935
Views
125
CrossRef citations to date
0
Altmetric
Research Article

The Regulation of Cellular Iron Metabolism

, , &
Pages 413-459 | Published online: 10 Oct 2008

REFERENCES

  • Neilands J B. Iron and its role in microbial physiology. Microbial Iron Metabolism: A Comprehensive Treatise, J B Neilands. Academic Press, London 1974; 3–34
  • Stubbe J. Ribonucleotide reductases. Adv Enzymol Relat Areas Mol Biol 1990; 63: 349–419
  • Baynes R D. Iron deficiency. Iron Metabolism in Health and Disease, J H Brock, J W Halliday, M J Pippard, L W Powell. W. B. Saunders Company Ltd., London 1994; 189–225
  • Feder J N, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996; 13: 399–408
  • Gunshin H, Mackenzie B, Berger U V, Gunshin Y, Romero M F, Boron W F, Nussberger S, Gollan J L, Hediger M A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997; 388: 482–488
  • Vulpe C D, Kuo Y M, Murphy T L, Cowley L, Askwith C, Libina N, Gitschier J, Anderson G J. Hephestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 1999; 21: 195–199
  • Kawabata H, Yang R, Hirama T, Vuong P T, Kawano S, Gombart A F, Koeffler H P. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem 1999; 274: 20826–20832
  • Abboud S, Haile D J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 2000; 275: 19906–19912
  • Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt S J, Moynihan J, Paw B H, Drejer A, Barut B, Zapata A, Law T C, Brugnara C, Lux S E, Pinkus G S, Pinkus J L, Kingsley P D, Palis J, Fleming M D, Andrews N C, Zon L I. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 2000; 403: 776–781
  • McKie A T, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters T J, Farzaneh F, Hediger M A, Hentze M W, Simpson R J. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 2000; 5: 299–309
  • Krause A, Neitz S, Magert H J, Schulz A, Forssmann W G, Schulz-Knappe P, Adermann K. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 2000; 480: 147–150
  • Park C H, Valore E V, Waring A J, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001; 276: 7806–7810
  • McKie A T, Barrow D, Latunde-Dada G O, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters T J, Raja K B, Shirali S, Hediger M A, Farzaneh F, Simpson R J. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 2001; 291: 1755–1759
  • Papanikolaou G, et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 2004; 36: 77–82
  • Shayeghi M, Latunde-Dada G O, Oakhill J S, Laftah A H, Takeuchi K, Halliday N, Khan Y, Warley A, McCann F E, Hider R C, Frazer D M, Anderson G J, Vulpe C D, Simpson R J, McKie A T. Identification of an intestinal heme transporter. Cell 2005; 122: 789–801
  • Andrews N C. Disorders of iron metabolism. N Engl J Med 1999; 341: 1986–1995
  • Lieu P T, Heiskala M, Peterson P A, Yang Y. The roles of iron in health and disease. Mol Aspects Med 2001; 22: 1–87
  • Halliwell B, Gutteridge J M. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 1986; 246: 501–514
  • Aruoma O I, Halliwell B, Laughton M J, Quinlan G J, Gutteridge J M. The mechanism of initiation of lipid peroxidation. Evidence against a requirement for an iron(II)-iron(III) complex. Biochem J 1989; 258: 617–620
  • Conrad M E, Umbreit J N, Moore E G. Iron absorption and transport. Am J Med Sci 1999; 318: 213–219
  • Carpenter C E, Mahoney A W. Contributions of heme and nonheme iron to human nutrition. Crit Rev Food Sci Nutr 1992; 31: 333–367
  • Siah C W, Trinder D, Olynyk J K. Iron overload. Clin Chim Acta 2005; 358: 24–36
  • Forth W, Rummel W. Iron absorption. Physiol Rev 1973; 53: 724–792
  • Peters T J, Raja K B, Simpson R J, Snape S. Mechanisms and regulation of intestinal iron absorption. Ann NY Acad Sci 1988; 526: 141–147
  • Conrad M E, Weintraub L R, Sears D A, Crosby W H. Absorption of hemoglobin iron. Am J Physiol 1966; 211: 1123–1130
  • Wheby M S, Suttle G E, Ford K T, 3rd. Intestinal absorption of hemoglobin iron. Gastroenterology 1970; 58: 647–654
  • Grasbeck R, Kouvonen I, Lundberg M, Tenhunen R. An intestinal receptor for heme. Scand J Haematol 1979; 23: 5–9
  • Grasbeck R, Majuri R, Kouvonen I, Tenhunen R. Spectral and other studies on the intestinal haem receptor of the pig. Biochim Biophys Acta 1982; 700: 137–142
  • Raffin S B, Woo C H, Roost K T, Price D C, Schmid R. Intestinal absorption of hemoglobin iron-heme cleavage by mucosal heme oxygenase. J Clin Invest 1974; 54: 1344–1352
  • Levine D S, Huebers H A, Rubin C E, Finch C A. Blocking action of parenteral desferrioxamine on iron absorption in rodents and men. Gastroenterology 1988; 95: 1242–1248
  • Quigley J G, Yang Z, Worthington M T, Phillips J D, Sabo K M, Sabath D E, Berg C L, Sassa S, Wood B L, Abkowitz J L. Identification of a human heme exporter that is essential for erythropoiesis. Cell 2004; 118: 757–766
  • Raja K B, Simpson R J, Peters T J. Investigation of a role for reduction in ferric iron uptake by mouse duodenum. Biochim Biophys Acta 1992; 1135: 141–146
  • Riedel H D, Remus A J, Fitscher B A, Stremmel W. Characterization and partial purification of a ferrireductase from human duodenal microvillus membranes. Biochem J 1995; 309: 745–748
  • Gunshin H, Starr C N, Direnzo C, Fleming M D, Jin J, Greer E L, Sellers V M, Galica S M, Andrews N C. Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice. Blood 2005; 106: 2879–2883
  • Ohgami R S, Campagna D R, McDonald A, Fleming M D. The Steap proteins are metalloreductases. Blood 2006; 108: 1388–1394
  • Fleming M D, Trenor C C, 3rd, Su M A, Foernzler D, Beier D R, Dietrich W F, Andrews N C. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 1997; 16: 383–386
  • Tandy S, Williams M, Leggett A, Lopez-Jimenez M, Dedes M, Ramesh B, Srai S K, Sharp P. Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. J Biol Chem 2000; 275: 1023–1029
  • Brittenham G M. The red cell cycle. Iron Metabolism in Health and Disease, J H Brock, J W Halliday, M J Pippard, L W Powell. W. B. Saunders Company Ltd., London 1994; 31–62
  • Nemeth E, Ganz T. Regulation of iron metabolism by hepcidin. Annu Rev Nutr 2006; 26: 323–342
  • Donovan A, Lima C A, Pinkus J L, Pinkus G S, Zon L I, Robine S, Andrews N C. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 2005; 1: 191–200
  • Hemmaplardh D, Morgan E H. The role of endocytosis in transferrin uptake by reticulocytes and bone marrow cells. Br J Haematol 1977; 36: 85–96
  • Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Grandchamp B, Sirito M, Sawadogo M, Kahn A, Vaulont S. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci USA 2002; 99: 4596–4601
  • Frazer D M, Inglis H R, Wilkins S J, Millard K N, Steele T M, McLaren G D, McKie A T, Vulpe C D, Anderson G J. Delayed hepcidin response explains the lag period in iron absorption following a stimulus to increase erythropoiesis. Gut 2004; 53: 1509–1515
  • Enns C A, Shindelman J E, Tonik S E, Sussman H H. Radioimmunochemical measurement of the transferrin receptor in human trophoblast and reticulocyte membranes with a specific anti-receptor antibody. Proc Natl Acad Sci USA 1981; 78: 4222–4225
  • Young S P, Roberts S, Bomford A. Intracellular processing of transferrin and iron by isolated rat hepatocytes. Biochem J 1985; 232: 819–823
  • Pollack S, Campana T. Low molecular weight nonheme iron and a highly labeled heme pool in the reticulocyte. Blood 1980; 56: 564–566
