463
Views
93
CrossRef citations to date
0
Altmetric
Research Article

The Role of Tissue Inhibitors of Metalloproteinases in Tumorigenesis and Metastasis

&
Pages 291-338 | Published online: 10 Oct 2008

REFERENCES

  • Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 2000; 1477: 267–283
  • Montagnani C, Le Roux F, Berthe F, Escoubas J M. Cg-TIMP, an inducible tissue inhibitor of metalloproteinase from the Pacific oyster Crassostrea gigas with a potential role in wound healing and defense mechanisms(1). FEBS Lett 2001; 500: 64–70
  • Carmichael D F, Sommer A, Thompson R C, Anderson D C, Smith C G, Welgus H G, Stricklin G P. Primary structure and cDNA cloning of human fibroblast collagenase inhibitor. Proc Natl Acad Sci U S A 1986; 83: 2407–2411
  • Docherty A J, Lyons A, Smith B J, Wright E M, Stephens P E, Harris T J, Murphy G, Reynolds J J. Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature 1985; 318: 66–69
  • Stetler-Stevenson W G, Brown P D, Onisto M, Levy A T, Liotta L A. Tissue inhibitor of metalloproteinases-2 (TIMP2) mRNA expression in tumor cell lines and human tumor tissues. J Biol Chem 1990; 265: 13933–13938
  • Hammani K, Henriet P, Silbiger S M, DeClerck Y A. Cloning and partial structure of the gene encoding human tissue inhibitor of metalloproteinases-3. Gene 1996; 170: 287–288
  • Greene J, Wang M, Liu Y E, Raymond L A, Rosen C, Shi Y E. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem 1996; 271: 30375–30380
  • Leco K J, Hayden L J, Sharma R R, Rocheleau H, Greenberg A H, Edwards D R. Differential regulation of TIMP1 and TIMP2 mRNA expression in normal and Ha-ras-transformed murine fibroblasts. Gene 1992; 117: 209–217
  • Leco K J, Khokha R, Pavloff N, Hawkes S P, Edwards D R. Tissue inhibitor of metalloproteinases-3 (TIMP3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem 1994; 269: 9352–9360
  • Leco K J, Apte S S, Taniguchi G T, Hawkes S P, Khokha R, Schultz G A, Edwards D R. Murine tissue inhibitor of metalloproteinases-4 (Timp4): cDNA isolation and expression in adult mouse tissues. FEBS Lett 1997; 401: 213–217
  • Murphy G, Reynolds J J, Hembry R M. Metalloproteinases and cancer invasion and metastasis. Int J Cancer 1989; 44: 757–760
  • Nagase H, Woessner J F, Jr. Matrix metalloproteinases. J Biol Chem 1999; 274: 21491–21494
  • Fata J E, Ho A T, Leco K J, Moorehead R A, Khokha R. Cellular turnover and extracellular matrix remodeling in female reproductive tissues: functions of metalloproteinases and their inhibitors. Cell Mol Life Sci 2000; 57: 77–95
  • Hojilla C V, Mohammed F F, Khokha R. Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 2003; 89: 1817–1821
  • Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161–174
  • Folgueras A R, Pendas A M, Sanchez L M, Lopez-Otin C. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 2004; 48: 411–424
  • Hanahan D. Dissecting multistep tumorigenesis in transgenic mice. Annu Rev Genet 1988; 22: 479–519
  • Fearon E R, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767
  • Hanahan D, Weinberg R A. The hallmarks of cancer. Cell 2000; 100: 57–70
  • Hahn W C, Weinberg R A. Rules for making human tumor cells. N Engl J Med 2002; 347: 1593–1603
  • Valverde J R, Alonso J, Palacios I, Pestana A. RB1 gene mutation up-date, a meta-analysis based on 932 reported mutations available in a searchable database. BMC Genet 2005; 6: 53
  • Helt A M, Galloway D A. Mechanisms by which DNA tumor virus oncoproteins target the Rb family of pocket proteins. Carcinogenesis 2003; 24: 159–169
  • Sansal I, Sellers W R. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 2004; 22: 2954–2963
  • Chow L M, Baker S J. PTEN function in normal and neoplastic growth. Cancer Lett 2006; 241: 184–196
  • Behrens J. The role of the Wnt signalling pathway in colorectal tumorigenesis. Biochem Soc Trans 2005; 33: 672–675
  • Ellis H M, Horvitz H R. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986; 44: 817–829
  • Okada H, Mak T W. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 2004; 4: 592–603
  • Ghobrial I M, Witzig T E, Adjei A A. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 2005; 55: 178–194
  • Bristow R G, Benchimol S, Hill R P. The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiother Oncol 1996; 40: 197–223
  • Weinmann M, Jendrossek V, Handrick R, Guner D, Goecke B, Belka C. Molecular ordering of hypoxia-induced apoptosis: critical involvement of the mitochondrial death pathway in a FADD/caspase-8 independent manner. Oncogene 2004; 23: 3757–3769
  • Hammond E M, Giaccia A J. The role of p53 in hypoxia-induced apoptosis. Biochem Biophys Res Commun 2005; 331: 718–725
  • Fridman J S, Lowe S W. Control of apoptosis by p53. Oncogene 2003; 22: 9030–9040
  • Heiser D, Labi V, Erlacher M, Villunger A. The Bcl-2 protein family and its role in the development of neoplastic disease. Exp Gerontol 2004; 39: 1125–1135
  • Jerome L, Shiry L, Leyland-Jones B. Deregulation of the IGF axis in cancer: epidemiological evidence and potential therapeutic interventions. Endocr Relat Cancer 2003; 10: 561–578
  • Kelland L R. Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics–current status and future prospects. Eur J Cancer 2005; 41: 971–979
  • Reddel R R. Alternative lengthening of telomeres, telomerase, and cancer. Cancer Lett 2003; 194: 155–162
  • Dimri G P. What has senescence got to do with cancer?. Cancer Cell 2005; 7: 505–512
  • Rak J, Yu J L, Klement G, Kerbel R S. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J Investig Dermatol Symp Proc 2000; 5: 24–33
  • Bergers G, Benjamin L E. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003; 3: 401–410
  • Belotti D, Paganoni P, Manenti L, Garofalo A, Marchini S, Taraboletti G, Giavazzi R. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res 2003; 63: 5224–5229
  • Liotta L A, Kohn E C. The microenvironment of the tumour-host interface. Nature 2001; 411: 375–379
  • Peters J, Loud J, Dimond E, Jenkins J. Cancer genetics fundamentals. Cancer Nurs 2001; 24: 446–461, quiz 462
