1,233
Views
74
CrossRef citations to date
0
Altmetric
Research Article

Relevant Issues in the Monitoring and the Toxicology of Antidepressants

, , &
Pages 25-89 | Published online: 10 Oct 2008

REFERENCES

  • Uges D RA, Conemans J MH. ADs and antipsychotics. Forensic Science. Handbook of Analytical Separations, M. J. Bogusz. Elsevier Science, Amsterdam 2000; 229–256
  • Sampson S M. Treating depression with selective serotonin reuptake inhibitors: a practical approach. Mayo Clin Proc 2001; 76: 739–744
  • World health organization. WHO, http://www.who.int/mental_health
  • Nestler E J, Barrot M, DiLeone R J, Eisch A J, Gold S J, Monteggia L M. Neurobiology of depression. Neuron 2002; 34: 13–25
  • Taylor C, Fricker A D, Devi L A, Gomes N. Mechanisms of action of antidepressants: from neurotransmitter systems to signaling pathways. Cell Signal 2005; 17: 549–557
  • Richelson E. Pharmacology of antidepressants. Mayo Clin Proc 2001; 76: 511–527
  • Richelson E. Interactions of antidepressants with neurotransmitter transporters and receptors and their clinical relevance. J Clin Psychiatry 2003; 64: 5–12, (Suppl 13)
  • Schwaninger M, Weisbrod M, Knepel W. Progress in defining the mechanism of action of antidepressants—across receptors and into gene transcription. CNS Drugs 1997; 8: 237–243
  • Malberg J E, Blendy J A. Antidepressant action: to the nucleus and beyond. Trends Pharmacol Sci 2005; 26: 631–638
  • Yildiz A, Gönül A, Tamam L. Mechanism of actions of antidepressants: beyond the receptors. Bull Clin Psychopharmacol 2002; 12: 194–200
  • Dwivedi Y, Rizavi H S, Conley R R, Roberts R C, Tamminga C A, Pandey G N. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 2003; 60: 804–815
  • Vetulani J, Nalepa I. Antidepressants: past, present and future. Eur J Pharmacol 2000; 405: 351–363
  • Kent J M. SNaRIs, NaSSAs, and NaRIs: new agents for the treatment of depression. Lancet 2000; 355: 911–918
  • Pacher P, Kohegyi E, Kecskemeti V, Furst S. Current trends in the development of new antidepressants. Curr Med Chem 2001; 8: 89–100
  • Kent J. SNaRIs, NaSSAs, and NaRIs: new agents for the treatment of depression. Lancet 2000; 355: 2000
  • Mann J J. Drug therapy—The medical management of depression. N Engl J Med 2005; 353: 1819–1834
  • Vanharten J. Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin Pharmacokinet 1993; 24: 203–220
  • Masand P S, Gupta S. Selective serotonin-reuptake inhibitors: an update. Harv Rev Psychiatry 1999; 7: 69–84
  • Rudorfer M V, Potter W Z. Metabolism of tricyclic antidepressants. Cell Mol Neurobiol 1999; 19: 373–409
  • Sproule B A, Naranjo C A, Bremner K E, Hassan P C. Selective serotonin reuptake inhibitors and CNS drug interactions—A critical review of the evidence. Clin Pharmacokinet 1997; 33: 454–471
  • Nemeroff C B, DeVane C L, Pollock B G. Newer antidepressants and the cytochrome P450 system. Am J Psychiatry 1996; 153: 311–320
  • Stahl S M. Mechanism of action of serotonin selective reuptake inhibitors—serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord 1998; 51: 215–235
  • Boyer W F, Shannon M. The serotonin syndrome. N Engl J Med 2005; 352: 1112–1119
  • Harrigan R A, Brady W J. ECG abnormalities in tricyclic antidepressant ingestion. Am J Emerg Med 1999; 17: 387–393
  • Hardman J, Limberd L, Molinoff P, Ruddon R. Goodman and Gilman's the pharmacological basis of therapeutics. Goodman and Gilman's the pharmacological basis of therapeutics 9th Ed., A Goodman Gilman. McGraw-Hill, New York 1996; 1905
  • Glauser J. Tricyclic antidepressant poisoning. Cleve Clin J Med 2000; 67: 704–706
  • Kerr G W, McGuffie A C, Wilkie S. Tricyclic antidepressant overdose: a review. Emerg Med J 2001; 18: 236–241
  • Thanacoody H K, Thomas S H. Tricyclic antidepressant poisoning: cardiovascular toxicity. Toxicol. Rev. 2005; 24: 236–241
  • Cohen H W, Gibson G, Alderman M H. Excess risk of myocardial infarction in patients treated with antidepressant medications: Association with use of tricyclic agents. Am J Med 2000; 108: 2–8
  • Roose S P. Treatment of depression in patients with heart disease. Biol Psychiatry 2003; 54: 262–268
  • Ray W A, Meredith S, Thapa P B, Hall K, Murray K T. Cyclic antidepressants and the risk of sudden cardiac death. Clin Pharmacol Ther 2004; 75: 234–241
  • Denollet J, Sys S U, Stroobant N, Rombouts H, Gillebert T C, Brutsaert D L. Personality as independent predictor of long-term mortality in patients with coronary heart disease. Lancet 1996; 347: 417–421
  • Glassman A H. Cardiovascular effects of antidepressant drugs: Updated. Int Clin Psychopharmacol 1998; 13: S25–S30
  • Roose S P. Considerations for the use of antidepressants in patients with cardiovascular disease. Am Heart J 2000; 140: 584–588
  • Roose S P. Depression, anxiety, and the cardiovascular system: the psychiatrist's perspective. J Clin Psychiatry 2001; 62: 19–23
  • Glassman A H. Cardiovascular effects of antidepressant drugs: Updated. J Clin Psychiatry 1998; 59: 13–18
  • Hiemke C, Hartter S. Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 2000; 85: 11–28
  • Cipriani A, Barbui C, Geddes J R. Suicide, depression, and antidepressants. BMJ 2005; 330: 373–374
  • Licinio J, Wong M L. Depression, antidepressants and suicidality: a critical appraisal. Nat Rev Drug Discov 2005; 4: 165–171
  • Whittington C J, Kendall T, Fonagy P, Cottrell D, Cotgrove A, Boddington E. Selective serotonin reuptake inhibitors in childhood depression: systematic review of published versus unpublished data. Lancet 2004; 363: 1341–1345
  • Goldstein D J, Sundell K. A review of the safety of selective serotonin reuptake inhibitors during pregnancy. Hum Psychopharmacol 1999; 14: 319–324
  • Gentile S. The safety of newer antidepressants in pregnancy and breastfeeding. Drug Saf 2005; 28: 137–152
  • Sanz E J, De-las-Cuevas C, Kiuru A, Bate A, Edwards R. Selective serotonin reuptake inhibitors in pregnant women and neonatal withdrawal syndrome: a database analysis. Lancet 2005; 365: 482–487
  • Ruchkin V, Martin A. SSRIs and the developing brain. Lancet 2005; 365: 451–453
  • Scoggins B A, Maguire K P, Norman T R, Burrows G D. Measurement of tricyclic anti-depressants.1. review of methodology. Clin Chem 1980; 26: 5–17
  • Matsumoto K, Kanba S, Kubo H, Yagi G, Iri H, Yuki H. Automated-determination of drugs in serum by column-switching high-performance liquid-chromatography. 4. Separation of tricyclic and tetracyclic antidepressants and their metabolites. Clin Chem 1989; 35: 453–456
  • Caldwell R, Challenger H. A capillary column gas-chromatographic method for the identification of drugs of abuse in urine samples. Ann Clin Biochem 1989; 26: 430–443
  • Demedts P, Wauters A, Franck F, Neels H. Evaluation of the Remedi(r) drug profiling system. Eur J Clin Chem Clin Biochem 1994; 32: 409–417
  • Theurillat R, Thormann W. Monitoring of tricyclic antidepressants in human serum and plasma by HPLC: characterization of a simple, laboratory developed method via external quality assessment. J Pharm Biomed Anal 1998; 18: 751–760
  • Lacassie E, Gaulier J M, Marquet P, Rabatel J F, Lachatre G. Methods for the determination of seven selective serotonin reuptake inhibitors and three active metabolites in human serum using high-performance liquid chromatography and gas chromatography. J Chromatogr B Biomed Sci Appl 2000; 742: 229–238
  • Goeringer K E, McIntyre I M, Drummer O H. LC-MS analysis of serotonergic drugs. J Anal Toxicol 2003; 27: 30–35
  • Ruiz-Angel M J, Carda-Broch S, Simo-Alfonso E F, Garcia-Alvarez-Coque M C. Optimised procedures for the reversed-phase liquid chromatographic analysis of formulations containing tricyclic antidepressants. J Pharm Biomed Anal 2003; 32: 71–84
  • Frahnert C, Rao M L, Grasmader K. Analysis of eighteen antidepressants, four atypical antipsychotics and active metabolites in serum by liquid chromatography: a simple tool for therapeutic drug monitoring. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 794: 35–47
  • Yoshida H, Hidaka K, Ishida J, Yoshikuni K, Nohta H, Yamaguchi M. Highly selective and sensitive determination of tricyclic antidepressants in human plasma using high-performance liquid chromatography with post-column tris(2,2′-bipyridyl) ruthenium(III) chemiluminescence detection. Anal Chim Acta 2000; 413: 137–145
  • Ivandini T A, Sarada B V, Terashima C, Rao T N, Tryk D A, Ishiguro H, Kubota Y, Fujishima A. Electrochemical detection of tricyclic antidepressant drugs by HPLC using highly boron-doped diamond electrodes. J Electroanal Chem 2002; 521: 117–126
  • Kollroser M, Schober C. Simultaneous determination of seven tricyclic antidepressant drugs in human plasma by direct-injection HPLC-APCI-MS-MS with an ion trap detector. Ther Drug Monit 2002; 24: 537–544
  • Eap C B, Baumann P. Analytical methods for the quantitative determination of selective serotonin reuptake inhibitors for therapeutic drug monitoring purposes in patients. J Chromatogr B Biomed Appl 1996; 686: 51–63
