras mutations in intraoperative tumor drainage blood from patients with colorectal carcinoma. Ann Surg Oncol 2001; 8: 407–412, [PUBMED], [INFOTRIEVE], [CSA]
  • Iinuma H, Okinaga K, Adachi M, Suda K, Sekine T, Sakagawa K, Baba Y, Tamura J, Kumagai H, Ida A. Detection of tumor cells in blood using CD45 magnetic cell separation followed by nested mutant allele-specific amplification of p53 and K-ras genes in patients with colorectal cancer. Int J Cancer 2000; 89: 337–344, [PUBMED], [INFOTRIEVE]
  • Yamaguchi K, Takagi Y, Aoki S, Futamura M, Saji S. Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Ann Surg 2000; 232: 58–65, [PUBMED], [INFOTRIEVE]
  • Taniguchi T, Makino M, Suzuki K, Kaibara N. Prognostic significance of reverse transcriptase-polymerase chain reaction measurement of carcinoembryonic antigen mRNA levels in tumor drainage blood and peripheral blood of patients with colorectal carcinoma. Cancer 2000; 89: 970–976, [PUBMED], [INFOTRIEVE]
  • Bessa X, Elizalde J I, Boix L, Pinol V, Lacy A M, Salo J, Pique J M, Castells A. Lack of prognostic influence of circulating tumor cells in peripheral blood of patients with colorectal cancer. Gastroenterology 2001; 120: 1084–1092, [PUBMED], [INFOTRIEVE], [CSA]
  • Shariat S F, Kattan M W, Song W, Bernard D, Gottenger E, Wheeler T M, Slawin K M. Early postoperative peripheral blood reverse transcription PCR assay for prostate-specific antigen is associated with prostate cancer progression in patients undergoing radical prostatectomy. Cancer Res 2003; 63: 5874–5878, [PUBMED], [INFOTRIEVE]
  • Bertucci F, Salas S, Eysteries S, Nasser V, Finetti P, Ginestier C, Charafe-Jauffret E, Loriod B, Bachelart L, Montfort J, Victorero G, Viret F, Ollendorff V, Fert V, Giovaninni M, Delpero J R, Nguyen C, Viens P, Monges G, Birnbaum D, Houlgatte R. Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 2004; 23: 1377–1391, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Huppi K, Chandramouli G V. Molecular profiling of prostate cancer. Curr Urol Rep 2004; 5: 45–51, [PUBMED], [INFOTRIEVE], [CSA]
  • Kienle P, Koch M, Autschbach F, Benner A, Treiber M, Wannenmacher M, Knebel Doeberitz M, von, Buchler M, Herfarth C, Weitz J. Decreased detection rate of disseminated tumor cells of rectal cancer patients after preoperative chemoradiation: a first step towards a molecular surrogate marker for neoadjuvant treatment in colorectal cancer. Ann Surg 2003; 238: 324–330, discussion 330–321[PUBMED], [INFOTRIEVE]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.