  • Guo Y H, Gao W, Li Q, Li P F, Yao P Y, Chen K. Tissue inhibitor of metalloproteinases-4 suppresses vascular smooth muscle cell migration and induces cell apoptosis. Life Sci 2004; 75: 2483–2493
  • Chang C, Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 2001; 11: S37–S43
  • Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889; 1: 571–573
  • Puente X S, Sanchez L M, Overall C M, Lopez-Otin C. Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 2003; 4: 544–558
  • Lynch C C, Matrisian L M. Matrix metalloproteinases in tumor-host cell communication. Differentiation 2002; 70: 561–573
  • Yoon S O, Park S J, Yun C H, Chung A S. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol 2003; 36: 128–137
  • Hoekstra R, Eskens F A, Verweij J. Matrix metalloproteinase inhibitors: current developments and future perspectives. Oncologist 2001; 6: 415–427
  • Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 2000; 10: 415–433
  • Denhardt D T, Feng B, Edwards D R, Cocuzzi E T, Malyankar U M. Tissue inhibitor of metalloproteinases (TIMP, aka EPA): structure, control of expression and biological functions. Pharmacol Ther 1993; 59: 329–341
  • He C S, Wilhelm S M, Pentland A P, Marmer B L, Grant G A, Eisen A Z, Goldberg G I. Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc Natl Acad Sci USA 1989; 86: 2632–2636
  • Saari H, Suomalainen K, Lindy O, Konttinen Y T, Sorsa T. Activation of latent human neutrophil collagenase by reactive oxygen species and serine proteases. Biochem Biophys Res Commun 1990; 171: 979–987
  • Matrisian L M. The matrix-degrading metalloproteinases. Bioessays 1992; 14: 455–463
  • Siwik D A, Pagano P J, Colucci W S. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 2001; 280: C53–C60
  • Wang Z, Juttermann R, Soloway P D. TIMP2 is required for efficient activation of proMMP-2 in vivo. J Biol Chem 2000; 275: 26411–26415
  • English J L, Kassiri Z, Koskivirta I, Atkinson S J, Di Grappa M, Soloway P D, Nagase H, Vuorio E, Murphy G, Khokha R. Individual Timp deficiencies differentially impact pro-MMP-2 activation. J Biol Chem 2006; 281: 10337–10346
  • Sternlicht M D, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001; 17: 463–516
  • Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 2003; 200: 448–464
  • Rhee J S, Coussens L M. RECKing MMP function: implications for cancer development. Trends Cell Biol 2002; 12: 209–211
  • Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003; 92: 827–839
  • Forget M A, Desrosiers R R, Beliveau R. Physiological roles of matrix metalloproteinases: implications for tumor growth and metastasis. Can J Physiol Pharmacol 1999; 77: 465–480
  • Nabeshima K, Inoue T, Shimao Y, Sameshima T. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int 2002; 52: 255–264
  • Primakoff P, Myles D G. The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet 2000; 16: 83–87
  • White J M. ADAMs: modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol 2003; 15: 598–606
  • Apte S S. A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family. Int J Biochem Cell Biol 2004; 36: 981–985
  • Huovila A P, Turner A J, Pelto-Huikko M, Karkkainen I, Ortiz R M. Shedding light on ADAM metalloproteinases. Trends Biochem Sci 2005; 30: 413–422
  • Murphy G, Murthy A, Khokha R. Clipping, Shedding and RIPping keeps immunity on cue. Trends Immunol 2007, In press
  • Tang B L. ADAMTS: a novel family of extracellular matrix proteases. Int J Biochem Cell Biol 2001; 33: 33–44
  • Radisky D C, Levy D D, Littlepage L E, Liu H, Nelson C M, Fata J E, Leake D, Godden E L, Albertson D G, Nieto M A, Werb Z, Bissell M. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005; 436: 123–127
  • Tanner M M, Tirkkonen M, Kallioniemi A, Isola J, Kuukasjarvi T, Collins C, Kowbel D, Guan X Y, Trent J, Gray J W, Meltzer P, Kallioniemi O P. Independent amplification and frequent co-amplification of three nonsyntenic regions on the long arm of chromosome 20 in human breast cancer. Cancer Res 1996; 56: 3441–3445
  • Grenet J, Valentine V, Kitson J, Li H, Farrow S N, Kidd V J. Duplication of the DR3 gene on human chromosome 1p36 and its deletion in human neuroblastoma. Genomics 1998; 49: 385–393
  • Gururajan R, Lahti J M, Grenet J, Easton J, Gruber I, Ambros P F, Kidd V J. Duplication of a genomic region containing the Cdc2L1–2 and MMP21–22 genes on human chromosome 1p36.3 and their linkage to D1Z2. Genome Res 1998; 8: 929–939
  • Rao P H, Cigudosa J C, Ning Y, Calasanz M J, Iida S, Tagawa S, Michaeli J, Klein B, Dalla-Favera R, Jhanwar S C, et al. Multicolor spectral karyotyping identifies new recurring breakpoints and translocations in multiple myeloma. Blood 1998; 92: 1743–1748
  • Llano E, Pendas A M, Freije J P, Nakano A, Knauper V, Murphy G, Lopez-Otin C. Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res 1999; 59: 2570–2576
  • Fujiwara T, Bandi M, Nitta M, Ivanova E V, Bronson R T, Pellman D. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 2005; 437: 1043–1047
  • Rivat C, Le Floch N, Sabbah M, Teyrol I, Redeuilh G, Bruyneel E, Mareel M, Matrisian L M, Crawford H C, Gespach C, Attoub S. Synergistic cooperation between the AP-1 and LEF-1 transcription factors in activation of the matrilysin promoter by the src oncogene: implications in cellular invasion. FASEB J 2003; 17: 1721–1723
  • Sun Y, Zeng X R, Wenger L, Firestein G S, Cheung H S. P53 down-regulates matrix metalloproteinase-1 by targeting the communications between AP-1 and the basal transcription complex. J Cell Biochem 2004; 92: 258–269
  • Gabison E E, Hoang-Xuan T, Mauviel A, Menashi S. EMMPRIN/CD147, an MMP modulator in cancer, development and tissue repair. Biochimie 2005; 87: 361–368
  • Balbin M, Fueyo A, Tester A M, Pendas A M, Pitiot A S, Astudillo A, Overall C M, Shapiro S D, Lopez-Otin C. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 2003; 35: 252–257
  • Handsley M M, Edwards D R. Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 2005; 115: 849–860