  • Goeringer K E, Raymon L, Christian G D, Logan B K. Postmortem forensic toxicology of selective serotonin reuptake inhibitors: A review of pharmacology and report of 168 cases. J Forensic Sci 2000; 45: 633–648
  • Cox R, Crifasi J, Dickey R, Ketzler S, Pshak G. A single step extraction for screening whole blood for basic drugs by capillary GC/NPD. J Anal Toxicol 1989; 13: 224–228
  • Demedts P, Neels H, Maes M, Dai J, Ranjan R, Melzer H. Effects of fluoxetine on serum mCPP concentration in depressed patients. Ther Drug Monit 1995; 17: 390
  • Gupta R N. Drug level monitoring-antidepressants. J Chromatogr 1992; 576: 183–211
  • Baumann P, Zullino D F. C.B. E. Enantiomers' potential in psychopharmacology-a critical analysis with special emphasis on the antidepressant escitalopram. Eur Neuropsychopharmacol 2002; 12: 433–444
  • Mandrioli R, Raggi M A. Advances in the enantioseparation of second-generation antidepressant drugs by electrodriven methods. Electrophoresis 2006; 27: 213–221
  • Decision Resources Inc. The Antidepressant Market through 2014—Focus on emerging therapies and new indications. Cognos Plus Study 2005; 11: 176
  • TIAFT. The international association of forensic toxicologists, http://www.tiaft.org/ Tiaft bulletin26 1S
  • Council of the Royal Pharmaceutical Society of Great Britain. Martindale -The extra Pharmacopoeia. Martindale -The extra Pharmacopoeia, K. Parfitt, A. V. Parsons, S. C. Sweetman. The Pharmaceutical Press, London 1993; 2363
  • Moffat A C, Osselton M D, Widdop B. Clarke's analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem material. Clarke's analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem material, 3th Ed., Y. G. Laurent. Pharmaceutical Press, London 2004; 1935
  • Steimer W, Zopf K, von Amelunxen S, Pfeiffer H, Bachofer J, Popp J, Messner B, Kissling W, Leucht S. Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP219 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem 2005; 51: 376–385
  • FDA, http://www.fda.gov
  • Lawson K. Tricyclic antidepressants and fibromyalgia: what is the mechanism of action?. Expert Opin Investig Drugs 2002; 11: 1437–1445
  • Hall E J, Sykes N P. Analgesia for patients with advanced disease: 2. Postgrad Med J 2004; 80: 190–195
  • Glazener C M, Evans J H, Peto R E. Tricyclic and related drugs for nocturnal enuresis in children. Cochrane Database Syst Rev 2003; 3, CD002117
  • Owens M J, Nemeroff C B. Role of serotonin in the pathophysiology of sepression—focus on the serotonin transporter. Clin Chem 1994; 40: 288–295
  • Sanchez C, Hyttel J. Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell Mol Neurobiol 1999; 19: 467–489
  • Garland W A. Quantitative determination of amitriptyline and its principal metabolite, nortiptyline, by GLC-chemical ionization mass spectrometry. J Pharm Sci 1977; 66: 77–81
  • Edelbroek P M, Zitman F G, Schreuder J N, Rooymans H GM, Dewolff F A. Amitriptyline metabolism in relation to antidepressive effect. Clin Pharmacol Ther 1984; 35: 467–473
  • Bock J L, Giller E, Gray S, Jatlow P. Steady-state plasma-concentrations of cis- and trans-10-OH amitriptyline metabolites. Clin Pharmacol Ther 1982; 31: 609–616
  • Steimer W, Zopf K, von Amelunxen S, Pfeiffer H, Bachofer J, Popp J, Messner B, Kissling W, Leucht S. Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers. Clin Chem 2004; 50: 1623–1633
  • Breyer-Pfaff U, Pfandl B, Nill K, Nusser E, Monney C, Jonzier-Perey M, Baettig D, Baumann P. Enantioselective amitriptyline metabolism in patients phenotyped for two cytochrome P450 isozymes. Clin Pharmacol Ther 1992; 52: 350–358
  • Karkkainen S, Neuvonen P. Pharmacokinetics of amitriptyline influenced by oral charcoal and urine pH. Int J Clin Pharmacol Ther Toxicol 1986; 24: 326–332
  • Schulz M, Schmoldt A. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharmazie 2003; 58: 447–474
  • Corona G L, Cucchi M L, Frattini P, Santagostino G, Schinelli S, Zerbi F, Savoldi F. Aspects of amitriptyline and nortriptyline plasma levels monitoring in depression. Psychopharmacology 1990; 100: 334–338
  • Scoggins B A, Maguire K P, Norman T R, Burrows G D. Measurement of tricyclic anti-depressants. Part II. Applications of methodology. Clin Chem 1980; 26: 805–815
  • Brosen K. Drug-metabolizing enzymes and therapeutic drug monitoring in psychiatry. Ther Drug Monit 1996; 18: 393–396
  • Wong S HY. Measurement of antidepressants by liquid-chromatography—a review of current methodology. Clin Chem 1988; 34: 848–855
  • Segatti M P, Nisi G, Grossi F, Mangiarotti M, Lucarelli C. Rapid and simple high-performance liquid-chromatographic determination of tricyclic antidepressants for routine and emergency serum analysis. J Chromatogr 1991; 536: 319–325
  • Couper F J, McIntyre I M, Drummer O H. Detection of antidepressant and antipsychotic-drugs in postmortem human scalp hair. J Forensic Sci 1995; 40: 87–90
  • Kudo K, Jitsufuchi N, Imamura T. Selective determination of amitriptyline and nortriptyline in human plasma by HPLC with ultraviolet and particle beam mass spectrometry. J Anal Toxicol 1997; 21: 185–189
  • Hackett L P, Dusci L J, Ilett K F. A comparison of high-performance liquid chromatography and fluorescence polarization immunoassay for therapeutic drug monitoring of tricyclic antidepressants. Ther Drug Monit 1998; 20: 30–34
  • Bailey D N, Jatlow P I. Gas-chromatographic analysis for therapeutic concentrations of amitriptyline and nortriptyline in plasma, with use of a nitrogen detector. Clin Chem 1976; 22: 777–781
  • de l a, Torre R, Ortuno J, Pascual J, Gonzalez S, Ballesta J. Quantitative determination of tricyclic antidepressants and their metabolites in plasma by solid-phase extraction (Bond-Elut TCA) and separation by capillary gas chromatography with nitrogen-phosphorous detection. Ther Drug Monit 1998; 20: 340–346
  • Tracey J A, Cassidy N, Casey P B, Ali I. Bupropion (Zyban) toxicity. Ir Med J 2002; 95: 23–24
  • Xu H, Loboz K K, Gross A S, McLachlan A J. Stereoselective analysis of hydroxybupropion and application to drug interaction studies. Chirality 2007; 19: 163–170
  • Foley D F, DeSanty K P, Kast R E. Bupropion: pharmacology and therapeutic applications. Expert Rev Neurother 2006; 6: 1249–1265
  • Dwoskin L P, Rauhut A S, King-Pospisil K A, Bardo M T. Review of the pharmacology and clinical profile of bupropion, an antidepressant and tobacco use cessation agent. CNS Drug Rev. 2006; 12: 178–207
  • Lai A A, Schroeder D HJ. Clinical pharmacokinetics of bupropion: a review. J Clin Psychiatry 1983; 44: 82–84
  • Jefferson J W, Pradko J F, Muir K T. Bupropion for major depressive disorder: pharmacokinetic and formulation considerations. Clin Ther 2005; 27: 1685–1695
  • Hesse L M, Venkatakrishnana K, Court M H, Von Moltke L L, Duan S X, Shader R I, Greenblatt D J. CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug Metab Dispos 2000; 28: 1176–1183
  • Kirchheiner J, Klein C, Meineke I, Sasse J, Zanger U M, Murdter T E, Roots I, Brockmoller J. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 2003; 13: 619–626
  • Laizure S C, DeVane C L, Stewart J T, Dommisse D S, Lai A A. Pharmacokinetics of bupropion and its major basic metabolites in normal subjects after a single dose. Clin Pharmacol Ther 1985; 38: 586–589
  • Goodnick P J. Pharmacokinetics of second generation antidepressants: bupropion. Psychopharmacol Bull. 1991; 27: 513–519
  • DeVane C L, Laizure S C, Stewart J T, Kolts B E, Ryerson E G, Miller R L, Lai A A. Disposition of bypropion in healthy volunteers and subjects with alcoholic liver disease. J Clin Psychopharmacol 1990; 27: 513–519
  • Preskorn S H. Antidepressant response and plasma concentrations of bupropion. J Clin Psychiatry 1983; 44: 137–139
  • Fogel P, Mamer O A, Chouinard G, Farrell P G. Determination of plasma bupropion and its relationship to therapeutic effect. Biomed Mass Spectrom 1984; 11: 629–632
  • Ames D, Wirshing W C, Szuba M P. Organic mental disorders associated with bupropion in three patients. J Clin Psychiatry 1992; 53: 53–55
  • Settle E C, Stahl S M, Batey S R, Johnston J A, Ascher J A. Safety profile of sustained-release bupropion in depression: results of three clinical trials. Clin Ther 1999; 21: 454–463
  • Tutka P, Mroz T, Klucha K, Piekarczyk M, Wielosz M. Bupropion-induced convulsions: preclinical evaluation of antiepileptic drugs. Epilepsy Res 2005; 64: 13–22
  • Shepherd G. Adverse effects associated with extra doses of bupropion. Pharmacotherapy 2005; 25: 1378–1382
  • Spiller H A, Ramoska E A, Krenzelok E P, Sheen S R, Borys D J, Villalobos D, Muir S, Jones-Easom L. Bupropion overdose: a 3-year multi-center retrospective analysis. Am J Emerg Med 1994; 12: 43–45
  • Druteika D, Zed P J. Cardiotoxicity following bupropion overdose. Ann Pharmacother 2002; 36: 1791–1795