  • Mulligan M, Althaus B, Linder M C. Non-ferritin, non-heme iron pools in rat tissues. Int J Biochem 1986; 18: 791–798
  • Jacobs A. Low molecular weight intracellular iron transport compounds. Blood 1977; 50: 433–439
  • Pollack S. Intracellular iron. Adv Exp Med Biol 1994; 356: 165–171
  • Harrison P M. Ferritin: an iron-storage molecule. Semin Hematol 1977; 14: 55–70
  • Harrison P M, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1996; 1275: 161–203
  • Adelman T G, Arosio P, Drysdale J W. Multiple subunits in human ferritins: evidence for hybrid molecules. Biochem Biophys Res Commun 1975; 63: 1056–1062
  • Bomford A, Conlon-Hollingshead C, Munro H N. Adaptive responses of rat tissue isoferritins to iron administration. Changes in subunit synthesis, isoferritin abundance, and capacity for iron storage. J Biol Chem 1981; 256: 948–955
  • Halliday J W, Ramm G A, Powell L W. Cellular iron processing and storage: The role of ferritin. Iron Metabolism in Health and Disease, J H Brock, J W Halliday, M J Pippard, L W Powell. W. B. Saunders Company Ltd., London 1994; 97–121
  • Ke Y, Wu J, Leibold E A, Walden W E, Theil E C. Loops and bulge/loops in iron-responsive element isoforms influence iron regulatory protein binding. Fine-tuning of mRNA regulation?. J Biol Chem 1998; 273: 23637–23640
  • Wei Y, Miller S C, Tsuji Y, Torti S V, Torti F M. Interleukin 1 induces ferritin heavy chain in human muscle cells. Biochem Biophys Res Commun 1990; 169: 289–296
  • Fahmy M, Young S P. Modulation of iron metabolism in monocyte cell line U937 by inflammatory cytokines: changes in transferrin uptake, iron handling and ferritin mRNA. Biochem J 1993; 296: 175–181
  • Chasteen N D, Harrison P M. Mineralization in ferritin: an efficient means of iron storage. J Struct Biol 1999; 126: 182–194
  • Reilly C A, Aust S D. Iron loading into ferritin by an intracellular ferroxidase. Arch Biochem Biophys 1998; 359: 69–76
  • Rudeck M, Volk T, Sitte N, Grune T. Ferritin oxidation in vitro: implication of iron release and degradation by the 20S proteasome. IUBMB Life 2000; 49: 451–456
  • De Domenico I, Vaughn M B, Li L, Bagley D, Musci G, Ward D M, Kaplan J. Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. EMBO J 2006; 25: 5396–5404
  • Munro H N, Linder M C. Ferritin: structure, biosynthesis, and role in iron metabolism. Physiol Rev 1978; 58: 317–396
  • Richter G W. Studies of iron overload. Lysosomal proteolysis of rat liver ferritin. Pathol Res Pract 1986; 181: 159–167
  • Finch S C, Finch C A. Idiopathic hemochromatosis, an iron storage disease. A. Iron metabolism in hemochromatosis. Medicine (Baltimore) 1955; 34: 381–430
  • Kaldor I. Studies on intermediary iron metabolism. XII. Measurement of the iron derived from water soluble and water insoluble non-haem compounds (ferritin and haemosiderin iron) in liver and spleen. Aust J Exp Biol Med Sci 1958; 36: 173–182
  • Millar J A, Cumming R L, Smith J A, Goldberg A. Effect of actinomycin D, cycloheximide, and acute blood loss of ferritin synthesis in rat liver. Biochem J 1970; 119: 643–649
  • Wyllie J C, Kaufman N. A study of storage iron in the pregnant rat. Br J Haematol 1971; 20: 321–327
  • O'Connell M, Halliwell B, Moorhouse C P, Aruoma O I, Baum H, Peters T J. Formation of hydroxyl radicals in the presence of ferritin and haemosiderin. Is haemosiderin formation a biological protective mechanism?. Biochem J 1986; 234: 727–731
  • Green R, Charlton R, Seftel H, Bothwell T, Mayet F, Adams B, Finch C, Layrisse M. Body iron excretion in man: a collaborative study. Am J Med 1968; 45: 336–353
  • Miret S, Simpson R J, McKie A T. Physiology and molecular biology of dietary iron absorption. Annu Rev Nutr 2003; 23: 283–301
  • Hallberg L, Hogdahl A M, Nilsson L, Rybo G. Menstrual blood loss—a population study. Variation at different ages and attempts to define normality. Acta Obstet Gynecol Scand 1966; 45: 320–351
  • Hallberg L. Perspectives on nutritional iron deficiency. Annu Rev Nutr 2001; 21: 1–21
  • Brune M, Magnusson B, Persson H, Hallberg L. Iron losses in sweat. Am J Clin Nutr 1986; 43: 438–443
  • Morgan E H. Iron metabolism and transport. Hepatology: A Textbook of Liver Disease, D Zakim, T D Boyer. W. B. Saunders Company Ltd., New York 1996; 526–554
  • Morgan E H. Transferrin biochemistry, physiology and clinical significance. Molec Aspects Med 1981; 4: 1–123
  • Jordan S M, Morgan E H. Plasma protein synthesis by tissue slices from pregnant and lactating rats. Biochim Biophys Acta 1969; 174: 373–379
  • Takeda A, Devenyi A, Connor J R. Evidence for non-transferrin-mediated uptake and release of iron and manganese in glial cell cultures from hypotransferrinemic mice. J Neurosci Res 1998; 51: 454–462
  • Anderson B F, Baker H M, Dodson E J, Norris G E, Rumball S V, Waters J M, Baker E N. Structure of human lactoferrin at 3.2-A resolution. Proc Natl Acad Sci USA 1987; 84: 1769–1773
  • Bailey S, Evans R W, Garratt R C, Gorinsky B, Hasnain S, Horsburgh C, Jhoti H, Lindley P F, Mydin A, Sarra R, et al. Molecular structure of serum transferrin at 3.3-A resolution. Biochemistry 1988; 27: 5804–5812
  • Cheng Y, Zak O, Aisen P, Harrison S C, Walz T. Structure of the human transferrin receptor-transferrin complex. Cell 2004; 116: 565–576
  • Yang F, Lum J B, McGill J R, Moore C M, Naylor S L, van Bragt P H, Baldwin W D, Bowman B H. Human transferrin: cDNA characterization and chromosomal localization. Proc Natl Acad Sci USA 1984; 81: 2752–2756
  • Aisen P, Aasa R, Redfield A G. The chromium, manganese, and cobalt complexes of transferrin. J Biol Chem 1969; 244: 4628–4633
  • Davidsson L, Lonnerdal B, Sandstrom B, Kunz C, Keen C L. Identification of transferrin as the major plasma carrier protein for manganese introduced orally or intravenously or after in vitro addition in the rat. J Nutr 1989; 119: 1461–1464
  • Baker E N, Lindley P F. New perspectives on the structure and function of transferrins. J Inorg Biochem 1992; 47: 147–160
  • Bali P K, Zak O, Aisen P. A new role for the transferrin receptor in the release of iron from transferrin. Biochemistry 1991; 30: 324–328
  • Bali P K, Aisen P. Receptor-modulated iron release from transferrin: differential effects on N- and C-terminal sites. Biochemistry 1991; 30: 9947–9952
  • Aisen P, Leibman A, Zweier J. Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem 1978; 253: 1930–1937
  • Jandl J H, Katz J H. The plasma-to-cell cycle of transferrin. J Clin Invest 1963; 42: 314–326
  • McClelland A, Kuhn L C, Ruddle F H. The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence. Cell 1984; 39: 267–274
  • Evans P, Kemp J. Exon/intron structure of the human transferrin receptor gene. Gene 1997; 199: 123–131
  • Jing S Q, Trowbridge I S. Identification of the intermolecular disulfide bonds of the human transferrin receptor and its lipid-attachment site. EMBO J 1987; 6: 327–331
  • Schneider C, Sutherland R, Newman R, Greaves M. Structural features of the cell surface receptor for transferrin that is recognized by the monoclonal antibody OKT9. J Biol Chem 1982; 257: 8516–8522
  • Schneider C, Owen M J, Banville D, Williams J G. Primary structure of human transferrin receptor deduced from the mRNA sequence. Nature 1984; 311: 675–678
  • Enns C A, Sussman H H. Physical characterization of the transferrin receptor in human placentae. J Biol Chem 1981; 256: 9820–9823