  • Grutzmann R, Luttges J, Sipos B, Ammerpohl O, Dobrowolski F, Alldinger I, Kersting S, Ockert D, Koch R, Kalthoff H, Schakert H K, Jaeger H D, Kloppel G, Pilarsky C. ADAM9 expression in pancreatic cancer is associated with tumour type and is a prognostic factor in ductal adenocarcinoma. Br J Cancer 2004; 90: 1053–1058
  • Ishikawa N, Daigo Y, Yasui W, Inai K, Nishimura H, Tsuchiya E, Kohno N, Nakamura Y. ADAM8 as a novel serological and histochemical marker for lung cancer. Clin Cancer Res 2004; 10: 8363–8370
  • Tanaka Y, Miyamoto S, Suzuki S O, Oki E, Yagi H, Sonoda K, Yamazaki A, Mizushima H, Maehara Y, Mekada E, Nakano H. Clinical significance of heparin-binding epidermal growth factor-like growth factor and a disintegrin and metalloprotease 17 expression in human ovarian cancer. Clin Cancer Res 2005; 11: 4783–4792
  • Blobel C P. ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 2005; 6: 32–43
  • Arribas J, Bech-Serra J J, Santiago-Josefat B. ADAMs, cell migration and cancer. Cancer Metastasis Rev 2006; 25: 57–68
  • Held-Feindt J, Paredes E B, Blomer U, Seidenbecher C, Stark A M, Mehdorn H M, Mentlein R. Matrix-degrading proteases ADAMTS4 and ADAMTS5 (disintegrins and metalloproteinases with thrombospondin motifs 4 and 5) are expressed in human glioblastomas. Int J Cancer 2006; 118: 55–61
  • Porter S, Span P N, Sweep F C, Tjan-Heijnen V C, Pennington C J, Pedersen T X, Johnsen M, Lund L R, Romer J, Edwards D R. ADAMTS8 and ADAMTS15 expression predicts survival in human breast carcinoma. Int J Cancer 2006; 118: 1241–1247
  • Masui T, Hosotani R, Tsuji S, Miyamoto Y, Yasuda S, Ida J, Nakajima S, Kawaguchi M, Kobayashi H, Koizumi M, et al. Expression of METH-1 and METH-2 in pancreatic cancer. Clin Cancer Res 2001; 7: 3437–3443
  • Kuno K, Bannai K, Hakozaki M, Matsushima K, Hirose K. The carboxyl-terminal half region of ADAMTS-1 suppresses both tumorigenicity and experimental tumor metastatic potential. Biochem Biophys Res Commun 2004; 319: 1327–1333
  • Lambert E, Boudot C, Kadri Z, Soula-Rothhut M, Sowa M L, Mayeux P, Hornebeck W, Haye B, Petitfrere E. Tissue inhibitor of metalloproteinases-1 signalling pathway leading to erythroid cell survival. Biochem J 2003; 372: 767–774
  • Lambert E, Dasse E, Haye B, Petitfrere E. TIMPs as multifacial proteins. Crit Rev Oncol Hematol 2004; 49: 187–198
  • Gomis-Ruth F X, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, Yoshida N, Nagase H, Brew K, Bourenkov G P, Bartanik H, Bode W. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP1. Nature 1997; 389: 77–81
  • Fernandez-Catalan C, Bode W, Huber R, Turk D, Calvete J J, Lichte A, Tschesche H, Maskos K. Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J 1998; 17: 5238–5248
  • Bode W, Fernandez-Catalan C, Grams F, Gomis-Ruth F X, Nagase H, Tschesche H, Maskos K. Insights into MMP-TIMP interactions. Ann NY Acad Sci 1999; 878: 73–91
  • Mannello F, Gazzanelli G. Tissue inhibitors of metalloproteinases and programmed cell death: conundrums, controversies and potential implications. Apoptosis 2001; 6: 479–482
  • Wei S, Xie Z, Filenova E, Brew K. Drosophila TIMP is a potent inhibitor of MMPs and TACE: similarities in structure and function to TIMP3. Biochemistry 2003; 42: 12200–12207
  • Lee M H, Maskos K, Knauper V, Dodds P, Murphy G. Mapping and characterization of the functional epitopes of tissue inhibitor of metalloproteinases (TIMP)-3 using TIMP1 as the scaffold: a new frontier in TIMP engineering. Protein Sci 2002; 11: 2493–2503
  • Lee M H, Rapti M, Knauper V, Murphy G. Threonine 98, the pivotal residue of tissue inhibitor of metalloproteinases (TIMP)-1 in metalloproteinase recognition. J Biol Chem 2004; 279: 17562–17569
  • Derry J M, Barnard P J. Physical linkage of the A-raf-1, properdin, synapsin I, and TIMP genes on the human and mouse X chromosomes. Genomics 1992; 12: 632–638
  • Pohar N, Godenschwege T A, Buchner E. Invertebrate tissue inhibitor of metalloproteinase: structure and nested gene organization within the synapsin locus is conserved from Drosophila to human. Genomics 1999; 57: 293–296
  • Rahkonen O P, Koskivirta I M, Oksjoki S M, Jokinen E, Vuorio E I. Characterization of the murine Timp4 gene, localization within intron 5 of the synapsin 2 gene and tissue distribution of the mRNA. Biochim Biophys Acta 2002; 1577: 45–52
  • Yu W P, Brenner S, Venkatesh B. Duplication, degeneration and subfunctionalization of the nested synapsin-Timp genes in Fugu. Trends Genet 2003; 19: 180–183
  • d'Ortho M P, Stanton H, Butler M, Atkinson S J, Murphy G, Hembry R M. MT1-MMP on the cell surface causes focal degradation of gelatin films. FEBS Lett 1998; 421: 159–164
  • Strongin A Y, Collier I, Bannikov G, Marmer B L, Grant G A, Goldberg G I. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 1995; 270: 5331–5338
  • Amour A, Knight C G, Webster A, Slocombe P M, Stephens P E, Knauper V, Docherty A J, Murphy G. The in vitro activity of ADAM-10 is inhibited by TIMP1 and TIMP3. FEBS Lett 2000; 473: 275–279
  • Kashiwagi M, Tortorella M, Nagase H, Brew K. TIMP3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem 2001; 276: 12501–12504
  • Yu W H, Yu S, Meng Q, Brew K, Woessner J F, Jr. TIMP3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem 2000; 275: 31226–31232
  • Weber B H, Vogt G, Pruett R C, Stohr H, Felbor U. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nat Genet 1994; 8: 352–356
  • Langton K P, McKie N, Curtis A, Goodship J A, Bond P M, Barker M D, Clarke M. A novel tissue inhibitor of metalloproteinases-3 mutation reveals a common molecular phenotype in Sorsby's fundus dystrophy. J Biol Chem 2000; 275: 27027–27031
  • Yeow K M, Kishnani N S, Hutton M, Hawkes S P, Murphy G, Edwards D R. Sorsby's fundus dystrophy tissue inhibitor of metalloproteinases-3 (TIMP3) mutants have unimpaired matrix metalloproteinase inhibitory activities, but affect cell adhesion to the extracellular matrix. Matrix Biol 2002; 21: 75–88
  • Nuttall R K, Sampieri C L, Pennington C J, Gill S E, Schultz G A, Edwards D R. Expression analysis of the entire MMP and TIMP gene families during mouse tissue development. FEBS Lett 2004; 563: 129–134