  • Belson M G, Kelley T R. Bupropion exposures: clinical manifestations and medical outcome. J Emerg Med 2002; 23: 223–230
  • Balit C R, Lynch C N, Isbister G K. Bupropion poisoning: a case series. Med J Aust 2003; 178: 61–63
  • Isbister G K, Balit C R. Bupropion overdose: QTc prolongation and its clinical significance. Ann Pharmacother 2003; 37: 999–1002
  • Kotlyar M, Brauer L HTT.S., Hatsukami D KHJ., Bronars C A, Adson D E. Inhibition of CYPD6 activity by bupropion. J Clin Phsychopharmacol 2005; 25: 226–229
  • Ketter T A, Jenkins J BS, Schroeder D H, Pazzaglia P J, Marangell L B, George M S, Callahan A M, Hinton M L, Chao J, Post R M. Carbamazepine but not valproate induces bupropion metabolism. J Clin Phsychopharmacol 1995; 15: 327–333
  • Hogeland G W, Swindells S, McNabb J C, Kashuba A D, Yee G C, Lindley C M. Lopinavir/ritonavir reduces bupropion plasma concentrations in healthy subjects. Clin Pharmacol Ther 2007; 81: 69–75
  • Cooper T B, Suckow R F, Glassman A. Determination of bupropion and its major basic metabolites in plasma by liquid chromatography with dual-wavelength ultraviolet detection. J Pharm Sci 1984; 73: 1104–1107
  • Jennison T A, Brown P, Crossett J, Urry F M. A high-performance liquid chromatographic method for quantitating bupropion in human plasma or serum. J Anal Toxicol 1995; 19: 69–72
  • Suckow R F, Zhang M F, Cooper T B. Enantiomeric determination of the phenylmorpholinol metabolite of bupropion in human plasma using coupled achiral-chiral liquid chromatography. Biomed Chromatogr 1997; 11: 174–179
  • Loboz K K, Gross A S, Ray J, McLachlan A J. HPLC assay for bupropion and its major metabolites in human plasma. J Chromatogr B Biomed Sci Appl 2005; 823: 115–121
  • Borges V, Yang E, Dunn J, Henion J. High-throughput liquid chromatography-tandem mass spectrometry determination of bupropion and its metabolites in human, mouse and rat plasma using a monolithic column. J Chromatogr B Biomed Sci Appl 2004; 804: 277–287
  • Rohrig T P, Ray N G. Tissue distribution of bupropion in a fatal overdose. J Anal Toxicol 1992; 16: 343–345
  • Bezchlibnyk-Butler K, Aleksic I, Kennedy S H. Citalopram–a review of pharmacological and clinical effects. J Psychiatry Neurosci 2000; 25: 241–256
  • Sanchez C, Bogeso K P, Ebert B, Reines E H, Braestrup C. Escitalopram versus citalopram: the surprising role of the R-enantiomer. Psychopharmacology 2004; 174: 163–176
  • Kennedy S HH.F. A, Lam R W. Efficacy of escitalopram in the treatment of major depressive disorder compared with conventional selective serotonin reuptake inhibitors and venlafaxine XR: a meta-analysis. J Psychiatry Neurosci 2006; 31: 122–131
  • Brosen K, Naranjo C. Review of pharmacokinetic and pharmacodynamic interaction studies with citalopram. Eur Neuropsychopharmacol 2001; 11: 275–283
  • Le Bloc'h Y, Woggon B, Weissenrieder H, Brawand-Amey M, Spagnoli J, Eap C B, Baumann P. Routine therapeutic drug monitoring in patients treated with 10–360 mg/day citalopram. Ther Drug Monit 2003; 25: 600–608
  • Baumann P, Hiemke C, Ulrich S, Eckermann G, Gaertner I, Kuss H J, Laux G, Müller-Oerlinghausen B, Rao M L, Riederer P, Zernig G. The AGNP-TDM expert group consensus guidelines: therapeutic drug monitoring in psychiatry. Pharmacopsychiatry 2004; 37: 243–265
  • Rochat B, Amey M, Gillet M, Meyer U A, Baumann P. Identification of three cytochrome P450 isozymes involved in N-demethylation of citalopram enantiomers in human liver microsomes. Pharmacogenetics 1997; 7: 1–10
  • Caccia S. Metabolism of the newer antidepressants—An overview of the pharmacological and pharmacokinetic implications. Clin Pharmacokinet 1998; 34: 281–302
  • Barak Y, Swartz M, Levy D, Weizman R. Age-related differences in the side effect profile of citalopram. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 545–548
  • Joubert A F, Sanchez C, Larsen F. Citalopram. Hum Psychopharmacol 2000; 15: 439–451
  • Dams R, Benijts T HP, Lambert W E, Van Bocxlaer J F, Van Varenbergh D, Peteghem C V, De Leenheer A P. A fatal case of serotonin syndrome after combined moclobemide-citalopram intoxication. J Anal Toxicol 2001; 25: 147–151
  • Jonasson B, Saldeen T. Citalopram in fatal poisoning cases. Forensic Sci Int 2002; 126: 1–6
  • Andersen S, Halvorsen T G, Pedersen-Bjergaard S, Rasmussen K E, Tanum L, Refsum H. Stereospecific determination of citalopram and desmethylcitalopram by capillary electrophoresis and liquid-phase microextraction. J Pharm Biomed Anal 2003; 33: 263–273
  • Singh S S, Shah H, Gupta S, Jain M, Sharma K, Thakkar P, Shah R. Liquid chromatography-electrospray ionisation mass spectrometry method for the determination of escitalopram in human plasma and its application in bioequivalence study. J Chromatogr B Biomed Sci Appl 2004; 811: 209–215
  • Rasmussen B B, Brosen K. Is therapeutic drug monitoring a case for optimizing clinical outcome and avoiding interactions of the selective serotonin reuptake inhibitors?. Ther Drug Monit 2000; 22: 143–154
  • Zheng Z C, Jamour M, Klotz U. Stereoselective HPLC-assay for citalopram and its metabolites. Ther Drug Monit 2000; 22: 219–224
  • Haupt D. Determination of citalopram enantiomers in human plasma by liquid chromatographic separation on a Chiral-AGP column. J Chromatogr B Biomed Sci Appl 1996; 685: 299–305
  • El-Gindy A, Emara S, Mesbah M K, Hadad G M. Liquid chromatography determination of citalopram enantiomers using beta-cyclodextrin as a chiral mobile phase additive. J AOAC Int 2006; 89: 65–70
  • Baumann P. Pharmacokinetic-pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin Pharmacokinet 1996; 31: 444–469
  • Eap C B, Bouchoux G, Amey M, Cochard N, Savary L, Baumann P. Simultaneous determination of human plasma levels of citalopram, paroxetine, sertraline, and their metabolites by gas chromatography mass spectrometry. J Chromatogr Sci 1998; 36: 365–371
  • Salgado-Petinal C, Lamas J P, Garcia-Jares C, Llompart M, Cela R. Rapid screening of selective serotonin re-uptake inhibitors in urine samples using solid-phase microextraction gas chromatography-mass spectrometry. Anal Bioanal Chem 2005; 382: 1351–1359
  • Tournel G, Houdret N, Hedouin V, Deveaux M, Gosset D, Lhermitte M. High-performance liquid chromatographic method to screen and quantitate seven selective serotonin reuptake inhibitors in human serum. J Chromatogr B Biomed Sci Appl 2001; 761: 147–158
  • Duverneuil C, de la Grandmaison G L, de Mazancourt P, Alvarez J C. A high-performance liquid chromatography method with photodiode-array UV detection for therapeutic drug monitoring of the nontricyclic antidepressant drugs. Ther Drug Monit 2003; 25: 565–573
  • Titier K, Castaing N, Scotto-Gomez E, Pehourcq F, Moore N, Molimard M. High-performance liquid chromatographic method with diode array detection for identification and quantification of the eight new antidepressants and five of their active metabolites in plasma after overdose. Ther Drug Monit 2003; 25: 581–587
  • Kristoffersen L, Bugge A, Lundanes E, Slordal L. Simultaneous determination of citalopram, fluoxetine, paroxetine and their metabolites in plasma and whole blood by high-performance liquid chromatography with ultraviolet and fluorescence detection. J Chromatogr B Biomed Sci Appl 1999; 734: 229–246
  • Macek J, Ptacek P, Klima J. Rapid determination of citalopram in human plasma by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 2001; 755: 279–285
  • Raggi M A, Pucci V, Mandrioli R, Sabbioni C, Fanali S. Determination of recent antidepressant citalopram in human plasma by liquid chromatography—fluorescence detection. Chromatographia 2003; 57: 273–278
  • Meng Q H, Gauthier D. Simultaneous analysis of citalopram and desmethylcitalopram by liquid chromatography with fluorescence detection after solid-phase extraction. Clin Biochem 2005; 38: 282–285
  • Gutteck U, Rentsch K M. Therapeutic drug monitoring of 13 antidepressant and five neuroleptic drugs in serum with liquid chromatography-electrospray ionization mass spectrometry. Clin Chem Lab Med 2003; 41: 1571–1579
  • He J, Zhou Z L, Li H D. Simultaneous determination of fluoxetine, citalopram, paroxetine, venlafaxine in plasma by high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-MS/ESI). J Chromatogr B Biomed Sci Appl 2005; 820: 33–39
  • Kollroser M, Schober C. An on-line solid phase extraction—liquid chromatography—tandem mass spectrometry method for the analysis of citalopram, fluvoxamine, and paroxetine in human plasma. Chromatographia 2003; 57: 133–138
  • Martinez M A, de la Torre C S, Almarza E. A comparative solid-phase extraction study for the simultaneous determination of fluvoxamine, mianserin, doxepin, citalopram, paroxetine, and etoperidone in whole blood by capillary gas-liquid chromatography with nitrogen-phosphorus detection. J Anal Toxicol 2004; 28: 174–180