  • Sheth S, Brittenham G M. Genetic disorders affecting proteins of iron metabolism: clinical implications. Annu Rev Med 2000; 51: 443–464
  • Lawrence C M, Ray S, Babyonyshev M, Galluser R, Borhani D W, Harrison S C. Crystal structure of the ectodomain of human transferrin receptor. Science 1999; 286: 779–782
  • Dautry-Varsat A, Ciechanover A, Lodish H F. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci USA 1983; 80: 2258–2262
  • Young S P, Bomford A, Williams R. The effect of the iron saturation of transferrin on its binding and uptake by rabbit reticulocytes. Biochem J 1984; 219: 505–510
  • Tsunoo H, Sussman H H. Characterization of transferrin binding and specificity of the placental transferrin receptor. Arch Biochem Biophys 1983; 225: 42–54
  • Davies M, Parry J E, Sutcliffe R G. Examination of different preparations of human placental plasma membrane for the binding of insulin, transferrin and immunoglobulins. J Reprod Fertil 1981; 63: 315–324
  • Enns C A, Suomalainen H A, Gebhardt J E, Schroder J, Sussman H H. Human transferrin receptor: expression of the receptor is assigned to chromosome 3. Proc Natl Acad Sci USA 1982; 79: 3241–3245
  • Ponka P, Lok C N. The transferrin receptor: role in health and disease. Int J Biochem Cell Biol 1999; 31: 1111–1137
  • Casey J L, Hentze M W, Koeller D M, Caughman S W, Rouault T A, Klausner R D, Harford J B. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science 1988; 240: 924–928
  • Hentze M W, Caughman S W, Casey J L, Koeller D M, Rouault T A, Harford J B, Klausner R D. A model for the structure and functions of iron-responsive elements. Gene 1988; 72: 201–208
  • Cairo G, Pietrangelo A. Nitric-oxide-mediated activation of iron-regulatory protein controls hepatic iron metabolism during acute inflammation. Eur J Biochem 1995; 232: 358–363
  • Lok C N, Ponka P. Identification of an erythroid active element in the transferrin receptor gene. J Biol Chem 2000; 275: 24185–24190
  • Paterson S, Armstrong N J, Iacopetta B J, McArdle H J, Morgan E H. Intravesicular pH and iron uptake by immature erythroid cells. J Cell Physiol 1984; 120: 225–232
  • Su M A, Trenor C C, Fleming J C, Fleming M D, Andrews N C. The G185R mutation disrupts function of the iron transporter Nramp2. Blood 1998; 92: 2157–2163
  • Morgan E H. Effect of pH and iron content of transferrin on its binding to reticulocyte receptors. Biochim Biophys Acta 1983; 762: 498–502
  • Qian Z M, Morgan E H. Changes in the uptake of transferrin-free and transferrin-bound iron during reticulocyte maturation in vivo and in vitro. Biochim Biophys Acta 1992; 1135: 35–43
  • Morgan E H, Baker E. Iron uptake and metabolism by hepatocytes. Fed Proc 1986; 45: 2810–2816
  • Morgan E H. Inhibition of reticulocyte iron uptake by NH4Cl and CH3NH2. Biochim Biophys Acta 1981; 642: 119–134
  • Ohgami R S, Campagna D R, Greer E L, Antiochos B, McDonald A, Chen J, Sharp J J, Fujiwara Y, Barker J E, Fleming M D. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 2005; 37: 1264–1269
  • Gruenheid S, Canonne-Hergaux F, Gauthier S, Hackam D J, Grinstein S, Gros P. The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J Exp Med 1999; 189: 831–841
  • Bowen B J, Morgan E H. Anemia of the Belgrade rat: evidence for defective membrane transport of iron. Blood 1987; 70: 38–44
  • Fleming M D, Romano M A, Su M A, Garrick L M, Garrick M D, Andrews N C. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci USA 1998; 95: 1148–1153
  • Edwards J A, Hoke J E. Red cell iron uptake in hereditary microcytic anemia. Blood 1975; 46: 381–388
  • Edwards J A, Garrick L M, Hoke J E. Defective iron uptake and globin synthesis by erythroid cells in the anemia of the Belgrade laboratory rat. Blood 1978; 51: 347–357
  • Parkkila S, Waheed A, Britton R S, Bacon B R, Zhou X Y, Tomatsu S, Fleming R E, Sly W S. Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis. Proc Natl Acad Sci USA 1997; 94: 13198–13202
  • Feder J N, Penny D M, Irrinki A, Lee V K, Lebron J A, Watson N, Tsuchihashi Z, Sigal E, Bjorkman P J, Schatzman R C. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci USA 1998; 95: 1472–1477
  • Lebron J A, West A P, Jr., Bjorkman P J. The hemochromatosis protein HFE competes with transferrin for binding to the transferrin receptor. J Mol Biol 1999; 294: 239–245
  • Fleming R E, Migas M C, Holden C C, Waheed A, Britton R S, Tomatsu S, Bacon B R, Sly W S. Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis. Proc Natl Acad Sci USA 2000; 97: 2214–2219
  • Kawabata H, Nakamaki T, Ikonomi P, Smith R D, Germain R S, Koeffler H P. Expression of transferrin receptor 2 in normal and neoplastic hematopoietic cells. Blood 2001; 98: 2714–2719
  • Merle U, Theilig F, Fein E, Gehrke S, Kallinowski B, Riedel H D, Bachmann S, Stremmel W, Kulaksiz H. Localization of the iron-regulatory proteins hemojuvelin and transferrin receptor 2 to the basolateral membrane domain of hepatocytes. Histochem Cell Biol 2007; 127: 221–226
  • Calzolari A, Deaglio S, Sposi N M, Petrucci E, Morsilli O, Gabbianelli M, Malavasi F, Peschle C, Testa U. Transferrin receptor 2 protein is not expressed in normal erythroid cells. Biochem J 2004; 381: 629–634
  • Levy J E, Jin O, Fujiwara Y, Kuo F, Andrews N C. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat Genet 1999; 21: 396–399
  • Kawabata H, Germain R S, Vuong P T, Nakamaki T, Said J W, Koeffler H P. Transferrin receptor 2-alpha supports cell growth both in iron-chelated cultured cells and in vivo. J Biol Chem 2000; 275: 16618–16625
  • West A P, Jr., Bennett M J, Sellers V M, Andrews N C, Enns C A, Bjorkman P J. Comparison of the interactions of transferrin receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein HFE. J Biol Chem 2000; 275: 38135–38138
  • Robb A D, Ericsson M, Wessling-Resnick M. Transferrin receptor 2 mediates a biphasic pattern of transferrin uptake associated with ligand delivery to multivesicular bodies. Am J Physiol Cell Physiol 2004; 287: C1769–C1775
  • Griffiths W J, Cox T M. Co-localization of the mammalian hemochromatosis gene product (HFE) and a newly identified transferrin receptor (TfR2) in intestinal tissue and cells. J Histochem Cytochem 2003; 51: 613–624
  • Goswami T, Andrews N C. Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem 2006; 281: 28494–28498
  • Cole E S, Glass J. Transferrin binding and iron uptake in mouse hepatocytes. Biochim Biophys Acta 1983; 762: 102–110
  • Trinder D, Zak O, Aisen P. Transferrin receptor-independent uptake of differic transferrin by human hepatoma cells with antisense inhibition of receptor expression. Hepatology 1996; 23: 1512–1520
  • Lee A W, Oates P S, Trinder D. Effects of cell proliferation on the uptake of transferrin-bound iron by human hepatoma cells. Hepatology 2003; 38: 967–977
  • Robb A, Wessling-Resnick M. Regulation of transferrin receptor 2 protein levels by transferrin. Blood 2004; 104: 4294–4299
  • Johnson M B, Enns C A. Diferric transferrin regulates transferrin receptor 2 protein stability. Blood 2004; 104: 4287–4293
  • Warren G, Davoust J, Cockcroft A. Recycling of transferrin receptors in A431 cells is inhibited during mitosis. EMBO J 1984; 3: 2217–2225
  • Gruenheid S, Cellier M, Vidal S, Gros P. Identification and characterization of a second mouse Nramp gene. Genomics 1995; 25: 514–525