  • Bachman K E, Herman J G, Corn P G, Merlo A, Costello J F, Cavenee W K, Baylin S B, Graff J R. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res 1999; 59: 798–802
  • Ivanova T, Vinokurova S, Petrenko A, Eshilev E, Solovyova N, Kisseljov F, Kisseljova N. Frequent hypermethylation of 5′ flanking region of TIMP2 gene in cervical cancer. Int J Cancer 2004; 108: 882–886
  • Dammann R, Strunnikova M, Schagdarsurengin U, Rastetter M, Papritz M, Hattenhorst U E, Hofmann H S, Silber R E, Burdach S, Hansen G. CpG island methylation and expression of tumour-associated genes in lung carcinoma. Eur J Cancer 2005; 41: 1223–1236
  • Roten L, Nemoto S, Simsic J, Coker M L, Rao V, Baicu S, Defreyte G, Soloway P J, Zile M R, Spinale F G. Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP1) on left ventricular geometry and function in mice. J Mol Cell Cardiol 2000; 32: 109–120
  • Creemers E E, Davis J N, Parkhurst A M, Leenders P, Dowdy K B, Hapke E, Hauet A M, Escobar P G, Cleutjens J P, Smits J F, Daemen M J, Zile M R, Spinale F G. Deficiency of TIMP1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2003; 284: H364–H371
  • Ikonomidis J S, Hendrick J W, Parkhurst A M, Herron A R, Escobar P G, Dowdy K B, Stroud R E, Hapke E, Zile M R, Spinale F G. Accelerated LV remodeling after myocardial infarction in TIMP1-deficient mice: effects of exogenous MMP inhibition. Am J Physiol Heart Circ Physiol 2005; 288: H149–158
  • Kassiri Z, Khokha R. Myocardial extra-cellular matrix and its regulation by metalloproteinases and their inhibitors. Thromb Haemost 2005; 93: 212–219
  • Koskivirta I, Cruz-Munoz W, Khokha R, Vuorio E. Characterization of Timp4 deficient mice, Manuscript in preparation
  • Cruz-Munoz W, Sanchez O H, Di Grappa M, English J L, Hill R P, Khokha R. Enhanced metastatic dissemination to multiple organs by melanoma and lymphoma cells in timp3-/-mice. Oncogene 2006; 25: 6489–6496
  • Hammani K, Blakis A, Morsette D, Bowcock A M, Schmutte C, Henriet P, DeClerck Y A. Structure and characterization of the human tissue inhibitor of metalloproteinases-2 gene. J Biol Chem 1996; 271: 25498–25505
  • Sun Y, Hegamyer G, Kim H, Sithanandam K, Li H, Watts R, Colburn N H. Molecular cloning of mouse tissue inhibitor of metalloproteinases-3 and its promoter. Specific lack of expression in neoplastic JB6 cells may reflect altered gene methylation. J Biol Chem 1995; 270: 19312–19319
  • Young D A, Phillips B W, Lundy C, Nuttall R K, Hogan A, Schultz G A, Leco K J, Clark I M, Edwards D R. Identification of an initiator-like element essential for the expression of the tissue inhibitor of metalloproteinases-4 (Timp4) gene. Biochem J 2002; 364: 89–99
  • Smookler D S, Mohammed F F, Kassiri Z, Duncan G S, Mak T W, Khokha R. Tissue inhibitor of metalloproteinase 3 regulates TNF-dependent systemic inflammation. J Immunol 2006; 176: 721–725
  • Troeberg L, Tanaka M, Wait R, Shi Y E, Brew K, Nagase H. E. coli expression of TIMP4 and comparative kinetic studies with TIMP1 and TIMP2: insights into the interactions of TIMPs and matrix metalloproteinase 2 (gelatinase A). Biochemistry 2002; 41: 15025–15035
  • Ree A H, Florenes V A, Berg J P, Maelandsmo G M, Nesland J M, Fodstad O. High levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP1 and TIMP2) in primary breast carcinomas are associated with development of distant metastases. Clin Cancer Res 1997; 3: 1623–1628
  • Airola K, Karonen T, Vaalamo M, Lehti K, Lohi J, Kariniemi A L, Keski-Oja J, Saarialho-Kere U K. Expression of collagenases-1 and-3 and their inhibitors TIMP1 and-3 correlates with the level of invasion in malignant melanomas. Br J Cancer 1999; 80: 733–743
  • Thomas P, Khokha R, Shepherd F A, Feld R, Tsao M S. Differential expression of matrix metalloproteinases and their inhibitors in non-small cell lung cancer. J Pathol 2000; 190: 150–156
  • Cho K R, Vogelstein B. Genetic alterations in the adenoma–carcinoma sequence. Cancer 1992; 70: 1727–1731
  • Michor F, Iwasa Y, Vogelstein B, Lengauer C, Nowak M A. Can chromosomal instability initiate tumorigenesis?. Semin Cancer Biol 2005; 15: 43–49
  • Masson R, Lefebvre O, Noel A, Fahime M E, Chenard M P, Wendling C, Kebers F, LeMeur M, Dierich A, Foidart J M, Bassett P, Rio M C. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 1998; 140: 1535–1541
  • Wilson C L, Heppner K J, Labosky P A, Hogan B L, Matrisian L M. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci USA 1997; 94: 1402–1407
  • Nigro J M, Aldape K D, Hess S M, Tlsty T D. Cellular adhesion regulates p53 protein levels in primary human keratinocytes. Cancer Res 1997; 57: 3635–3639
  • Tlsty T D. Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Curr Opin Cell Biol 1998; 10: 647–653
  • Noe V, Fingleton B, Jacobs K, Crawford H C, Vermeulen S, Steelant W, Bruyneel E, Matrisian L M, Mareel M. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 2001; 114: 111–118
  • Sternlicht M D, Lochter A, Sympson C J, Huey B, Rougier J P, Gray J W, Pinkel D, Bissell M J, Werb Z. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 1999; 98: 137–146
  • Khokha R, Waterhouse P, Yagel S, Lala P K, Overall C M, Norton G, Denhardt D T. Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells. Science 1989; 243: 947–950
  • Khokha R, Waterhouse P, Lala P, Zimmer M, Denhardt D T. Increased proteinase expression during tumor progression of cell lines down-modulated for TIMP levels: a new transformation paradigm? [corrected]. J Cancer Res Clin Oncol 1991; 117: 333–338
  • Rhee J S, Diaz R, Korets L, Hodgson J G, Coussens L M. TIMP1 alters susceptibility to carcinogenesis. Cancer Res 2004; 64: 952–961
  • Orr F W, Kostenuik P, Sanchez-Sweatman O H, Singh G. Mechanisms involved in the metastasis of cancer to bone. Breast Cancer Res Treat 1993; 25: 151–163
  • Edwards D R, Waterhouse P, Holman M L, Denhardt D T. A growth-responsive gene (16C8) in normal mouse fibroblasts homologous to a human collagenase inhibitor with erythroid-potentiating activity: evidence for inducible and constitutive transcripts. Nucleic Acids Res 1986; 14: 8863–8878