  • Wille S MR, Maudens K E, Van Peteghem C H, Lambert W EE. Development of a solid phase extraction for 13 ‘new’ generation antidepressants and their active metabolites for gas chromatographic-mass spectrometric analysis. J Chromatogr A 2005; 1098: 19–29
  • McTavish D, Benfield P. Clomipramine—an overview of its pharmacological properties and a review of its therapeutic use in obsessive compulsive disorder and panic disorder. Drugs 1990; 39: 136–153
  • Kelly M W, Myers C W. Clomipramine—a tricyclic antidepressant effective in obsessive-compulsive disorder. DICP 1990; 24: 739–744
  • Glue P, et al. Clomipramine dose-effect study in patients with depression: Clinical end points and pharmacokinetics. Clin Pharmacol Ther 1999; 66: 152–165
  • Noguchi T, Shimoda K, Takahashi S. Clinical-significance of plasma-levels of clomipramine, its hydroxylated and desmethylated metabolites—prediction of clinical outcome in mood disorders using discriminant-analysis of therapeutic drug-monitoring data. J Affect Disord 1993; 29: 267–279
  • Gorenstein C, Marcourakis T, Bernik M, Lotufo-Neto F. Clomipramine and obsessive-compulsive disorder: serum levels and outcome. Eur Neuropsychopharmacol 1996; 6: 41
  • Peters M D, Davis S K, Austin L S. Clomipramine—an antiobsessional tricyclic antidepressant. Clin Pharm 1990; 9: 165–178
  • Francois B, Marquet P, Desachy A, Roustan J, Lachatre G, Gastinne H. Serotonin syndrome due to an overdose of moclobemide and clomipramine—A potentially life-threatening association. Intensive Care Med 1997; 23: 122–124
  • Dardennes R M, Even C, Ballon N, Bange F. Serotonin syndrome caused by a clomipramine-moclobemide interaction. J Clin Psychiatry 1998; 59: 382–383
  • Ferrer-Dufol A, Perez-Aradros C, Murillo E C, Marques-Alamo J M. Fatal serotonin syndrome caused by moclobemide-clomipramine overdose. J Toxicol Clin Toxicol 1998; 36: 31–32
  • Carnis G, Godbillon J, Metayer J P. Determination of clomipramine and desmethyl-clomipramine in plasma or urine by double-radioisotope derivative technique. Clin Chem 1976; 22: 817–823
  • Read G F, Riadfahmy D. Determination of a tricyclic antidepressant, clomipramine (Anafranil), in plasma by a specific radioimmunoassay procedure. Clin Chem 1978; 24: 36–40
  • Bredesen J E, Ellingsen O F, Karlsen J. Rapid isothermal gas-liquid-chromatographic determination of tricyclic anti-depressants in serum with use of a nitrogen-selective detector. J Chromatogr 1981; 204: 361–367
  • Kristinsson J. A gas-chromatographic method for the determination of anti-depressant drugs in human-serum. Acta Pharmacol Toxicol (Copenh) 1981; 49: 390–398
  • Gupta R N, Stefanec M, Eng F. Determination of tricyclic anti-depressant drugs by gas-chromatography with the use of a capillary column. Clin Biochem 1983; 16: 94–97
  • Lapin A, Karobath M. A sensitive and specific method for the determination of chlorimipramine and desmethylchlorimipramine in plasma using selected ion monitoring with chemical ionization. Biomed Mass Spectrom 1980; 7: 588–591
  • Sioufi A, Pommier F, Dubois J P. Simultaneous determination of clomipramine and its N-desmethyl metabolite in human whole-blood by capillary gas-chromatography with mass-selective detection. J Chromatogr 1988; 428: 71–80
  • Visser T, Oostelbos M, Toll P. Reliable routine method for the determination of antidepressant drugs in plasma by high-performance liquid-chromatography. J Chromatogr 1984; 309: 81–93
  • Sutfin T A, Dambrosio R, Jusko W J. Liquid-chromatographic determination of 8-tricyclic and tetracyclic antidepressants and their major active metabolites. Clin Chem 1984; 30: 471–474
  • Palego L, Marazziti D, Biondi L, Giannaccini G, Sarno N, Armani A, Lucacchini A, Cassano G B, Dell'Osso L. Simultaneous plasma level analysis of clomipramine, N-desmethylclomipramine, and fluvoxamine by reversed-phase liquid chromatography. Ther Drug Monit 2000; 22: 190–194
  • Altieri I, Pichini S, Pacifici R, Zuccaro P. Improved cleanup procedure for the high-performance liquid-chromatographic assay of clomipramine and its demethylated metabolite in human plasma. J Chromatogr B Biomed Appl 1995; 669: 416–417
  • Pirola R, Mundo E, Bellodi L, Bareggi S R. Simultaneous determination of clomipramine and its desmethyl and hydroxy metabolites in plasma of patients by high-performance liquid chromatography after solid-phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 772: 205–210
  • Weigmann H, Hartter S, Hiemke C. Automated determination of clomipramine and its major metabolites in human and rat serum by high-performance liquid chromatography with on-line column-switching. J Chromatogr B Biomed Sci Appl 1998; 710: 227–233
  • Cheer S M, Goa K L. Fluoxetine—A review of its therapeutic potential in the treatment of depression associated with physical illness. Drugs 2001; 61: 81–110
  • Mhanna M J, Bennet J B, Izatt S D. Potential fluoxetine chloride (Prozac) toxicity in a newborn. Pediatrics 1997; 100: 158–159
  • Messiha F S. Fluoxetine—adverse-effects and drug-drug interactions. J Toxicol Clin Toxicol 1993; 31: 603–630
  • Stokes P E, Holtz A. Fluoxetine tenth anniversary update: the progress continues. Clin Ther 1997; 19: 1135–1250
  • Spina E, Scordo M G, D'Arrigo C. Metabolic drug interactions with new psychotropic agents. Fundam Clin Pharmacol 2003; 17: 517–538
  • Nevado J JB, Salcedo A MC, Llerena M JV. Micellar electrokinetic capillary chromatography for the determination of fluoxetine and its metabolite norfluoxetine in biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 769: 261–268
  • Eap C B, Gaillard N, Powell K, Baumann P. Simultaneous determination of plasma levels of fluvoxamine and of the enantiomers of fluoxetine and norfluoxetine by gas chromatography mass spectrometry. J Chromatogr B Biomed Appl 1996; 682: 265–272
  • Ulrich S. Direct stereoselective assay of fluoxetine and norfluoxetine enantiomers in human plasma or serum by two-dimensional gas-liquid chromatography with nitrogen-phosphorus selective detection. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 783: 481–49
  • Pichini S, Pacifici R, Altieri I, Pellegrini M, Zuccaro P. Stereoselective determination of fluoxetine and norfluoxetine enantiomers in plasma samples by high-performance liquid chromatography. J Liq Chromatogr Relat Technol 1996; 19: 1927–1935
  • Olsen B A, Wirth D D, Larew J S. Determination of fluoxetine hydrochloride enantiomeric excess using high-performance liquid chromatography with chiral stationary phases. J Pharm Biomed Anal 1998; 17: 623–630
  • Yu H W, Ching C B. Kinetic and equilibrium study of the enantioseparation of fluoxetine on a new beta-cyclodextrin column by high performance liquid chromatography. Chromatographia 2001; 54: 697–702
  • Gatti G, Bonomi I, Marchiselli R, Fattore C, Spina E, Scordo G, Pacifici R, Perucca E. Improved enantioselective assay for the determination of fluoxetine and norfluoxetine enantiomers in human plasma by liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 784: 375–383
  • Fukushima T, Naka-aki E, Guo X J, Li F M, Vankeirsbilck T, Baeyens W RG, Imai K, Toyo'oka T. Determination of fluoxetine and norfluoxetine in rat brain microdialysis samples following intraperitoneal fluoxetine administration. Anal Chim Acta 2005; 531: 163–163
  • Fontanille P, Jourdil N, Villier C, Bessard G. Direct analysis of fluoxetine and norfluoxetine in plasma by gas chromatography with nitrogen-phosphorus detection. J Chromatogr B Biomed Sci Appl 1997; 692: 337–343
  • Ulrich S. Direct stereoselective assay of fluoxetine and norfluoxetine enantiomers in human plasma by two-dimensional gas chromatography with nitrogen-phosphorus selective detection. Pharmacopsychiatry 2002; 35: XI–XI
  • Martinez M A, de la Torre C S, Almarza E. A comparative solid-phase extraction study for the simultaneous determination of fluoxetine, amitriptyline, nortriptyline, trimipramine, maprotiline, clomipramine, and trazodone in whole blood by capillary gas-liquid chromatography with nitrogen-phosphorus detection. J Anal Toxicol 2003; 27: 353–358
  • Lefebvre M, Marchand M, Horowitz J M, Torres G. Detection of fluoxetine in brain, blood, liver and hair of rats using gas chromatography mass spectrometry. Life Sci 1999; 64: 805–811
  • Fathi M, Duparc M T, Morch F, Jayo M, Martin C, Hochstrasser D. Simultaneous determination of fluoxetine, norfluoxetine, paroxetine, sertraline and reboxetine in serum as acetvlated derivatives by gas chromatography-selected ion monitoring mass spectrometry (GC-SIM-MS). Ther Drug Monit 2005; 27: 217–218
  • Holladay J W, Dewey M J, Yoo S D. Quantification of fluoxetine and norfluoxetine serum levels by reversed-phase high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Sci Appl 1997; 704: 259–263
  • Alvarez J C, Bothua D, Colignon I, Advenier C, Spreux-Varoquaux O. Determination of fluoxetine and its metabolite norfluoxetine in serum and brain areas using high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Sci Appl 1998; 707: 175–180