  • Lee P L, Gelbart T, West C, Halloran C, Beutler E. The human Nramp2 gene: characterization of the gene structure, alternative splicing, promoter region and polymorphisms. Blood Cells Mol Dis 1998; 24: 199–215
  • Hubert N, Hentze M W. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci USA 2002; 99: 12345–12350
  • Gunshin H, Allerson C R, Polycarpou-Schwarz M, Rofts A, Rogers J T, Kishi F, Hentze M W, Rouault T A, Andrews N C, Hediger M A. Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett 2001; 509: 309–316
  • Canonne-Hergaux F, Gruenheid S, Ponka P, Gros P. Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood 1999; 93: 4406–4417
  • Trinder D, Oates P S, Thomas C, Sadleir J, Morgan E H. Localisation of divalent metal transporter 1 (DMT1) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in iron overload. Gut 2000; 46: 270–276
  • Touret N, Furuya W, Forbes J, Gros P, Grinstein S. Dynamic traffic through the recycling compartment couples the metal transporter Nramp2 (DMT1) with the transferrin receptor. J Biol Chem 2003; 278: 25548–25557
  • Picard V, Govoni G, Jabado N, Gros P. Nramp 2 (DCT1/DMT1) expressed at the plasma membrane transports iron and other divalent cations into a calcein-accessible cytoplasmic pool. J Biol Chem 2000; 275: 35738–35745
  • Edwards J A, Hoke J E. Defect of intestinal mucosal iron uptake in mice with hereditary microcytic anemia. Proc Soc Exp Biol Med 1972; 141: 81–84
  • Fleming M D, Andrews N C. Mammalian iron transport: an unexpected link between metal homeostasis and host defense. J Lab Clin Med 1998; 132: 464–468
  • Zoller H, Pietrangelo A, Vogel W, Weiss G. Duodenal metal-transporter (DMT-1, NRAMP-2) expression in patients with hereditary haemochromatosis. Lancet 1999; 353: 2120–2123
  • Zhou X Y, Tomatsu S, Fleming R E, Parkkila S, Waheed A, Jiang J, Fei Y, Brunt E M, Ruddy D A, Prass C E, Schatzman R C, O'Neill R, Britton R S, Bacon B R, Sly W S. HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci USA 1998; 95: 2492–2497
  • Fleming R E, Migas M C, Zhou X, Jiang J, Britton R S, Brunt E M, Tomatsu S, Waheed A, Bacon B R, Sly W S. Mechanism of increased iron absorption in murine model of hereditary hemochromatosis: increased duodenal expression of the iron transporter DMT1. Proc Natl Acad Sci USA 1999; 96: 3143–3148
  • Chua A CG, Olynyk J K, Leedman P J, Trinder D. Nontransferrin-bound iron uptake by hepatocytes is increased in the Hfe knockout mouse model of hereditary hemochromatosis. Blood 2004; 104: 1519–1525
  • Liu X B, Hill P, Haile D J. Role of the ferroportin iron-responsive element in iron and nitric oxide dependent gene regulation. Blood Cells Mol Dis 2002; 29: 315–326
  • Lymboussaki A, Pignatti E, Montosi G, Garuti C, Haile D J, Pietrangelo A. The role of the iron responsive element in the control of ferroportin1/IREG1/MTP1 gene expression. J Hepatol 2003; 39: 710–715
  • Yang F, Liu X B, Quinones M, Melby P C, Ghio A, Haile D J. Regulation of reticuloendothelial iron transporter MTP1 (Slc11a3) by inflammation. J Biol Chem 2002; 277: 39786–39791
  • Nemeth E, Tuttle M S, Powelson J, Vaughn M B, Donovan A, Ward D M, Ganz T, Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090–2093
  • Montosi G, Donovan A, Totaro A, Garuti C, Pignatti E, Cassanelli S, Trenor C C, Gasparini P, Andrews N C, Pietrangelo A. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J Clin Invest 2001; 108: 619–623
  • Njajou O T, Vaessen N, Joosse M, Berghuis B, van Dongen J W, Breuning M H, Snijders P J, Rutten W P, Sandkuijl L A, Oostra B A, van Duijn C M, Heutink P. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat Genet 2001; 28: 213–214
  • Devalia V, Carter K, Walker A P, Perkins S J, Worwood M, May A, Dooley J S. Autosomal dominant reticuloendothelial iron overload associated with a 3-base pair deletion in the ferroportin 1 gene (SLC11A3). Blood 2002; 100: 695–697
  • Hellman N E, Gitlin J D. Ceruloplasmin metabolism and function. Annu Rev Nutr 2002; 22: 439–458
  • Miyajima H, Nishimura Y, Mizoguchi K, Sakamoto M, Shimizu T, Honda N. Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology 1987; 37: 761–767
  • Yoshida K, Furihata K, Takeda S, Nakamura A, Yamamoto K, Morita H, Hiyamuta S, Ikeda S, Shimizu N, Yanagisawa N. A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet 1995; 9: 267–272
  • Harris Z L, Durley A P, Man T K, Gitlin J D. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci USA 1999; 96: 10812–10817
  • Daimon M, Yamatani K, Igarashi M, Fukase N, Kawanami T, Kato T, Tominaga M, Sasaki H. Fine structure of the human ceruloplasmin gene. Biochem Biophys Res Commun 1995; 208: 1028–1035
  • Yang F, Naylor S L, Lum J B, Cutshaw S, McCombs J L, Naberhaus K H, McGill J R, Adrian G S, Moore C M, Barnett D R, Bowman B H. Characterization, mapping, and expression of the human ceruloplasmin gene. Proc Natl Acad Sci USA 1986; 83: 3257–3261
  • Koschinsky M L, Funk W D, van Oost B A, MacGillivray R T. Complete cDNA sequence of human preceruloplasmin. Proc Natl Acad Sci USA 1986; 83: 5086–5090
  • Aldred A R, Grimes A, Schreiber G, Mercer J F. Rat ceruloplasmin. Molecular cloning and gene expression in liver, choroid plexus, yolk sac, placenta, and testis. J Biol Chem 1987; 262: 2875–2878
  • Klomp L W, Gitlin J D. Expression of the ceruloplasmin gene in the human retina and brain: implications for a pathogenic model in aceruloplasminemia. Hum Mol Genet 1996; 5: 1989–1996
  • Yang F, Friedrichs W E, deGraffenried L, Herbert D C, Weaker F J, Bowman B H, Coalson J J. Cellular expression of ceruloplasmin in baboon and mouse lung during development and inflammation. Am J Respir Cell Mol Biol 1996; 14: 161–169
  • Osaki S, Johnson D A, Frieden E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem 1966; 241: 2746–2751
  • Hershko C, Cook J D, Finch D A. Storage iron kinetics. 3. Study of desferrioxamine action by selective radioiron labels of RE and parenchymal cells. J Lab Clin Med 1973; 81: 876–886
  • Sibille J C, Octave J N, Schneider Y J, Trouet A, Crichton R. Subcellular localization of transferrin protein and iron in the perfused rat liver. Effect of Triton WR 1339, digitonin and temperature. Eur J Biochem 1986; 155: 47–55
  • Grohlich D, Morley C G, Miller R J, Bezkorovainy A. Iron incorporation into isolated rat hepatocytes. Biochem Biophys Res Commun 1977; 76: 682–690
  • Bacon B R, Tavill A S. Role of the liver in normal iron metabolism. Semin Liver Dis 1984; 4: 181–192
  • Trinder D, Morgan E, Baker E. The mechanisms of iron uptake by fetal rat hepatocytes in culture. Hepatology 1986; 6: 852–858
  • Sciot R, Verhoeven G, Van Eyken P, Cailleau J, Desmet V J. Transferrin receptor expression in rat liver: immunohistochemical and biochemical analysis of the effect of age and iron storage. Hepatology 1990; 11: 416–427
  • Morton A G, Tavill A S. The control of hepatic iron uptake: correlation with transferrin synthesis. Br J Haematol 1978; 39: 497–507
  • Trinder D, Batey R G, Morgan E H, Baker E. Effect of cellular iron concentration on iron uptake by hepatocytes. Am J Physiol Gastrointest Liver Physiol 1990; 259: G611–G617
  • Chua A CG, Herbison C E, Drake S F, Graham R M, Olynyk J K, Trinder D. Iron uptake by transferrin receptor 1 is regulated by HFE in hepatocytes. Hepatology 2006; 44: 432A
  • Kobune M, Kohgo Y, Kato J, Miyazaki E, Niitsu Y. Interleukin-6 enhances hepatic transferrin uptake and ferritin expression in rats. Hepatology 1994; 19: 1468–1475