  • Zhao W Q, Li H, Yamashita K, Guo X K, Hoshino T, Yoshida S, Shinya T, Hayakawa T. Cell cycle-associated accumulation of tissue inhibitor of metalloproteinases-1 (TIMP1) in the nuclei of human gingival fibroblasts. J Cell Sci 1998; 111: 1147–1153
  • Martin D C, Ruther U, Sanchez-Sweatman O H, Orr F W, Khokha R. Inhibition of SV40 T antigen-induced hepatocellular carcinoma in TIMP1 transgenic mice. Oncogene 1996; 13: 569–576
  • Buck T B, Yoshiji H, Harris S R, Bunce O R, Thorgeirsson U P. The effects of sustained elevated levels of circulating tissue inhibitor of metalloproteinases-1 on the development of breast cancer in mice. Ann N Y Acad Sci 1999; 878: 732–735
  • Khokha R. Suppression of the tumorigenic and metastatic abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1. J Natl Cancer Inst 1994; 86: 299–304
  • Wang M, Liu Y E, Greene J, Sheng S, Fuchs A, Rosen E M, Shi Y E. Inhibition of tumor growth and metastasis of human breast cancer cells transfected with tissue inhibitor of metalloproteinase 4. Oncogene 1997; 14: 2767–2774
  • Vergani V, Garofalo A, Bani M R, Borsotti P, Parker M P, Drudis T, Mazzarol G, Viale G, Giavazzi R, Stetler-Stevenson W G, Taraboletti G. Inhibition of matrix metalloproteinases by over-expression of tissue inhibitor of metalloproteinase-2 inhibits the growth of experimental hemangiomas. Int J Cancer 2001; 91: 241–247
  • Spurbeck W W, Ng C Y, Strom T S, Vanin E F, Davidoff A M. Enforced expression of tissue inhibitor of matrix metalloproteinase-3 affects functional capillary morphogenesis and inhibits tumor growth in a murine tumor model. Blood 2002; 100: 3361–3368
  • Nakopoulou L, Katsarou S, Giannopoulou I, Alexandrou P, Tsirmpa I, Panayotopoulou E, Mavrommatis J, Keramopoulos A. Correlation of tissue inhibitor of metalloproteinase-2 with proliferative activity and patients' survival in breast cancer. Mod Pathol 2002; 15: 26–34
  • Nakopoulou L, Giannopoulou I, Lazaris A, Alexandrou P, Tsirmpa I, Markaki S, Panayotopoulou E, Keramopoulos A. The favorable prognostic impact of tissue inhibitor of matrix metalloproteinases-1 protein overexpression in breast cancer cells. APMIS 2003; 111: 1027–1036
  • Miyazaki T, Kato H, Nakajima M, Faried A, Takita J, Sohda M, Fukai Y, Yamaguchi S, Masuda N, Manda R, et al. An immunohistochemical study of TIMP3 expression in oesophageal squamous cell carcinoma. Br J Cancer 2004; 91: 1556–1560
  • Gakiopoulou H, Nakopoulou L, Siatelis A, Mavrommatis I, Panayotopoulou E G, Tsirmpa I, Stravodimos C, Giannopoulos A. Tissue inhibitor of metalloproteinase-2 as a multifunctional molecule of which the expression is associated with adverse prognosis of patients with urothelial bladder carcinomas. Clin Cancer Res 2003; 9: 5573–5581
  • Karavasilis V, Malamou-Mitsi V, Briasoulis E, Tsanou E, Kitsou E, Kalofonos H, Fountzilas G, Fotsis T, Pavlidis N. Matrix metalloproteinases in carcinoma of unknown primary. Cancer 2005; 104: 2282–2287
  • Ruokolainen H, Paakko P, Turpeenniemi-Hujanen T. Tissue inhibitor of matrix metalloproteinase-1 is prognostic in head and neck squamous cell carcinoma: comparison of the circulating and tissue immunoreactive protein. Clin Cancer Res 2005; 11: 3257–3264
  • Hayakawa T, Yamashita K, Kishi J, Harigaya K. Tissue inhibitor of metalloproteinases from human bone marrow stromal cell line KM 102 has erythroid-potentiating activity, suggesting its possibly bifunctional role in the hematopoietic microenvironment. FEBS Lett 1990; 268: 125–128
  • Murate T, Yamashita K, Ohashi H, Kagami Y, Tsushita K, Kinoshita T, Hotta T, Saito H, Yoshida S, Mori K J, et al. Erythroid potentiating activity of tissue inhibitor of metalloproteinases on the differentiation of erythropoietin-responsive mouse erythroleukemia cell line, ELM-I-1–3, is closely related to its cell growth potentiating activity. Exp Hematol 1993; 21: 169–176
  • Hayakawa T, Yamashita K, Ohuchi E, Shinagawa A. Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP2). J Cell Sci 1994; 107: 2373–2379, (Pt 9)
  • Chesler L, Golde D W, Bersch N, Johnson M D. Metalloproteinase inhibition and erythroid potentiation are independent activities of tissue inhibitor of metalloproteinases-1. Blood 1995; 86: 4506–4515
  • Forough R, Koyama N, Hasenstab D, Lea H, Clowes M, Nikkari S T, Clowes A W. Overexpression of tissue inhibitor of matrix metalloproteinase-1 inhibits vascular smooth muscle cell functions in vitro and in vivo. Circ Res 1996; 79: 812–820
  • Saika S, Kawashima Y, Okada Y, Tanaka S I, Yamanaka O, Ohnishi Y, Ooshima A. Recombinant TIMP1 and-2 enhance the proliferation of rabbit corneal epithelial cells in vitro and the spreading of rabbit corneal epithelium in situ. Curr Eye Res 1998; 17: 47–52
  • Fata J E, Leco K J, Moorehead R A, Martin D C, Khokha R. Timp1 is important for epithelial proliferation and branching morphogenesis during mouse mammary development. Dev Biol 1999; 211: 238–254
  • Luparello C, Avanzato G, Carella C, Pucci-Minafra I. Tissue inhibitor of metalloprotease (TIMP)-1 and proliferative behaviour of clonal breast cancer cells. Breast Cancer Res Treat 1999; 54: 235–244
  • Martin D C, Fowlkes J L, Babic B, Khokha R. Insulin-like growth factor II signaling in neoplastic proliferation is blocked by transgenic expression of the metalloproteinase inhibitor TIMP1. J Cell Biol 1999; 146: 881–892
  • Petitfrere E, Kadri Z, Boudot C, Sowa M L, Mayeux P, Haye B, Billat C. Involvement of the p38 mitogen-activated protein kinase pathway in tissue inhibitor of metalloproteinases-1-induced erythroid differentiation. FEBS Lett 2000; 485: 117–121
  • Wang T, Yamashita K, Iwata K, Hayakawa T. Both tissue inhibitors of metalloproteinases-1 (TIMP1) and TIMP2 activate Ras but through different pathways. Biochem Biophys Res Commun 2002; 296: 201–205
  • van der Laan W H, Quax P H, Seemayer C A, Huisman L G, Pieterman E J, Grimbergen J M, Verheijen J H, Breedveld F C, Gay R E, Gay S, Huizinga T W, Pap I. Cartilage degradation and invasion by rheumatoid synovial fibroblasts is inhibited by gene transfer of TIMP1 and TIMP3. Gene Ther 2003; 10: 234–242