  • Meineke I, Schreeb K, Kress I, Gundert-Remy U. Routine measurement of fluoxetine and norfluoxetine by high-performance liquid chromatography with ultraviolet detection in patients under concomitant treatment with tricyclic antidepressants. Ther Drug Monit 1998; 20: 14–19
  • Molander P, Thomassen A, Kristoffersen L, Greibrokk T, Lundanes E. Simultaneous determination of citalopram, fluoxetine, paroxetine and their metabolites in plasma by temperature-programmed packed capillary liquid chromatography with on-column focusing of large injection volumes. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 766: 77–87
  • Llerena A, Dorado P, Berecz R, Gonzalez A, Norberto M J, de la Rubia A, Caceres M. Determination of fluoxetine and norfluoxetine in human plasma by high-performance liquid chromatography with ultraviolet detection in psychiatric patients. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 783: 25–31
  • Li K M, Thompson M R, McGregor I S. Rapid quantitation of fluoxetine and norfluoxetine in serum by micro-disc solid-phase extraction with high-performance liquid chromatography-ultraviolet absorbance detection. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 804: 319–326
  • Clausing P, Rushing L G, Newport G D, Bowyer J F. Determination of D-fenfluramine, D-norfenfluramine and fluoxetine in plasma, brain tissue and brain microdialysate using high-performance liquid chromatography after precolumn derivatization with dansyl chloride. J Chromatogr B Biomed Sci Appl 1997; 692: 419–426
  • Raggi M A, Mandrioli R, Casamenti G, Bugamelli F, Volterra V. Determination of fluoxetine and norfluoxetine in human plasma by high-pressure liquid chromatography with fluorescence detection. J Pharm Biomed Anal 1998; 18: 193–199
  • Vlase L, Imre S, Leucuta S. Determination of fluoxetine and its N-desmethyl metabolite in human plasma by high-performance liquid chromatography. Talanta 2005; 66: 659–663
  • Moraes M O, Lerner F E, Corso G, Bezzerra F AF, Moraes M EA, De Nucci G. Fluoxetine bioequivalence study: Quantification of fluoxetine and norfluoxetine by liquid chromatography coupled to mass spectrometry. J Clin Pharmacol 1999; 39: 1053–1061
  • Sutherland F CW, Badenhorst D, de Jager A D, Scanes T, Hundt H KL, Swart K J, Hundt A F. Sensitive liquid chromatographic-tandem mass spectrometric method for the determination of fluoxetine and its primary active metabolite norfluoxetine in human plasma. J Chromatogr A 2001; 914: 45–51
  • Li C, Ji Z H, Nan F J, Shao Q X, Liu P, Dai J Y, Zhen J, Yuan H, Xu F, Cui J, Huang B, Zhang M Y, Yu C. Liquid chromatography/tandem mass spectrometry for the determination of fluoxetine and its main active metabolite norfluoxetine in human plasma with deuterated fluoxetine as internal standard. Rapid Commun Mass Spectrom 2002; 16: 1844–1850
  • Green R, Houghton R, Scarth J, Gregory C. Determination of fluoxetine and its major active metabolite norfluoxetine in human plasma by liquid chromatography-tandem mass spectrometry. Chromatographia 2002; 55: S133–S136
  • Shen Z Z, Wang S, Bakhtiar R. Enantiomeric separation and quantification of fluoxetine (Prozac (R)) in human plasma by liquid chromatography/tandem mass spectrometry using liquid-liquid extraction in 96-well plate format. Rapid Commun Mass Spectrom 2002; 16: 332–338
  • Cheer S M, Figgitt D R. Spotlight on fluvoxamine in anxiety disorders in children and adolescents. CNS Drugs 2002; 16: 139–144
  • Figgitt D P, McClellan K J. Fluvoxamine—An updated review of its use in the management of adults with anxiety disorders. Drugs 2000; 60: 925–954
  • Spigset O, Axelsson S, Norstrom A, Hagg S, Dahlqvist R. The major fluvoxamine metabolite in urine is formed by CYP2D6. Eur J Clin Pharmacol 2001; 57: 653–658
  • Richelson E. Pharmacokinetic drug interactions of new antidepressants: a review of the effects on the metabolism of other drugs. Mayo Clin Proc 1997; 72: 835–847
  • Carrasco J L, Sandner C. Clinical effects of pharmacological variations in selective serotonin reuptake inhibitors: an overview. Int J Clin Pract 2005; 59: 1428–1434
  • Hartter S, Wetzel H, Hammes E, Torkzadeh M, Hiemke C. Serum concentrations of fluvoxamine and clinical effects—A prospective open clinical trial. Pharmacopsychiatry 1998; 31: 199–200
  • Preskorn S H. Clinically relevant pharmacology of selective serotonin reuptake inhibitors—An overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet 1997; 32: 1–21
  • Devries M H, Raghoebar M, Mathlener I S, Vanharten J. Single and multiple oral dose fluvoxamine kinetics in young and elderly subjects. Ther Drug Monit 1992; 14: 493–498
  • Vanharten J, Duchier J, Devissaguet J P, Vanbemmel P, Devries M H, Raghoebar M. Pharmacokinetics of fluvoxamine maleate in patients with liver-cirrhosis after single-dose oral-administration. Clin Pharmacokinet 1993; 24: 177–182
  • Spigset O, Hagg S. Excretion of psychotropic drugs into breast milk—pharmacokinetic overview and therapeutic implications. CNS Drugs 1998; 9: 111–134
  • Goodnick P J. Pharmacokinetic optimization of therapy with newer antidepressants. Clin Pharmacokinet 1994; 27: 307–330
  • Perucca E, Gatti G, Spina E. Clinical pharmacokinetics of fluvoxamine. Clin Pharmacokinet 1994; 27: 175–190
  • Labat L, Deveaux M, Dallet P, Dubost J P. Separation of new antidepressants and their metabolites by micellar electrokinetic capillary chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 773: 17–23
  • Maurer H H, Bickeboeller-Friedrich J. Screening procedure for detection of antidepressants of the selective serotonin reuptake inhibitor type and their metabolites in urine as part of a modified systematic toxicological analysis procedure using gas chromatography-mass spectrometry. J Anal Toxicol 2000; 24: 340–347
  • Rotzinger S, Todd K G, Bourin M, Coutts R T, Baker G B. A rapid electron-capture gas chromatographic method for the quantification of fluvoxamine in brain tissue. J Pharmacol Toxicol Methods 1997; 37: 129–133
  • Hostetter A L, Stowe Z N, Cox M, Ritchie J C. A novel system for the determination of antidepressant concentrations in human breast milk. Ther Drug Monit 2004; 26: 47–52
  • Hostetter A, Ritchie J C, Stowe Z N. Amniotic fluid and umbilical cord blood concentrations of antidepressants in three women. Biol Psychiatry 2000; 48: 1032–1034
  • Rodriguez J, Berzas J J, Contento A M, Cabello M P. Capillary gas chromatographic determination of tamoxifen in the presence of a number of antidepressants in urine. J Sep Sci 2003; 26: 915–922
  • Bagli M, Rao M L, Sobanski T, Laux G. Determination of fluvoxamine and paroxetine in human serum with highperformance liquid chromatography and ultraviolet detection. J Liq Chromatogr Relat Technol 1997; 20: 283–295
  • Skibinski R, Misztal G, Olajossy M. High performance liquid chromatographic determination of fluvoxamine and paroxetine in plasma. Chem Analityczna 2000; 45: 815–823
  • Dallet P, Labat L, Richard M, Langlois M H, Dubost J P. A reversed-phase HPLC method development for the separation of new antidepressants. J Liq Chromatogr Relat Technol 2002; 25: 101–111
  • Ohkubo T, Shimoyama R, Otani K, Yoshida K, Higuchi H, Shimizu T. High-performance liquid chromatographic determination of fluvoxamine and fluvoxamino acid in human plasma. Anal Sci 2003; 19: 859–864
  • Lucca A, Gentilini G, Lopez-Silva S, Soldarini A. Simultaneous determination of human plasma levels of four selective serotonin reuptake inhibitors by high-performance liquid chromatography. Ther Drug Monit 2000; 22: 271–276
  • Higashi Y, Matsumura H, Fujii Y. Determination of fluvoxamine in rat plasma by HPLC with pre-column derivatization and fluorescence detection using 4-fluoro-7-nitro-2,1,3-benzoxadiazole. Biomed Chromatogr 2005; 19: 771–776
  • Lamas J P, Salgado-Petinal C, Garcia-Jares C, Llompart M, Cela R, Gomez M. Solid-phase microextraction-gas chromatography-mass spectrometry for the analysis of selective serotonin reuptake inhibitors in environmental water. J Chromatogr A 2004; 1046: 241–247
  • Barri T, Jonsson J A. Supported liquid membrane work-up of blood plasma samples coupled on-line to liquid chromatographic determination of basic antidepressant drugs. Chromatographia 2004; 59: 161–165
  • Gutierrez Casares J R, Sanjuan Rodriguez S, Rey Sanchez F, Fernandez de Gatta M M, Dominguez-Gil A, Perez-Rodriguez A. Nocturnal enuresis: imipramine treatment and plasma levels. Eur Psychiat 1996; 11: 342s
  • Gepertz S, Neveus T. Imipramine for therapy resistant enuresis: A retrospective evaluation. J Urol 2004; 171: 2607–2609
  • Mavissakalian M R, Perel J M, Talbott-Green M, Sloan C. Gauging the effectiveness of extended imipramine treatment for panic disorder with agoraphobia. Biol Psychiatry 1998; 43: 848–854