  • Barisani D, Cairo G, Ginelli E, Marozzi A, Conte D. Nitric oxide reduces nontransferrin-bound iron transport in HepG2 cells. Hepatology 1999; 29: 464–470
  • Page M A, Baker E, Morgan E H. Transferrin and iron uptake by rat hepatocytes in culture. Am J Physiol Gastrointest Liver Physiol 1984; 246: G26–G33
  • Morgan E H, Smith G D, Peters T J. Uptake and subcellular processing of 59Fe-125I-labelled transferrin by rat liver. Biochem J 1986; 237: 163–173
  • Trinder D, Morgan E. Inhibition of uptake of transferrin-bound iron by human hepatoma cells by nontransferrin-bound iron. Hepatology 1997; 26: 691–698
  • Thorstensen K, Romslo I. Uptake of iron from transferrin by isolated rat hepatocytes. A redox-mediated plasma membrane process?. J Biol Chem 1988; 263: 8844–8850
  • Thorstensen K. Hepatocytes and reticulocytes have different mechanisms for the uptake of iron from transferrin. J Biol Chem 1988; 263: 16837–16841
  • Scheiber B, Goldenberg H. Hepatic uptake of iron by receptor-mediated and receptor-independent mechanisms. Z Gastroenterol 1996; 34: S95–S98, (Suppl 3)
  • Graham R M, Morgan E H, Baker E. Ferric citrate uptake by cultured rat hepatocytes is inhibited in the presence of transferrin. Eur J Biochem 1998; 253: 139–145
  • Ose L, Ose T, Reinertsen R, Berg T. Fluid endocytosis in isolated rat parenchymal and non-parenchymal liver cells. Exp Cell Res 1980; 126: 109–119
  • Blomhoff R, Nenseter M S, Green M H, Berg T. A multicompartmental model of fluid-phase endocytosis in rabbit liver parenchymal cells. Biochem J 1989; 262: 605–610
  • Sibille J C, Octave J N, Schneider Y J, Trouet A, Crichton R R. Transferrin protein and iron uptake by cultured hepatocytes. FEBS Lett 1982; 150: 365–369
  • Grootveld M, Bell J D, Halliwell B, Aruoma O I, Bomford A, Sadler P J. Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy. J Biol Chem 1989; 264: 4417–4422
  • Gosriwatana I, Loreal O, Lu S, Brissot P, Porter J, Hider R C. Quantification of non-transferrin-bound iron in the presence of unsaturated transferrin. Anal Biochem 1999; 273: 212–220
  • Breuer W, Ronson A, Slotki I N, Abramov A, Hershko C, Cabantchik Z I. The assessment of serum nontransferrin-bound iron in chelation therapy and iron supplementation. Blood 2000; 95: 2975–2982
  • Porter J B, Abeysinghe R D, Marshall L, Hider R C, Singh S. Kinetics of removal and reappearance of non-transferrin-bound plasma iron with deferoxamine therapy. Blood 1996; 88: 705–713
  • McNamara L, MacPhail A P, Mandishona E, Bloom P, Paterson A C, Rouault T A, Gordeuk V R. Non-transferrin-bound iron and hepatic dysfunction in African dietary iron overload. J Gastroenterol Hepatol 1999; 14: 126–132
  • Hamill R L, Woods J C, Cook B A. Congenital atransferrinemia. A case report and review of the literature. Am J Clin Pathol 1991; 96: 215–218
  • Simpson R J, Cooper C E, Raja K B, Halliwell B, Evans P J, Aruoma O I, Singh S, Konijn A M. Non-transferrin-bound iron species in the serum of hypotransferrinaemic mice. Biochim Biophys Acta 1992; 1156: 19–26
  • al-Refaie F N, Wickens D G, Wonke B, Kontoghiorghes G J, Hoffbrand A V. Serum non-transferrin-bound iron in beta-thalassaemia major patients treated with desferrioxamine and L1. Br J Haematol 1992; 82: 431–436
  • Aruoma O I, Bomford A, Polson R J, Halliwell B. Nontransferrin-bound iron in plasma from hemochromatosis patients: effect of phlebotomy therapy. Blood 1988; 72: 1416–1419
  • Breuer W, Hershko C, Cabantchik Z I. The importance of non-transferrin bound iron in disorders of iron metabolism. Transfus Sci 2000; 23: 185–192
  • Brissot P, Wright T L, Ma W L, Weisiger R A. Efficient clearance of non-transferrin-bound iron by rat liver. Implications for hepatic iron loading in iron overload states. J Clin Invest 1985; 76: 1463–1470
  • Zimelman A P, Zimmerman H J, McLean R, Weintraub L R. Effect of iron saturation of transferrin on hepatic iron uptake: an in vitro study. Gastroenterology 1977; 72: 129–131
  • Craven C M, Alexander J, Eldridge M, Kushner J P, Bernstein S, Kaplan J. Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: a rodent model for hemochromatosis. Proc Natl Acad Sci USA 1987; 84: 3457–3461
  • Wright T L, Brissot P, Ma W L, Weisiger R A. Characterization of non-transferrin-bound iron clearance by rat liver. J Biol Chem 1986; 261: 10909–10914
  • Wright T L, Fitz J G, Weisiger R A. Non-transferrin-bound iron uptake by rat liver. Role of membrane potential difference. J Biol Chem 1988; 263: 1842–1847
  • Parkes J G, Randell E W, Olivieri N F, Templeton D M. Modulation by iron loading and chelation of the uptake of non-transferrin-bound iron by human liver cells. Biochim Biophys Acta 1995; 1243: 373–380
  • Barisani D, Berg C L, Wessling-Resnick M, Gollan J L. Evidence for a low Km transporter for non-transferrin-bound iron in isolated rat hepatocytes. Am J Physiol Gastrointest Liver Physiol 1995; 269: G570–G576
  • Graham R M, Morgan E H, Baker E. Characterisation of citrate and iron citrate uptake by cultured rat hepatocytes. J Hepatol 1998; 29: 603–613
  • Scheiber B, Goldenberg H. The surface of rat hepatocytes can transfer iron from stable chelates to external acceptors. Hepatology 1998; 27: 1075–1080
  • Baker E, Baker S M, Morgan E H. Characterisation of non-transferrin-bound iron (ferric citrate) uptake by rat hepatocytes in culture. Biochim Biophys Acta 1998; 1380: 21–30
  • Richardson D R, Chua A CG, Baker E. Activation of an iron uptake mechanism from transferrin in hepatocytes by small-molecular-weight iron complexes: implications for the pathogenesis of iron-overload disease. J Lab Clin Med 1999; 133: 144–151
  • Randell E W, Parkes J G, Olivieri N F, Templeton D M. Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron. J Biol Chem 1994; 269: 16046–16053
  • Trinder D, Morgan E. Mechanisms of ferric citrate uptake by human hepatoma cells. Am J Physiol Gastrointest Liver Physiol 1998; 275: G279–G286
  • Gunshin H, Fujiwara Y, Custodio A O, Direnzo C, Robine S, Andrews N C. Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest 2005; 115: 1258–1266
  • Oudit G Y, Sun H, Trivieri M G, Koch S E, Dawood F, Ackerley C, Yazdanpanah M, Wilson G J, Schwartz A, Liu P P, Backx P H. L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 2003; 9: 1187–1194
  • Liuzzi J P, Aydemir F, Nam H, Knutson M D, Cousins R J. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci USA 2006; 103: 13612–13617
  • Chua A CG, Ingram H A, Raymond K N, Baker E. Multidentate pyridinones inhibit the metabolism of nontransferrin-bound iron by hepatocytes and hepatoma cells. Eur J Biochem 2003; 270: 1689–1698
  • Hershko C, Link G, Pinson A. Modification of iron uptake and lipid peroxidation by hypoxia, ascorbic acid, and alpha-tocopherol in iron-loaded rat myocardial cell cultures. J Lab Clin Med 1987; 110: 355–361
  • Adams P C, Powell L W, Halliday J W. Isolation of a human hepatic ferritin receptor. Hepatology 1988; 8: 719–721
  • Osterloh K, Aisen P. Pathways in the binding and uptake of ferritin by hepatocytes. Biochim Biophys Acta 1989; 1011: 40–45
  • Smith A, Morgan W T. Hemopexin-mediated transport of heme into isolated rat hepatocytes. J Biol Chem 1981; 256: 10902–10909
  • Smith A, Hunt R C. Hemopexin joins transferrin as representative members of a distinct class of receptor-mediated endocytic transport systems. Eur J Cell Biol 1990; 53: 234–245