  • Akahane T, Akahane M, Shah A, Thorgeirsson U P. TIMP1 stimulates proliferation of human aortic smooth muscle cells and Ras effector pathways. Biochem Biophys Res Commun 2004; 324: 440–445
  • Djafarzadeh R, Mojaat A, Vicente A B, von Luttichau I, Nelson P J. Exogenously added GPI-anchored tissue inhibitor of matrix metalloproteinase-1 (TIMP1) displays enhanced and novel biological activities. Biol Chem 2004; 385: 655–663
  • Haviernik P, Lahoda C, Bradley H L, Hawley T S, Ramezani A, Hawley R G, Stetler-Stevenson M, Stetler-Stevenson W G, Bunting K D. Tissue inhibitor of matrix metalloproteinase-1 overexpression in M1 myeloblasts impairs IL-6-induced differentiation. Oncogene 2004; 23: 9212–9219
  • Porter J F, Shen S, Denhardt D T. Tissue inhibitor of metalloproteinase-1 stimulates proliferation of human cancer cells by inhibiting a metalloproteinase. Br J Cancer 2004; 90: 463–470
  • Lovelock J D, Baker A H, Gao F, Dong J F, Bergeron A L, McPheat W, Sivasubramanian N, Mann D L. Heterogeneous effects of tissue inhibitors of matrix metalloproteinases on cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2005; 288: H461–468
  • Mohammed F F, Pennington C J, Kassiri Z, Rubin J S, Soloway P D, Ruther U, Edwards D R, Khokha R. Metalloproteinase inhibitor TIMP1 affects hepatocyte cell cycle via HGF activation in murine liver regeneration. Hepatology 2005; 41: 857–867
  • Nishimura K, Yamashita K, Kato Y, Iwata T, Iwata K, Nishikawa T, Goto S, Hayakawa T. Inhibitory activity on matrix metalloproteinases and cell-proliferating activity of tissue inhibitor of metalloproteinases-1 (TIMP1)-contrastive difference between human and bovine TIMP1s on mouse cell proliferation. Growth Factors 2005; 23: 135–142
  • Murphy A N, Unsworth E J, Stetler-Stevenson W G. Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation. J Cell Physiol 1993; 157: 351–358
  • Corcoran M L, Stetler-Stevenson W G. Tissue inhibitor of metalloproteinase-2 stimulates fibroblast proliferation via a cAMP-dependent mechanism. J Biol Chem 1995; 270: 13453–13459
  • Baker A H, Zaltsman A B, George S J, Newby A C. Divergent effects of tissue inhibitor of metalloproteinase-1,-2, or-3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP3 promotes apoptosis. J Clin Invest 1998; 101: 1478–1487
  • Valente P, Fassina G, Melchiori A, Masiello L, Cilli M, Vacca A, Onisto M, Santi L, Stetler-Stevenson W G, Albini A. TIMP2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int J Cancer 1998; 75: 246–253
  • Wingfield P T, Sax J K, Stahl S J, Kaufman J, Palmer I, Chung V, Corcoran M L, Kleiner D E, Stetler-Stevenson W G. Biophysical and functional characterization of full-length, recombinant human tissue inhibitor of metalloproteinases-2 (TIMP2) produced in Escherichia coli. Comparison of wild type and amino-terminal alanine appended variant with implications for the mechanism of TIMP functions. J Biol Chem 1999; 274: 21362–21368
  • Hoegy S E, Oh H R, Corcoran M L, Stetler-Stevenson W G. Tissue inhibitor of metalloproteinases-2 (TIMP2) suppresses TKR-growth factor signaling independent of metalloproteinase inhibition. J Biol Chem 2001; 276: 3203–3214
  • Fernandez C A, Butterfield C, Jackson G, Moses M A. Structural and functional uncoupling of the enzymatic and angiogenic inhibitory activities of tissue inhibitor of metalloproteinase-2 (TIMP2): loop 6 is a novel angiogenesis inhibitor. J Biol Chem 2003; 278: 40989–40995
  • Seo D W, Li H, Guedez L, Wingfield P T, Diaz T, Salloum R, Wei B Y, Stetler-Stevenson W G. TIMP2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 2003; 114: 171–180
  • Lizarraga F, Maldonado V, Melendez-Zajgla J. Tissue inhibitor of metalloproteinases-2 growth-stimulatory activity is mediated by nuclear factor-kappa B in A549 lung epithelial cells. Int J Biochem Cell Biol 2004; 36: 1655–1663
  • Perez-Martinez L, Jaworski D M. Tissue inhibitor of metalloproteinase-2 promotes neuronal differentiation by acting as an anti-mitogenic signal. J Neurosci 2005; 25: 4917–4929
  • Yang T T, Hawkes S P. Role of the 21-kDa protein TIMP3 in oncogenic transformation of cultured chicken embryo fibroblasts. Proc Natl Acad Sci USA 1992; 89: 10676–10680
  • Castagnino P, Soriano J V, Montesano R, Bottaro D P. Induction of tissue inhibitor of metalloproteinases-3 is a delayed early cellular response to hepatocyte growth factor. Oncogene 1998; 17: 481–492
  • Celiker M Y, Wang M, Atsidaftos E, Liu X, Liu Y E, Jiang Y, Valderrama E, Goldberg I D, Shi Y E. Inhibition of Wilms' tumor growth by intramuscular administration of tissue inhibitor of metalloproteinases-4 plasmid DNA. Oncogene 2001; 20: 4337–4343
  • Mohammed F F, Khokha R. Thinking outside the cell: proteases regulate hepatocyte division. Trends Cell Biol 2005; 15: 555–563
  • Montgomery A M, Mueller B M, Reisfeld R A, Taylor S M, DeClerck Y A. Effect of tissue inhibitor of the matrix metalloproteinases-2 expression on the growth and spontaneous metastasis of a human melanoma cell line. Cancer Res 1994; 54: 5467–5473
  • Henriet P, Zhong Z D, Brooks P C, Weinberg K I, DeClerck Y A. Contact with fibrillar collagen inhibits melanoma cell proliferation by up-regulating p27KIP1. Proc Natl Acad Sci USA 2000; 97: 10026–10031
  • Bian J, Wang Y, Smith M R, Kim H, Jacobs C, Jackman J, Kung H F, Colburn N H, Sun Y. Suppression of in vivo tumor growth and induction of suspension cell death by tissue inhibitor of metalloproteinases (TIMP)-3. Carcinogenesis 1996; 17: 1805–1811
  • Tran P L, Vigneron J P, Pericat D, Dubois S, Cazals D, Hervy M, DeClerck Y A, Degott C, Auclair C. Gene therapy for hepatocellular carcinoma using non-viral vectors composed of bis guanidinium-tren-cholesterol and plasmids encoding the tissue inhibitors of metalloproteinases TIMP2 and TIMP3. Cancer Gene Ther 2003; 10: 435–444
  • Smith M R, Kung H, Durum S K, Colburn N H, Sun Y. TIMP3 induces cell death by stabilizing TNF-alpha receptors on the surface of human colon carcinoma cells. Cytokine 1997; 9: 770–780