  • Korzeniewska-Rybicka I, Plaznik A. Analgesic effect of antidepressant drugs. Pharmacol. Biochem. Behav. 1998; 59: 331–338
  • Brosen K, Zeugin T, Meyer U. Role of P450 2D6, the target of the sparteine-debrisoquin oxidation polymorphism, in the metabolism of imipramine. Clin Pharmacol Ther 1991; 49: 609–617
  • Ereshefsky L, Tranjohnson T, Davis C M, Leroy A. Pharmacokinetic factors affecting antidepressant drug clearance and clinical effect—evaluation of doxepin and imipramine—new data and review. Clin Chem 1988; 34: 863–880
  • Nagy A, Treiber L. Quantitative-determination of imipramine and desipramine in human blood-plasma by direct densitometry of thin-layer chromatograms. J Pharm Pharmacol 1973; 25: 599–603
  • Perel J M, Stiller R L, Glassman A H. Studies on plasma level-effect relationships in imipramine therapy. Commun Psychopharmacol 1978; 2: 429–439
  • Rasmussen P V, Jensen T S, Sindrup S H, Bach F W. TDM-based imipramine treatment in neuropathic pain. Ther Drug Monit 2004; 26: 352–360
  • Ming M E, Bhawan J, Stefanato C M, McCalmont T H, Cohen L M. Imipramine-induced hyperpigmentation: Four cases and a review of the literature. J Am Acad Dermatol 1999; 40: 159–166
  • Dean C E, Grund F M. Imipramine-associated hyperpigmentation. Ann Pharmacother 2003; 37: 825–828
  • Nykamp D L, Blackmon C L, Schmidt P E, Roberson A G. QTc prolongation associated with combination therapy of levofloxacin, imipramine, and fluoxetine. Ann Pharmacother 2005; 39: 543–546
  • Bailey D N, Jatlow P I. Gas-chromatographic analysis for therapeutic concentrations of imipramine and desipramine in plasma, with use of a nitrogen detector. Clin Chem 1976; 22: 1697–1701
  • Chen A G, Wing Y K, Chiu H, Lee S, Chen C N, Chan K. Simultaneous determination of imipramine, desipramine and their 2- and 10-hydroxylated metabolites in human plasma and urine by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 1997; 693: 153–158
  • Pommier F, Sioufi A, Godbillon J. Simultaneous determination of imipramine and its metabolite desipramine in human plasma by capillary gas chromatography with mass-selective detection. J Chromatogr B Biomed Sci Appl 1997; 703: 147–158
  • Bose D, Martinavarro-Dominguez A, Gil-Agusti M, Carda-Broch S, Durgbanshi A, Capella-Peiro M E, Esteve-Romero J. Therapeutic monitoring of imipramine and desipramine by micellar liquid chromatography with direct injection and electrochemical detection. Biomed Chromatogr 2005; 19: 343–349
  • Eap C B, Yasui N, Kaneko S, Baumann P, Powell K, Otani K. Effects of carbamazepine coadministration on plasma concentrations of the enantiomers of mianserin and of its metabolites. Ther Drug Monit 1999; 21: 166–170
  • Otani K, Mihara K, Okada M, Tanaka O, Kaneko S, Fukushima Y. Prediction of plasma-concentrations of mianserin and desmethylmianserin at steady-state from those after an initial dose of mianserin. Ther Drug Monit 1993; 15: 118–121
  • Wakeling A. Efficacy and side-effects of mianserin, a tetracyclic anti-depressant. Postgrad Med J 1983; 59: 229–231
  • Nawishy S, Hathway N, Turner P. Interactions of anticonvulsant drugs with mianserin and nomifensine. Lancet 1981; 2: 871–872
  • Eap C B, Powell K, Baumann P. Determination of the enantiomers of mianserin and its metabolites in plasma by capillary electrophoresis after liquid-liquid extraction and on-column sample preconcentration. J Chromatogr Sci 1997; 35: 315–320
  • Tybring G, Otani K, Kaneko S, Mihara K, Fukushima Y, Bertilsson L. Enantioselective determination of mianserin and its desmethyl metabolite in plasma during treatment of depressed Japanese patients. Ther Drug Monit 1995; 17: 516–521
  • Vink J, Vanhal H JM. Simplified method for determination of the tetracyclic anti-depressant mianserin in human-plasma using gas-chromatography with nitrogen detection. J Chromatogr 1980; 181: 25–31
  • Wong S HY, Waugh S W, Draz M, Jain N. Liquid-chromatographic determination of 2 antidepressants, trazodone and mianserin, in plasma. Clin Chem 1984; 30: 230–233
  • Hefnawy M M, Aboul-Enein H Y. Fast high-performance liquid chromatographic analysis of mianserin and its metabolites in human plasma using monolithic silica column and solid phase extraction. Anal Chim Acta 2004; 504: 291–297
  • Wolf C, Schmid R. Liquid-chromatographic determination of mianserin in plasma by fluorescence detection after online photochemical-reaction. J Pharm Biomed Anal 1990; 8: 1059–1061
  • Chauhan B, Rani S, Guttikar S, Zope A, Jadon N, Padh H. Analytical method development and validation of mianserin hydrochloride and its metabolite in human plasma by LC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 823: 69–74
  • Brown L W, Hundt H KL, Swart K J. Automated high-performance liquid-chromatographic method for the determination of mianserin in plasma using electrochemical detection. J Chromatogr 1992; 582: 268–272
  • Spencer C M, Wilde M I. Milnacipran—a review of its use in depression. Drugs 1998; 56: 405–427
  • Delini-Stula A. Milnacipran: an antidepressant with dual selectivity of action on noradrenaline and serotonin uptake. Hum Psychopharmacol 2000; 15: 255–260
  • Puozzo C, Lens S, Reh C, Michaelis K, Rosillon D, Deroubaix X, Deprez D. Lack of interaction of milnacipran with the cytochrome p450 isoenzymes frequently involved in the metabolism of antidepressants. Clin Pharmacokinet 2005; 44: 977–988
  • Puozzo C, Filaquier C, Zorza G. Determination of milnacipran, a serotonin and noradrenaline reuptake inhibitor, in human plasma using liquid chromatography with spectrofluorimetric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 806: 221–228
  • Puozzo C, Albin H, Vincon G, Deprez D, Raymond J M, Amouretti M. Pharmacokinetics of milnacipran in liver impairment. Eur J Drug Metab Pharmacokinet 1998; 23: 273–279
  • Morishita S, Arita S. Differential effects of milnacipran, fluvoxamine and paroxetine for depression, especially in gender. Eur Psychiatry 2003; 18: 418–420
  • Puozzo C, Pozet N, Deprez D, Baille P, Ung H L, Zech P P. Pharmacokinetics of milnacipran in renal impairment. Eur J Drug Metab Pharmacokinet 1998; 23: 280–286
  • Yoshida K, Higuchi H, Takahashi H, Shimizu T. Elevation of blood pressure induced by high-dose milnacipran. Hum Psychopharmacol 2002; 17: 431–431
  • Alves T CD, de Andrade A G. Hypertension induced by regular doses of milnacipran: A case report. Pharmacopsychiatry 2007; 40: 41–42
  • Shinozuka T, Terada M, Tanaka E. Solid-phase extraction and analysis of 20 antidepressant drugs in human plasma by LC/MS with SSI method. Forensic Sci Int 2006; 162: 108–112
  • Holm K J, Markham A. Mirtazapine—A review of its use in major depression. Drugs 1999; 57: 607–631
  • Fawcett J, Barkin R L. Review of the results from clinical studies on the efficacy, safety and tolerability of mirtazapine for the treatment of patients with major depression. J Affect Disord 1998; 51: 267–285
  • Timmer C J, Sitsen J MA, Delbressine L P. Clinical pharmacokinetics of mirtazapine. Clin Pharmacokinet 2000; 38: 461–474
  • Grasmader K, Verwohlt P L, Kuhn K U, Frahnert C, Hiemke C, Dragicevic A, von Widdern O, Zobel A, Maier W, Rao M L. Relationship between mirtazapine dose, plasma concentration, response, and side effects in clinical practice. Pharmacopsychiatry 2005; 38: 113–117
  • Puzantian T. Mirtazapine, an antidepressant. Am J Health Syst Pharm 1998; 55: 44–49
  • Kasper S, Praschak-Rieder N, Tauscher J, Wolf R. A risk-benefit assessment of mirtazapine in the treatment of depression. Drug Saf 1997; 17: 251–264
  • Ruwe F JL, Smulders R A, Kleijn H J, Hartmans H LA, Sitsen J MA. Mirtazapine and paroxetine: a drug-drug interaction study in healthy subjects. Hum Psychopharmacol 2001; 16: 449–459
  • Sennef C, Timmer C J, Sitsen J AA. Mirtazapine in combination with amitriptyline: a drug-drug interaction study in healthy subjects. Hum Psychopharmacol 2003; 18: 91–101
  • Mandrioli R, Pucci V, Sabbioni C, Bartoletti C, Fanali S, Raggi M A. Enantioselective determination of the novel antidepressant mirtazapine and its active demethylated metabolite in human plasma by means of capillary electrophoresis. J Chromatogr A 2004; 1051: 253–260
  • Romiguieres T, Pehourcq F, Matoga M, Begaud B, Jarry C. Determination of mirtazapine and its demethyl metabolite in plasma by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 775: 163–168
  • Morgan P E, Tapper J, Spencer E P. Rapid and sensitive analysis of mirtazapine & normirtazapine in plasma/serum by HPLC with fluorescence detection. J Psychopharmacol 2002; 16: A64–A64
  • Shams M, Hartter S, Hiemke C. Column switching and high performance liquid chromatography (HPLC) with fluorescence detection for automated analysis of venlafaxine, mirtazapine and demethylated metabolites in blood serum or plasma. Pharmacopsychiatry 2002; 35: X–X