  • Ponka P, Schulman H M. Distinct features of iron metabolism in erythroid cells: implications for heme synthesis regulation. Adv Exp Med Biol 1994; 356: 173–187
  • Anderson G J, Frazer D M. Hepatic iron metabolism. Semin Liver Dis 2005; 25: 420–432
  • Baker E, Page M, Morgan E H. Transferrin and iron release from rat hepatocytes in culture. Am J Physiol Gastrointest Liver Physiol 1985; 248: G93–G97
  • Chua A CG, Drake S F, Herbison C E, Olynyk J K, Leedman P J, Trinder D. Limited iron export by hepatocytes contributes to hepatic iron-loading in the Hfe knockout mouse. J Hepatol 2006; 44: 176–182
  • Baker E, Morton A G, Tavill A S. The regulation of iron release from the perfused rat liver. Br J Haematol 1980; 45: 607–620
  • Baker E, Vicary F R, Huehns E R. Iron release from isolated hepatocytes. Br J Haematol 1981; 47: 493–504
  • Young S P, Fahmy M, Golding S. Ceruloplasmin, transferrin and apotransferrin facilitate iron release from human liver cells. FEBS Lett 1997; 411: 93–96
  • Casey J L, Koeller D M, Ramin V C, Klausner R D, Harford J B. Iron regulation of transferrin receptor mRNA levels requires iron-responsive elements and a rapid turnover determinant in the 3′ untranslated region of the mRNA. EMBO J 1989; 8: 3693–3699
  • Rouault T A, Stout C D, Kaptain S, Harford J B, Klausner R D. Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: functional implications. Cell 1991; 64: 881–883
  • Klausner R D, Rouault T A, Harford J B. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 1993; 72: 19–28
  • Ponka P, Beaumont C, Richardson D R. Function and regulation of transferrin and ferritin. Semin Hematol 1998; 35: 35–54
  • Guo B, Phillips J D, Yu Y, Leibold E A. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem 1995; 270: 21645–21651
  • Hentze M W, Kuhn L C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 1996; 93: 8175–8182
  • Yang F, Wang X, Haile D J, Piantadosi C A, Ghio A J. Iron increases expression of iron-export protein MTP1 in lung cells. Am J Physiol Lung Cell Mol Physiol 2002; 283: L932–L939
  • Kuriyama-Matsumura K, Sato H, Yamaguchi M, Bannai S. Regulation of ferritin synthesis and iron regulatory protein 1 by oxygen in mouse peritoneal macrophages. Biochem Biophys Res Commun 1998; 249: 241–246
  • Hanson E S, Foot L M, Leibold E A. Hypoxia post-translationally activates iron-regulatory protein 2. J Biol Chem 1999; 274: 5047–5052
  • Hanson E S, Rawlins M L, Leibold E A. Oxygen and iron regulation of iron regulatory protein 2. J Biol Chem 2003; 278: 40337–40342
  • Pantopoulos K, Hentze M W. Nitric oxide signaling to iron-regulatory protein: direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc Natl Acad Sci USA 1995; 92: 1267–1271
  • Pantopoulos K, Hentze M W. Rapid responses to oxidative stress mediated by iron regulatory protein. EMBO J 1995; 14: 2917–2924
  • Pantopoulos K, Weiss G, Hentze M W. Nitric oxide and oxidative stress (H2O2) control mammalian iron metabolism by different pathways. Mol Cell Biol 1996; 16: 3781–3788
  • Kim S, Ponka P. Nitrogen monoxide-mediated control of ferritin synthesis: implications for macrophage iron homeostasis. Proc Natl Acad Sci USA 2002; 99: 12214–12219
  • Tran T N, Eubanks S K, Schaffer K J, Zhou C Y, Linder M C. Secretion of ferritin by rat hepatoma cells and its regulation by inflammatory cytokines and iron. Blood 1997; 90: 4979–4986
  • Torti F M, Torti S V. Regulation of ferritin genes and protein. Blood 2002; 99: 3505–3516
  • Lee P, Peng H, Gelbart T, Beutler E. The IL-6- and lipopolysaccharide-induced transcription of hepcidin in HFE-, transferrin receptor 2-, and beta 2-microglobulin-deficient hepatocytes. Proc Natl Acad Sci USA 2004; 101: 9263–9265
  • Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen B K, Ganz T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004; 113: 1271–1276
  • Lee P, Peng H, Gelbart T, Wang L, Beutler E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci USA 2005; 102: 1906–1910
  • Semenza G L. Perspectives on oxygen sensing. Cell 1999; 98: 281–284
  • Wang G L, Semenza G L. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995; 270: 1230–1237
  • Rolfs A, Kvietikova I, Gassmann M, Wenger R H. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J Biol Chem 1997; 272: 20055–20062
  • Bianchi L, Tacchini L, Cairo G. HIF-1-mediated activation of transferrin receptor gene transcription by iron chelation. Nucleic Acids Res 1999; 27: 4223–4227
  • Lok C N, Ponka P. Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem 1999; 274: 24147–24152
  • Mukhopadhyay C K, Mazumder B, Fox P L. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem 2000; 275: 21048–21054
  • Nicolas G, Chauvet C, Viatte L, Danan J L, Bigard X, Devaux I, Beaumont C, Kahn A, Vaulont S. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 2002; 110: 1037–1044
  • Yeh K Y, Yeh M, Watkins J A, Rodriguez-Paris J, Glass J. Dietary iron induces rapid changes in rat intestinal divalent metal transporter expression. Am J Physiol Gastrointest Liver Physiol 2000; 279: G1070–G1079
  • Davis R J, Meisner H. Regulation of transferrin receptor cycling by protein kinase C is independent of receptor phosphorylation at serine 24 in Swiss 3T3 fibroblasts. J Biol Chem 1987; 262: 16041–16047
  • Schonhorn J E, Akompong T, Wessling-Resnick M. Mechanism of transferrin receptor down-regulation in K562 cells in response to protein kinase C activation. J Biol Chem 1995; 270: 3698–3705
  • Klausner R D, Harford J, van Renswoude J. Rapid internalization of the transferrin receptor in K562 cells is triggered by ligand binding or treatment with a phorbol ester. Proc Natl Acad Sci USA 1984; 81: 3005–3009
  • Fourie A M, Yang Y. Molecular requirements for assembly and intracellular transport of class I major histocompatibility complex molecules. Curr Top Microbiol Immunol 1998; 232: 49–74
  • Cardoso C S, de Sousa M. HFE, the MHC and hemochromatosis: paradigm for an extended function for MHC class I. Tissue Antigens 2003; 61: 263–275
  • Fleming R E, Sly W S. Mechanisms of iron accumulation in hereditary hemochromatosis. Annu Rev Physiol 2002; 64: 663–680
  • Bjorkman P J, Parham P. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 1990; 59: 253–288
  • Parkkila S, Waheed A, Britton R S, Feder J N, Tsuchihashi Z, Schatzman R C, Bacon B R, Sly W S. Immunohistochemistry of HLA-H, the protein defective in patients with hereditary hemochromatosis, reveals unique pattern of expression in gastrointestinal tract. Proc Natl Acad Sci USA 1997; 94: 2534–2539
  • Waheed A, Parkkila S, Saarnio J, Fleming R E, Zhou X Y, Tomatsu S, Britton R S, Bacon B R, Sly W S. Association of HFE protein with transferrin receptor in crypt enterocytes of human duodenum. Proc Natl Acad Sci USA 1999; 96: 1579–1584
  • Holmstrom P, Dzikaite V, Hultcrantz R, Melefors O, Eckes K, Stal P, Kinnman N, Smedsrod B, Gafvels M, Eggertsen G. Structure and liver cell expression pattern of the HFE gene in the rat. J Hepatol 2003; 39: 308–314
  • Zhang A S, Xiong S, Tsukamoto H, Enns C A. Localization of iron metabolism-related mRNAs in rat liver indicate that HFE is expressed predominantly in hepatocytes. Blood 2004; 103: 1509–1514
  • Bastin J M, Jones M, O'Callaghan C A, Schimanski L, Mason D Y, Townsend A R. Kupffer cell staining by an HFE-specific monoclonal antibody: implications for hereditary haemochromatosis. Br J Haematol 1998; 103: 931–941