  • Stetler-Stevenson W G, Bersch N, Golde D W. Tissue inhibitor of metalloproteinase-2 (TIMP2) has erythroid-potentiating activity. FEBS Lett 1992; 296: 231–234
  • Hayakawa T, Yamashita K, Tanzawa K, Uchijima E, Iwata K. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett 1992; 298: 29–32
  • Nemeth J A, Goolsby C L. TIMP2, a growth-stimulatory protein from SV40-transformed human fibroblasts. Exp Cell Res 1993; 207: 376–382
  • Yamashita K, Suzuki M, Iwata H, Koike T, Hamaguchi M, Shinagawa A, Noguchi T, Hayakawa T. Tyrosine phosphorylation is crucial for growth signaling by tissue inhibitors of metalloproteinases (TIMP1 and TIMP2). FEBS Lett 1996; 396: 103–107
  • Mori M, Mimori K, Sadanaga N, Inoue H, Tanaka Y, Mafune K, Ueo H, Barnard G F. Prognostic impact of tissue inhibitor of matrix metalloproteinase-1 in esophageal carcinoma. Int J Cancer 2000; 88: 575–578
  • Remacle A, McCarthy K, Noel A, Maguire T, McDermott E, O'Higgins N, Foidart J M, Duffy M J. High levels of TIMP2 correlate with adverse prognosis in breast cancer. Int J Cancer 2000; 89: 118–121
  • Yano A, Nakamoto T, Hashimoto K, Usui T. Localization and expression of tissue inhibitor of metalloproteinase-1 in human urothelial cancer. J Urol 2002; 167: 729–734
  • Tunuguntla R, Ripley D, Sang Q X, Chegini N. Expression of matrix metalloproteinase-26 and tissue inhibitors of metalloproteinases TIMP3 and-4 in benign endometrium and endometrial cancer. Gynecol Oncol 2003; 89: 453–459
  • Guedez L, McMarlin A J, Kingma D W, Bennett T A, Stetler-Stevenson M, Stetler-Stevenson W G. Tissue inhibitor of metalloproteinase-1 alters the tumorigenicity of Burkitt's lymphoma via divergent effects on tumor growth and angiogenesis. Am J Pathol 2001; 158: 1207–1215
  • Qi J H, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, Baker A, Anand-Apte B. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 2003; 9: 407–415
  • Reddig P J, Juliano R L. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev 2005; 24: 425–439
  • McKenzie S, Kyprianou N. Apoptosis evasion: the role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem 2006; 97: 18–32
  • Alexander C M, Howard E W, Bissell M J, Werb Z. Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene. J Cell Biol 1996; 135: 1669–1677
  • Guedez L, Stetler-Stevenson W G, Wolff L, Wang J, Fukushima P, Mansoor A, Stetler-Stevenson M. In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest 1998; 102: 2002–2010
  • Li G, Fridman R, Kim H R. Tissue inhibitor of metalloproteinase-1 inhibits apoptosis of human breast epithelial cells. Cancer Res 1999; 59: 6267–6275
  • Bloomston M, Shafii A, Zervos E E, Rosemurgy A S. TIMP1 overexpression in pancreatic cancer attenuates tumor growth, decreases implantation and metastasis, and inhibits angiogenesis. J Surg Res 2002; 102: 39–44
  • Lin H, Chen X, Wang J, Yu Z. Inhibition of apoptosis in rat mesangial cells by tissue inhibitor of metalloproteinase-1. Kidney Int 2002; 62: 60–69
  • Murphy F R, Issa R, Zhou X, Ratnarajah S, Nagase H, Arthur M J, Benyon C, Iredale J P. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J Biol Chem 2002; 277: 11069–11076
  • Oelmann E, Herbst H, Zuhlsdorf M, Albrecht O, Nolte A, Schmitmann C, Manzke O, Diehl V, Stein H, Berdel W E. Tissue inhibitor of metalloproteinases 1 is an autocrine and paracrine survival factor, with additional immune-regulatory functions, expressed by Hodgkin/Reed-Sternberg cells. Blood 2002; 99: 258–267
  • Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, Yanase K, Namisaki T, Imazu H, Fukui H. Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse. Hepatology 2002; 36: 850–860
  • Lee S J, Yoo H J, Bae Y S, Kim H J, Lee S T. TIMP1 inhibits apoptosis in breast carcinoma cells via a pathway involving pertussis toxin-sensitive G protein and c-Src. Biochem Biophys Res Commun 2003; 312: 1196–1201
  • Liu X W, Bernardo M M, Fridman R, Kim H R. Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells against intrinsic apoptotic cell death via the focal adhesion kinase/phosphatidylinositol 3-kinase and MAPK signaling pathway. J Biol Chem 2003; 278: 40364–40372
  • Boulday G, Fitau J, Coupel S, Soulillou J P, Charreau B. Exogenous tissue inhibitor of metalloproteinase-1 promotes endothelial cell survival through activation of the phosphatidylinositol 3-kinase/Akt pathway. Ann N Y Acad Sci 2004; 1030: 28–36
  • Chromek M, Tullus K, Lundahl J, Brauner A. Tissue inhibitor of metalloproteinase 1 activates normal human granulocytes, protects them from apoptosis, and blocks their transmigration during inflammation. Infect Immun 2004; 72: 82–88
  • Murphy F, Waung J, Collins J, Arthur M J, Nagase H, Mann D, Benyon R C, Iredale J P. N-Cadherin cleavage during activated hepatic stellate cell apoptosis is inhibited by tissue inhibitor of metalloproteinase-1. Comp Hepatol 2004; 3(Suppl 1)S8
  • Vorotnikova E, Tries M, Braunhut S. Retinoids and TIMP1 prevent radiation-induced apoptosis of capillary endothelial cells. Radiat Res 2004; 161: 174–184
  • Liu X W, Taube M E, Jung K K, Dong Z, Lee Y J, Roshy S, Sloane B F, Fridman R, Kim H R. Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells from extrinsic cell death: a potential oncogenic activity of tissue inhibitor of metalloproteinase-1. Cancer Res 2005; 65: 898–906
  • Lim M S, Guedez L, Stetler-Stevenson W G, Stetler-Stevenson M. Tissue inhibitor of metalloproteinase-2 induces apoptosis in human T lymphocytes. Ann N Y Acad Sci 1999; 878: 522–523
  • Ahonen M, Baker A H, Kahari V M. Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res 1998; 58: 2310–2315
  • Baker A H, George S J, Zaltsman A B, Murphy G, Newby A C. Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP3. Br J Cancer 1999; 79: 1347–1355
  • Bond M, Murphy G, Bennett M R, Amour A, Knauper V, Newby A C, Baker A H. Localization of the death domain of tissue inhibitor of metalloproteinase-3 to the N terminus. Metalloproteinase inhibition is associated with proapoptotic activity. J Biol Chem 2000; 275: 41358–41363