  • Ptacek P, Klima J, Macek J. Determination of mirtazapine in human plasma by liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 794: 323–328
  • Pistos C, Koutsopoulou M, Panderi I. A validated liquid chromatographic tandem mass spectrometric method for the determination of mirtazapine and demethylmirtazapine in human plasma: application to a pharmacokinetic study. Anal Chim Acta 2004; 514: 15–26
  • Paus E, Jonzier-Perey M, Cochard N, Eap C B, Baumann P. Chirality in the new generation of antidepressants—Stereoselective analysis of the enantiomers of mirtazapine, N-demethylmirtazapine, and 8-hydroxymirtazapine by LC-MS. Ther Drug Monit 2004; 26: 366–374
  • de Santana F JM, de Oliveira A RM, Bonato P S. Chiral liquid chromatographic determination of mirtazapine in human plasma using two-phase liquid-phase microextraction for sample preparation. Anal Chim Acta 2005; 549: 96–103
  • Mandrioli R, Mercolini L, Ghedini N, Bartoletti C, Fanali S, Raggi M A. Determination of the antidepressant mirtazapine and its two main metabolites in human plasma by liquid chromatography with fluorescence detection. Anal Chim Acta 2006; 556: 281–288
  • Paterson S, Cordero R, Burlinson S. Screening and semi-quantitative analysis of postmortem blood for basic drugs using gas chromatography/ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 813: 323–330
  • Bickeboeller-Friedrich J, Maurer H H. Screening for detection of new antidepressants, neuroleptics, hypnotics, and their metabolites in urine by GC-MS developed using rat liver microsomes. Ther Drug Monit 2001; 23: 61–70
  • Dodd S, Burrows G D, Norman T R. Chiral determination of mirtazapine in human blood plasma by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 2000; 748: 439–443
  • Wagstaff A J, Cheer S M, Matheson A J. Paroxetine: an update of its use in psychiatric disorders in adults. Drugs 2002; 62: 655–703
  • Wagstaff A J, Cheer S M, Matheson A J, Ormrod D, Goa K L. Spotlight on paroxetine in psychiatric disorders in adults. CNS Drugs 2002; 16: 425–434
  • Caley C F, Weber S S. Paroxetine- a selective reuptake inhibiting antidepressant. Ann Pharmacother 1993; 27: 1212–1222
  • Gunasekara N S, Noble S, Benfield P. Paroxetine-an update of its pharmacology and therapeutic use in depression and a review of its use in other disorders. Drugs 1998; 55: 85–120
  • Lai C T, Gordon E S, Kennedy S H, Bateson A N, Coutts R T, Baker G B. Determination of paroxetine levels in human plasma using gas chromatography with electron-capture detection. J Chromatogr B Biomed Sci Appl 2000; 749: 275–279
  • Leis H J, Windischhofer W, Raspotnig G, Fauler G. Stable isotope dilution negative ion chemical ionization gas chromatography-mass spectrometry for the quantitative analysis of paroxetine in human plasma. J Mass Spectrom 2001; 36: 923–928
  • Leis H J, Windischhofer W, Fauler G. Improved sample, preparation for the quantitative analysis of paroxetine in human plasma by stable isotope dilution negative ion chemical ionisation gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 779: 353–357
  • Foglia J P, Sorisio D, Kirshner M, Pollock B G. Quantitative determination of paroxetine in plasma by high-performance liquid chromatography and ultraviolet detection. J Chromatogr B Biomed Sci Appl 1997; 693: 147–151
  • Zainaghi I A, Lanchote V L, Queiroz R HC. Determination of paroxetine in geriatric depression by high-performance liquid chromatography. Pharmacol Res 2003; 48: 217–221
  • Shin J G, Kim K A, Yoon Y R, Cha I J, Kim Y H, Shin S G. Rapid simple high-performance liquid chromatographic determination of paroxetine in human plasma. J Chromatogr B Biomed Sci Appl 1998; 713: 452–456
  • Lopez-Calull C, Dominguez N. Determination of paroxetine in plasma by high-performance liquid chromatography for bioequivalence studies. J Chromatogr B Biomed Sci Appl 1999; 724: 393–398
  • Schatz D S, Saria A. Simultaneous determination of paroxetine, risperidone and 9-hydroxyrisperidone in human plasma by high-performance liquid chromatography with coulometric detection. Pharmacology 2000; 60: 51–56
  • Zhu Z M, Neirinck L. High-performance liquid chromatography-mass spectrometry method for the determination of paroxetine in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 780: 295–300
  • Segura M, Ortuno J, Farre M, Pacifici R, Pichini S, Joglar J, Segura J, de la Torre R. Quantitative determination of paroxetine and its 4-hydroxy-3-methoxy metabolite in plasma by high-performance liquid chromatography/electrospray ion trap mass spectrometry: application to pharmacokinetic studies. Rapid Commun Mass Spectrom 2003; 17: 1455–1461
  • Vivekanand V V, Kumar V R, Mohakhud P K, Reddy G O. Enantiomeric separation of the key intermediate of paroxetine using chiral chromatography. J Pharm Biomed Anal 2003; 33: 803–809
  • Weng N D, Eerkes A. Development and validation of a hydrophilic interaction liquid chromatography-tandem mass spectrometric method for the analysis of paroxetine in human plasma. Biomed Chromatogr 2004; 18: 28–36
  • DeVane C L, Liston H L, Markowitz J S. Clinical pharmacokinetics of sertraline. Clin Pharmacokinet 2002; 41: 1247–1266
  • Mauri M C, Laini V, Cerveri G, Scalvini M E, Volonteri L S, Regispani F, Malvini L, Manfre S, Boscati L, Panza G. Clinical outcome and tolerability of sertraline in major depression—A study with plasma levels. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26: 597–601
  • Lucangioli S E, Hermida L G, Tripodi V P, Rodriguez V G, Lopez E E, Rouge P D, Carducci C N. Analysis of cis-trans isomers and enantiomers of sertraline by cyclodextrin-modified micellar electrokinetic chromatography. J Chromatogr A 2000; 871: 207–215
  • Rogowsky D, Marr M, Long G, Moore C. Determination of sertraline and desmethylsertraline in human serum using copolymeric bonded-phase extraction, liquid-chromatography and gas-chromatography mass-spectrometry. J Chromatogr B Biomed Appl 1994; 655: 138–141
  • Eap C B, Bouchoux G, Amey M, Cochard N, Savary L, Baumann P. Simultaneous determination of human plasma levels of citalopram, paroxetine, sertraline, and their metabolites by gas chromatography mass spectrometry. J Chromatogr Sci 1998; 36: 365–371
  • Kim K M, Jung B H, Choi M H, Woo J S, Paeng K J, Chung B C. Rapid and sensitive determination of sertraline in human plasma using gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 769: 333–339
  • Casamenti G, Mandrioli R, Sabbioni C, Bugamelli F, Volterra V, Raggi M A. Development of an HPLC method for the toxicological screening of central nervous system drugs. J Liq Chromatogr Relat Technol 2000; 23: 1039–1059
  • Jain D S, Sanyal M, Subbaiah G, Pande U C, Shrivastav P. Rapid and sensitive method for the determination of sertraline in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci 2005; 829: 69–74
  • He L J, Feng F, Wu J. Determination of sertraline in human plasma by high-performance liquid chromatography-electrospray ionization mass sprectrometry and method validation. J Chromatogr Sci 2005; 43: 532–535
  • Morton W A, Sonne S C, Verga M A. Venlafaxine—a structurally unique and novel antidepressant. Ann Pharmacother 1995; 29: 387–395
  • Reis M, Lundmark J, Bjork H, Bengtsson F. Therapeutic drug monitoring of racemic venlafaxine and its main metabolites in an everyday clinical setting. Ther Drug Monit 2002; 24: 545–553
  • Ereshefsky L, Dugan D. Review of the pharmacokinetics, pharmacogenetics, and drug interaction potential of antidepressants: Focus on venlafaxine. Depress Anxiety 2000; 12: 30–44
  • Kirchheiner J, Brosen K, Dahl M L, Gram L F, Kasper S, Roots I, Sjoqvist F, Spina E, Brockmoller J. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104: 173–192
  • Roseboom P H, Kalin N H. Neuropharmacology of venlafaxine. Depress Anxiety 2000; 12: 20–29, (Suppl 1)
  • Burnett F E, Dinan T G. Venlafaxine. Pharmacology and therapeutic potential in the treatment of depression. Hum Psychopharmacol 1998; 13: 153–162
  • Rudaz S, Calleri E, Geiser L, Cherkaoui S, Prat J, Veuthey J L. Infinite enantiomeric resolution of basic compounds using highly sulfated cyclodextrin as chiral selector in capillary electrophoresis. Electrophoresis 2003; 24: 2633–2641
  • Martinez M A, de la Torre C S, Almarza E. Simultaneous determination of viloxazine, venlafaxine, imipramine, desipramine, sertraline, and amoxapine in whole blood: Comparison of two extraction/cleanup procedures for capillary gas chromatography with nitrogen-phosphorus detection. J Anal Toxicol 2003; 27: 8A–8A
  • Martinez M A, de la Torre C S, Almarza E. Simultaneous determination of viloxazine, venlafaxine, imipramine, desipramine, sertraline, and amoxapine in whole blood: Comparison of two extraction/cleanup procedures for capillary gas chromatography with nitrogen-phosphorus detection. J Anal Toxicol 2002; 26: 296–302