  • Parkkila S, Parkkila A K, Waheed A, Britton R S, Zhou X Y, Fleming R E, Tomatsu S, Bacon B R, Sly W S. Cell surface expression of HFE protein in epithelial cells, macrophages, and monocytes. Haematologica 2000; 85: 340–345
  • Feder J N, Tsuchihashi Z, Irrinki A, Lee V K, Mapa F A, Morikang E, Prass C E, Starnes S M, Wolff R K, Parkkila S, Sly W S, Schatzman R C. The hemochromatosis founder mutation in HLA-H disrupts beta2-microglobulin interaction and cell surface expression. J Biol Chem 1997; 272: 14025–14028
  • Waheed A, Parkkila S, Zhou X Y, Tomatsu S, Tsuchihashi Z, Feder J N, Schatzman R C, Britton R S, Bacon B R, Sly W S. Hereditary hemochromatosis: effects of C282Y and H63D mutations on association with beta2-microglobulin, intracellular processing, and cell surface expression of the HFE protein in COS-7 cells. Proc Natl Acad Sci USA 1997; 94: 12384–12389
  • Gross C N, Irrinki A, Feder J N, Enns C A. Co-trafficking of HFE, a nonclassical major histocompatibility complex class I protein, with the transferrin receptor implies a role in intracellular iron regulation. J Biol Chem 1998; 273: 22068–22074
  • Santos M, Schilham M W, Rademakers L H, Marx J J, de Sousa M, Clevers H. Defective iron homeostasis in beta 2-microglobulin knockout mice recapitulates hereditary hemochromatosis in man. J Exp Med 1996; 184: 1975–1985
  • Ramalingam T S, West A P, Jr., Lebron J A, Nangiana J S, Hogan T H, Enns C A, Bjorkman P J. Binding to the transferrin receptor is required for endocytosis of HFE and regulation of iron homeostasis. Nat Cell Biol 2000; 2: 953–957
  • Giannetti A M, Bjorkman P J. HFE and transferrin directly compete for transferrin receptor in solution and at the cell surface. J Biol Chem 2004; 279: 25866–25875
  • Lebron J A, Bennett M J, Vaughn D E, Chirino A J, Snow P M, Mintier G A, Feder J N, Bjorkman P J. Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell 1998; 93: 111–123
  • Davies P S, Zhang A S, Anderson E L, Roy C N, Lampson M A, McGraw T E, Enns C A. Evidence for the interaction of the hereditary haemochromatosis protein, HFE, with the transferrin receptor in endocytic compartments. Biochem J 2003; 373: 145–153
  • Riedel H D, Muckenthaler M U, Gehrke S G, Mohr I, Brennan K, Herrmann T, Fitscher B A, Hentze M W, Stremmel W. HFE downregulates iron uptake from transferrin and induces iron-regulatory protein activity in stably transfected cells. Blood 1999; 94: 3915–3921
  • Roy C N, Penny D M, Feder J N, Enns C A. The hereditary hemochromatosis protein, HFE, specifically regulates transferrin-mediated iron uptake in HeLa cells. J Biol Chem 1999; 274: 9022–9028
  • Corsi B, Levi S, Cozzi A, Corti A, Altimare D, Albertini A, Arosio P. Overexpression of the hereditary hemochromatosis protein, HFE, in HeLa cells induces and iron-deficient phenotype. FEBS Lett 1999; 460: 149–152
  • Salter-Cid L, Brunmark A, Li Y, Leturcq D, Peterson P A, Jackson M R, Yang Y. Transferrin receptor is negatively modulated by the hemochromatosis protein HFE: implications for cellular iron homeostasis. Proc Natl Acad Sci USA 1999; 96: 5434–5439
  • Ikuta K, Fujimoto Y, Suzuki Y, Tanaka K, Saito H, Ohhira M, Sasaki K, Kohgo Y. Overexpression of hemochromatosis protein, HFE, alters transferrin recycling process in human hepatoma cells. Biochim Biophys Acta 2000; 1496: 221–231
  • Waheed A, Grubb J H, Zhou X Y, Tomatsu S, Fleming R E, Costaldi M E, Britton R S, Bacon B R, Sly W S. Regulation of transferrin-mediated iron uptake by HFE, the protein defective in hereditary hemochromatosis. Proc Natl Acad Sci USA 2002; 99: 3117–3122
  • Wang J, Chen G, Pantopoulos K. The haemochromatosis protein HFE induces an apparent iron-deficient phenotype in H1299 cells that is not corrected by co-expression of beta 2-microglobulin. Biochem J 2003; 370: 891–899
  • Montosi G, Paglia P, Garuti C, Guzman C A, Bastin J M, Colombo M P, Pietrangelo A. Wild-type HFE protein normalizes transferrin iron accumulation in macrophages from subjects with hereditary hemochromatosis. Blood 2000; 96: 1125–1129
  • Drakesmith H, Sweetland E, Schimanski L, Edwards J, Cowley D, Ashraf M, Bastin J, Townsend A R. The hemochromatosis protein HFE inhibits iron export from macrophages. Proc Natl Acad Sci USA 2002; 99: 15602–15607
  • Davies P S, Enns C A. Expression of the hereditary hemochromatosis protein HFE increases ferritin levels by inhibiting iron export in HT29 cells. J Biol Chem 2004; 279: 25085–25092
  • Camaschella C, Roetto A, Cali A, De Gobbi M, Garozzo G, Carella M, Majorano N, Totaro A, Gasparini P. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat Genet 2000; 25: 14–15
  • Roetto A, Totaro A, Piperno A, Piga A, Longo F, Garozzo G, Cali A, De Gobbi M, Gasparini P, Camaschella C. New mutations inactivating transferrin receptor 2 in hemochromatosis type 3. Blood 2001; 97: 2555–2560
  • Fleming R E, Ahmann J R, Migas M C, Waheed A, Koeffler H P, Kawabata H, Britton R S, Bacon B R, Sly W S. Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis. Proc Natl Acad Sci USA 2002; 99: 10653–10658
  • Calzolari A, Raggi C, Deaglio S, Sposi N M, Stafsnes M, Fecchi K, Parolini I, Malavasi F, Peschle C, Sargiacomo M, Testa U. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J Cell Sci 2006; 119: 4486–4498
  • Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 2001; 276: 7811–7819
  • Kulaksiz H, Theilig F, Bachmann S, Gehrke S G, Rost D, Janetzko A, Cetin Y, Stremmel W. The iron-regulatory peptide hormone hepcidin: expression and cellular localization in the mammalian kidney. J Endocrinol 2005; 184: 361–370
  • Hunter H N, Fulton D B, Ganz T, Vogel H J. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem 2002; 277: 37597–37603
  • Nicolas G, Viatte L, Bennoun M, Beaumont C, Kahn A, Vaulont S. Hepcidin, a new iron regulatory peptide. Blood Cells Mol Dis 2002; 29: 327–335
  • Nemeth E, Preza G C, Jung C L, Kaplan J, Waring A J, Ganz T. The N-terminus of hepcidin is essential for its interaction with ferroportin: structure-function study. Blood 2006; 107: 328–333
  • Frazer D M, Wilkins S J, Becker E M, Vulpe C D, McKie A T, Trinder D, Anderson G J. Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology 2002; 123: 835–844
  • Ahmad K A, Ahmann J R, Migas M C, Waheed A, Britton R S, Bacon B R, Sly W S, Fleming R E. Decreased liver hepcidin expression in the Hfe knockout mouse. Blood Cells Mol Dis 2002; 29: 361–366
  • Bridle K R, Frazer D M, Wilkins S J, Dixon J L, Purdie D M, Crawford D H, Subramaniam V N, Powell L W, Anderson G J, Ramm G A. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 2003; 361: 669–673
  • Muckenthaler M, Roy C N, Custodio A O, Minana B, de Graaf J, Montross L K, Andrews N C, Hentze M W. Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hemochromatosis. Nat Genet 2003; 34: 102–107
  • Kawabata H, Fleming R E, Gui D, Moon S Y, Saitoh T, O'Kelly J, Umehara Y, Wano Y, Said J W, Koeffler H P. Expression of hepcidin is down-regulated in TfR2 mutant mice manifesting a phenotype of hereditary hemochromatosis. Blood 2005; 105: 376–381
  • Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C. Hepcidin is decreased in TFR2 hemochromatosis. Blood 2005; 105: 1803–1806
  • Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA 2001; 98: 8780–8785