  • Hicks D R, Wolaniuk D, Russell A, Cavanaugh N, Kraml M. A high-performance liquid-chromatographic method for the simultaneous determination of venlafaxine and O-desmethylvenlafaxine in biological-fluids. Ther Drug Monit 1994; 16: 100–107
  • Matoga M, Pehourcq F, Titier K, Dumora F, Jarry C. Rapid high-performance liquid chromatographic measurement of venlafaxine and O-desmethylvenlafaxine in human plasma—application to management of acute intoxications. J Chromatogr B Biomed Sci Appl 2001; 760: 213–218
  • Raut B B, Kolte B L, Deo A A, Bagool M A, Shinde D B. A rapid and sensitive HPLC method for the determination of venlafaxine and O-desmethylvenlafaxine in human plasma with UV detection. J Liq Chromatogr Relat Technol 2003; 26: 1297–1313
  • Waschgler R, Moll W, Konig P, Conca A. Quantification of venlafaxine and O-desmethylvenlafaxine in human serum using HPLC analysis. Int J Clin Pharmacol Ther 2004; 42: 724–728
  • Bhatt J, Jangid A, Venkatesh G, Subbaiah G, Singh S. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for simultaneous determination of venlafaxine and its active metabolite O-desmethyl venlafaxine in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 829: 75–81
  • Barnes J, Anderson L A, Phillipson J D. St. John's wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties. J Pharm Pharmacol 2001; 53: 583–600
  • Zanoli P. Role of hyperforin in the pharmacological activities of St. John's wort. CNS Drug Rev 2004; 10: 203–218
  • Caccia S. Antidepressant-like components of hypericum perforatum extracts: an overview of their pharmacokinetics and metabolism. Curr Drug Metab 2005; 6: 531–543
  • Wurglics M, Schubert-Zsilavecz M. Hypericum perforatum: A ‘modern’ herbal antidepressant-pharmacokinetics of active ingredients. Clin Pharmacokinet 2006; 45: 449–468
  • Nathan P J. Hypericum perforatum (St. John's wort): a non-selective reuptake inhibitor? A review of the recent advances in its pharmacology. J Psychopharmacol 2001; 15: 47–54
  • Muller W E. Current St. John's wort research from mode of action to clinical efficacy. Pharmacol Res 2003; 47: 101–109
  • Linde K, Mulrow C D, Berner M, Egger M. St. John's Wort for depression. Cochrane Database Syst Rev 2005; 2, CD000448
  • Pellati F, Benvenuti S, Melegari M. Chromatographic performance of a new polar poly(ethylene glycol) bonded phase for the phytochemical analysis of Hypericum perforatum L. J Chromatogr A 2005; 1088: 205–217
  • Biber A, Fischer H, Romer A, Chatterjee S S. Oral bioavailability of hyperforin from Hypericum extracts in rats and human volunteers. Pharmacopsychiatry 1998; 31: 36–43
  • Schulz H U, Schurer M, Bassler D, Weiser D. Investigation of the bioavailability of hypericin, pseudohypericin, hyperforin and the flavonoids quercetin and isorhamnetin following single and multiple oral dosing of a hypericum extract containing tablet. Arzneimittelforschung 2005; 55: 15–22
  • Staffeldt B, Kerb R, Brockmoller J, Ploch M, Roots I. Pharmacokinetics of hypericin and pseudohypericin after oral intake of the hypericum-perforatum extract Li-160 in healthy-volunteers. Nervenheilkunde 1993; 12: 331–338
  • Kerb R, Brockmoller J, Staffeldt B, Ploch M, Roots I. Single-dose and steady-state pharmacokinetics of hypericin and pseudohypericin. Antimicrob Agents Chemother 1996; 40: 2087–2093
  • Linde K, Ramirez G, Mulrow C D, Pauls A, Weidenhammer W, Melchart D. St. John's wort for depression—An overview and meta-analysis of randomised clinical trials. BMJ 1996; 313: 253–258
  • DeSmet P, Nolen W A. St. John's wort as an antidepressant—Longer term studies are needed before it can be recommended in major depression. BMJ 1996; 313: 241–242
  • Study shows St. John's wort ineffective for major depression. FDA Consum. 2002; 36: 8
  • Davidson J RT, et al. Effect of Hypericum perforatum (St. John's wort) in major depressive disorder—A randomized controlled trial. JAMA 2002; 287: 1807–1814
  • Linde K, Berner M, Egger M, Mulrow C. St. John's wort for depression—Meta-analysis of randomised controlled trials. Br J Psychiatry 2005; 186: 99–107
  • Pilkington K, Boshnakova A, Richardson J. St. John's wort for depression: time for a different perspective?. Complement Ther Med 2006; 14: 268–281
  • Randlov C, Mehlsen J, Thomsen C F, Hedman C, von Fircks H, Winther K. The efficacy of St. John's wort in patients with minor depressive symptoms or dysthymia—a double-blind placebo-controlled study. Phytomedicine 2006; 13: 215–221
  • Izzo A A. Drug interactions with St. John's wort (hypericum perforatum): a review of the clinical evidence. Int J Clin Pharmacol Ther 2004; 42: 139–148
  • Trautmann-Sponsel R D, Dienel A. Safety of hypericum extract in mildly to moderately depressed outpatients—A review based on data from three randomized, placebo-controlled trials. J Affect Disord 2004; 82: 303–307
  • Demiroglu Y Z, Yeter T T, Boga C, Ozdogu H, Kizilkilic E, Bal N, Tuncer I, Arslan H. Bone marrow necrosis: a rare complication of herbal treatment with Hypericum perforatum (St. John's wort). Acta Medica 2005; 48: 91–94
  • Mannel M. Drug interactions with St. John's wort—mechanisms and clinical implications. Drug Saf 2004; 27: 773–797
  • Madabushi R, Frank B, Drewelow B, Derendorf H, Butterweck V. Hyperforin in St. John's wort drug interactions. Eur J Clin Pharmacol 2006; 62: 225–233
  • Johne A, Brockmoller J, Bauer S, Maurer A, Langheinrich M, Roots I. Pharmacokinetic interaction of digoxin with an herbal extract from St. John's wort (Hypericum perforatum). Clin Pharmacol Ther 1999; 66: 338–345
  • Bauer S, Stormer E, Johne A, Kruger H, Budde K, Neumayer H H, Roots I, Mai I. Alterations in cyclosporin A pharmacokinetics and metabolism during treatment with St. John's wort in renal transplant patients. Br J Clin Pharmacol 2003; 55: 203–211
  • Jiang X M, Williams K M, Liauw W S, Ammit A J, Roufogalis B D, Duke C C, Day R O, McLachlan A J. Effect of St. John's wort and ginseng on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br J Clin Pharmacol 2004; 57: 592–599
  • Ruschitzka F, Meier P J, Turina M, Luscher T F, Noll G. Acute heart transplant rejection due to Saint John's wort. Lancet 2000; 355: 548–549
  • Klier C M, Schafer M R, Schmid-Siegel B, Lenz G, Mannel M. St. John's wort (hypericum perforatum)—Is it safe during breastfeeding?. Pharmacopsychiatry 2002; 35: 29–30
  • Klier C M, Schmid-Siegel B, Schafer M R, Lenz G, Saria A, Lee A, Zernig G. St. John's wort (hypericum perforatum) and breastfeeding: Plasma and breast milk concentrations of hyperforin for 5 mothers and 2 infants. J Clin Psychiatry 2006; 67: 305–309
  • Liebes L, Mazur Y, Freeman D, Lavie D, Lavie G, Kudler N, Mendoza S, Levin B, Hochster H, Meruelo D. A method for the quantitation of hypericin, an antiviral agent, in biological-fluids by high-performance liquid-chromatography. Anal Biochem 1991; 195: 77–85
  • Chi J D, Franklin M. Determination of hypericin in plasma by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 1999; 724: 195–198
  • Bauer S, Stormer E, Graubaum H J, Roots I. Determination of hyperforin, hypericin, and pseudohypericin in human plasma using high-performance liquid chromatography analysis with fluorescence and ultraviolet detection. J Chromatogr B Biomed Sci Appl 2001; 765: 29–35
  • Cui Y Y, Gurley B, Ang C YW, Leakey J. Determination of hyperforin in human plasma using solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 780: 129–135
  • Pirker R, Huck C W, Bonn G K. Simultaneous determination of hypericin and hyperforin in human plasma and serum using liquid-liquid extraction, high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 777: 147–153
  • Riedel K D, Rieger K, Martin-Facklam M, Mikus G, Haefeli W E, Burhenne J. Simultaneous determination of hypericin and hyperforin in human plasma with liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 813: 27–33
  • Draves A H, Walker S E. Determination of hypericin and pseudohypericin in pharmaceutical preparations by liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl 2000; 749: 57–66
  • Li W K, Fitzloff J F. High performance liquid chromatographic analysis of St. John's wort with photodiode array detection. J Chromatogr B Biomed Sci Appl 2001; 765: 99–105
  • Jensen A G, Hansen S H. Separation of hypericins and hyperforins in extracts of Hypericum perforatum L. using non-aqueous capillary electrophoresis with reversed electro-osmotic flow. J Pharm Biomed Anal 2002; 27: 167–176
  • Ganzera M, Zhao J, Khan I A. Hypericum perforatum—Chemical profiling and quantitative results of St. John's Wort products by an improved high-performance liquid chromatography method. J Pharm Sci 2002; 91: 623–630
  • Ruckert U, Eggenreich K, Wintersteiger R, Wurglics M, Likussar W, Michelitsch A. Development of a high-performance liquid chromatographic method with electrochemical detection for the determination of hyperforin. J Chromatogr A 2004; 1041: 181–185

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.