  • Papanikolaou G, Tzilianos M, Christakis J I, Bogdanos D, Tsimirika K, MacFarlane J, Goldberg Y P, Sakellaropoulos N, Ganz T, Nemeth E. Hepcidin in iron overload disorders. Blood 2005; 105: 4103–4105
  • Niederkofler V, Salie R, Arber S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest 2005; 115: 2180–2186
  • Huang F W, Pinkus J L, Pinkus G S, Fleming M D, Andrews N C. A mouse model of juvenile hemochromatosis. J Clin Invest 2005; 115: 2187–2191
  • Laftah A H, Ramesh B, Simpson R J, Solanky N, Bahram S, Schumann K, Debnam E S, Srai S K. Effect of hepcidin on intestinal iron absorption in mice. Blood 2004; 103: 3940–3944
  • Nicolas G, Viatte L, Lou D Q, Bennoun M, Beaumont C, Kahn A, Andrews N C, Vaulont S. Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet 2003; 34: 97–101
  • Weinstein D A, Roy C N, Fleming M D, Loda M F, Wolfsdorf J I, Andrews N C. Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood 2002; 100: 3776–3781
  • Delaby C, Pilard N, Goncalves A S, Beaumont C, Canonne-Hergaux F. Presence of the iron exporter ferroportin at the plasma membrane of macrophages is enhanced by iron loading and down-regulated by hepcidin. Blood 2005; 106: 3979–3984
  • Nemeth E, Valore E V, Territo M, Schiller G, Lichtenstein A, Ganz T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 2003; 101: 2461–2463
  • Roy C N, Custodio A O, de Graaf J, Schneider S, Akpan I, Montross L K, Sanchez M, Gaudino A, Hentze M W, Andrews N C, Muckenthaler M U. An Hfe-dependent pathway mediates hyposideremia in response to lipopolysaccharide-induced inflammation in mice. Nat Genet 2004; 36: 481–485
  • Frazer D M, Wilkins S J, Millard K N, McKie A T, Vulpe C D, Anderson G J. Increased hepcidin expression and hypoferraemia associated with an acute phase response are not affected by inactivation of HFE. Br J Haematol 2004; 126: 434–436
  • Leung P S, Srai S K, Mascarenhas M, Churchill L J, Debnam E S. Increased duodenal iron uptake and transfer in a rat model of chronic hypoxia is accompanied by reduced hepcidin expression. Gut 2005; 54: 1391–1395
  • Courselaud B, Pigeon C, Inoue Y, Inoue J, Gonzalez F J, Leroyer P, Gilot D, Boudjema K, Guguen-Guillouzo C, Brissot P, Loreal O, Ilyin G. C/EBPalpha regulates hepatic transcription of he 1pcidin, an antimicrobial peptide and regulator of iron metabolism. Cross-talk between C/EBP pathway and iron metabolism. J Biol Chem 2002; 277: 41163–41170
  • Wrighting D M, Andrews N C. Interleukin-6 induces hepcidin expression through STAT3. Blood 2006; 108: 3204–3209
  • Wang R H, Li C, Xu X, Zheng Y, Xiao C, Zerfas P, Cooperman S, Eckhaus M, Rouault T, Mishra L, Deng C X. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab 2005; 2: 399–409
  • Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113: 685–700
  • Chen D, Zhao M, Mundy G R. Bone morphogenetic proteins. Growth Factors 2004; 22: 233–241
  • Truksa J, Peng H, Lee P, Beutler E. Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6. Proc Natl Acad Sci USA 2006; 103: 10289–10293
  • Babitt J L, Huang F W, Wrighting D M, Xia Y, Sidis Y, Samad T A, Campagna J A, Chung R T, Schneyer A L, Woolf C J, Andrews N C, Lin H Y. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 2006; 38: 531–539
  • Monnier P P, Sierra A, Macchi P, Deitinghoff L, Andersen J S, Mann M, Flad M, Hornberger M R, Stahl B, Bonhoeffer F, Mueller B K. RGM is a repulsive guidance molecule for retinal axons. Nature 2002; 419: 392–395
  • Lin L, Goldberg Y P, Ganz T. Competitive regulation of hepcidin mRNA by soluble and cell-associated hemojuvelin. Blood 2005; 106: 2884–2889
  • Zhang A S, West A P, Jr., Wyman A E, Bjorkman P J, Enns C A. Interaction of hemojuvelin with neogenin results in iron accumulation in human embryonic kidney 293 cells. J Biol Chem 2005; 280: 33885–33894
  • Krijt J, Vokurka M, Chang K T, Necas E. Expression of Rgmc, the murine ortholog of hemojuvelin gene, is modulated by development and inflammation, but not by iron status or erythropoietin. Blood 2004; 104: 4308–4310
  • Keeling S L, Gad J M, Cooper H M. Mouse Neogenin, a DCC-like molecule, has four splice variants and is expressed widely in the adult mouse and during embryogenesis. Oncogene 1997; 15: 691–700
  • Finch C. Regulators of iron balance in humans. Blood 1994; 84: 1697–1702
  • Sayers M H, English G, Finch C. Capacity of the store-regulator in maintaining iron balance. Am J Hematol 1994; 47: 194–197
  • Bothwell T H, Pirzio-Biroli G, Finch C A. Iron absorption. I. Factors influencing absorption. J Lab Clin Med 1958; 51: 24–36
  • Andrews N C. Iron metabolism: iron deficiency and iron overload. Annu Rev Genomics Hum Genet 2000; 1: 75–98
  • Cazzola M, Beguin Y, Bergamaschi G, Guarnone R, Cerani P, Barella S, Cao A, Galanello R. Soluble transferrin receptor as a potential determinant of iron loading in congenital anaemias due to ineffective erythropoiesis. Br J Haematol 1999; 106: 752–755
  • Cook J D, Skikne B S, Baynes R D. Serum transferrin receptor. Annu Rev Med 1993; 44: 63–74
  • Khumalo H, Gomo Z A, Moyo V M, Gordeuk V R, Saungweme T, Rouault T A, Gangaidzo I T. Serum transferrin receptors are decreased in the presence of iron overload. Clin Chem 1998; 44: 40–44
  • Hahn P F, Bale W F, Ross J F, Balfour W M, Whipple G H. Radioactive iron absorption by the gastrointestinal tract: influence of anemia, anoxia and antecedent feeding. J Exp Med 1943; 78: 169–188
  • Oates P S, Thomas C, Freitas E, Callow M J, Morgan E H. Gene expression of divalent metal transporter 1 and transferrin receptor in duodenum of Belgrade rats. Am J Physiol Gastrointest Liver Physiol 2000; 278: G930–G936
  • Bothwell T H. The control of iron absorption. Br J Haematol 1968; 14: 453–456
  • Cook J D, Barry W E, Hershko C, Fillet G, Finch C A. Iron kinetics with emphasis on iron overload. Am J Pathol 1973; 72: 337–343
  • Pietrangelo A. Hereditary hemochromatosis—a new look at an old disease. N Engl J Med 2004; 350: 2383–2397
  • Conrad M E, Weintraub L R, Crosby W H. The role of the intestine in iron kinetics. J Clin Invest 1964; 43: 963–974
  • Bedard Y C, Pinkerton P H, Simon G T. Uptake of circulating iron by the duodenum of normal mice and mice with altered iron stores, including sex-linked anemia: high resolution radioautographic study. Lab Invest 1976; 34: 611–615
  • Thomson A B, Valberg L S. Kinetics of intestinal iron absorption in the rat: effect of cobalt. Am J Physiol 1971; 220: 1080–1085
  • Acheson L S, Schultz S G. Iron influx across the brush border of rabbit duodenum: effects of anemia and iron loading. Biochim Biophys Acta 1972; 255: 479–483
  • Pietrangelo A, Rocchi E, Casalgrandi G, Rigo G, Ferrari A, Perini M, Ventura E, Cairo G. Regulation of transferrin, transferrin receptor, and ferritin genes in human duodenum. Gastroenterology 1992; 102: 802–809
  • Pietrangelo A, Casalgrandi G, Quaglino D, Gualdi R, Conte D, Milani S, Montosi G, Cesarini L, Ventura E, Cairo G. Duodenal ferritin synthesis in genetic hemochromatosis. Gastroenterology 1995; 108: 208–217
  • Zoller H, Koch R O, Theurl I, Obrist P, Pietrangelo A, Montosi G, Haile D J, Vogel W, Weiss G. Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology 2001; 120: 1412–1419
  • Ajioka R S, Levy J E, Andrews N C, Kushner J P. Regulation of iron absorption in Hfe mutant mice. Blood 2002; 100: 1465–1469

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.