  • George S J, Lloyd C T, Angelini G D, Newby A C, Baker A H. Inhibition of late vein graft neointima formation in human and porcine models by adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-3. Circulation 2000; 101: 296–304
  • Fata J E, Leco K J, Voura E B, Yu H Y, Waterhouse P, Murphy G, Moorehead R A, Khokha R. Accelerated apoptosis in the Timp3-deficient mammary gland. J Clin Invest 2001; 108: 831–841
  • Bond M, Murphy G, Bennett M R, Newby A C, Baker A H. Tissue inhibitor of metalloproteinase-3 induces a Fas-associated death domain-dependent type II apoptotic pathway. J Biol Chem 2002; 277: 13787–13795
  • Majid M A, Smith V A, Easty D L, Baker A H, Newby A C. Adenovirus mediated gene delivery of tissue inhibitor of metalloproteinases-3 induces death in retinal pigment epithelial cells. Br J Ophthalmol 2002; 86: 97–101
  • Ahonen M, Poukkula M, Baker A H, Kashiwagi M, Nagase H, Eriksson J E, Kahari V M. Tissue inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors. Oncogene 2003; 22: 2121–2134
  • Drynda A, Quax P H, Neumann M, van der Laan W H, Pap G, Drynda S, Meinecke I, Kekow J, Neumann W, Huizinga T W, Naumann M, Konig W, Pap T. Gene transfer of tissue inhibitor of metalloproteinases-3 reverses the inhibitory effects of TNF-alpha on Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. J Immunol 2005; 174: 6524–6531
  • Jiang Y, Wang M, Celiker M Y, Liu Y E, Sang Q X, Goldberg I D, Shi Y E. Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Res 2001; 61: 2365–2370
  • Tummalapalli C M, Heath B J, Tyagi S C. Tissue inhibitor of metalloproteinase-4 instigates apoptosis in transformed cardiac fibroblasts. J Cell Biochem 2001; 80: 512–521
  • Jung K K, Liu X W, Chirco R, Fridman R, Kim H R. Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. EMBO J 2006; 25: 3934–3942
  • Ahonen M, Ala-Aho R, Baker A H, George S J, Grenman R, Saarialho-Kere U, Kahari V M. Antitumor activity and bystander effect of adenovirally delivered tissue inhibitor of metalloproteinases-3. Mol Ther 2002; 5: 705–715
  • Lam P, Sian Lim K, Mei Wang S, Hui K M. A microarray study to characterize the molecular mechanism of TIMP3-mediated tumor rejection. Mol Ther 2005; 12: 144–152
  • Brand K, Baker A H, Perez-Canto A, Possling A, Sacharjat M, Geheeb M, Arnold W. Treatment of colorectal liver metastases by adenoviral transfer of tissue inhibitor of metalloproteinases-2 into the liver tissue. Cancer Res 2000; 60: 5723–5730
  • Lombard M A, Wallace T L, Kubicek M F, Petzold G L, Mitchell M A, Hendges S K, Wilks J W. Synthetic matrix metalloproteinase inhibitors and tissue inhibitor of metalloproteinase (TIMP)-2, but not TIMP1, inhibit shedding of tumor necrosis factor-alpha receptors in a human colon adenocarcinoma (Colo 205) cell line. Cancer Res 1998; 58: 4001–4007
  • Mitsiades N, Poulaki V, Kotoula V, Leone A, Tsokos M. Fas ligand is present in tumors of the Ewing's sarcoma family and is cleaved into a soluble form by a metalloproteinase. Am J Pathol 1998; 153: 1947–1956
  • Guo W, Giancotti F G. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 2004; 5: 816–826
  • Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31
  • Pepper M S, Montesano R, Mandriota S J, Orci L, Vassalli J D. Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein 1996; 49: 138–162
  • Ikenaka Y, Yoshiji H, Kuriyama S, Yoshii J, Noguchi R, Tsujinoue H, Yanase K, Namisaki T, Imazu H, Masaki T, Fukui H. Tissue inhibitor of metalloproteinases-1 (TIMP1) inhibits tumor growth and angiogenesis in the TIMP1 transgenic mouse model. Int J Cancer 2003; 105: 340–346
  • Zacchigna S, Zentilin L, Morini M, Dell'Eva R, Noonan D M, Albini A, Giacca M. AAV-mediated gene transfer of tissue inhibitor of metalloproteinases-1 inhibits vascular tumor growth and angiogenesis in vivo. Cancer Gene Ther 2004; 11: 73–80
  • Johnson M D, Kim H R, Chesler L, Tsao-Wu G, Bouck N, Polverini P J. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J Cell Physiol 1994; 160: 194–202
  • Fernandez H A, Kallenbach K, Seghezzi G, Grossi E, Colvin S, Schneider R, Mignatti P, Galloway A. Inhibition of endothelial cell migration by gene transfer of tissue inhibitor of metalloproteinases-1. J Surg Res 1999; 82: 156–162
  • Reed M J, Koike T, Sadoun E, Sage E H, Puolakkainen P. Inhibition of TIMP1 enhances angiogenesis in vivo and cell migration in vitro. Microvasc Res 2003; 65: 9–17
  • Yoshiji H, Harris S R, Raso E, Gomez D E, Lindsay C K, Shibuya M, Sinha C C, Thorgeirsson U P. Mammary carcinoma cells over-expressing tissue inhibitor of metalloproteinases-1 show enhanced vascular endothelial growth factor expression. Int J Cancer 1998; 75: 81–87
  • Martin D C, Sanchez-Sweatman O H, Ho A T, Inderdeo D S, Tsao M S, Khokha R. Transgenic TIMP1 inhibits simian virus 40 T antigen-induced hepatocarcinogenesis by impairment of hepatocellular proliferation and tumor angiogenesis. Lab Invest 1999; 79: 225–234
  • Akahane T, Akahane M, Shah A, Connor C M, Thorgeirsson U P. TIMP1 inhibits microvascular endothelial cell migration by MMP-dependent and MMP-independent mechanisms. Exp Cell Res 2004; 301: 158–167
  • Oh J, Seo D W, Diaz T, Wei B, Ward Y, Ray J M, Morioka Y, Shi S, Kitayama H, Takahashi C, Noda M, Stetler-Stevenson W G. Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Res 2004; 64: 9062–9069
  • Plaisier M, Kapiteijn K, Koolwijk P, Fijten C, Hanemaaijer R, Grimbergen J M, Mulder-Stapel A, Quax P H, Helmerhorst F M, van Hinsbergh V W. Involvement of membrane-type matrix metalloproteinases (MT-MMPs) in capillary tube formation by human endometrial microvascular endothelial cells: role of MT3-MMP. J Clin Endocrinol Metab 2004; 89: 5828–5836
  • Anand-Apte B, Pepper M S, Voest E, Montesano R, Olsen B, Murphy G, Apte S S, Zetter B. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest Ophthalmol Vis Sci 1997; 38: 817–823
  • Hiraoka N, Allen E, Apel I J, Gyetko M R, Weiss S J. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 1998; 95: 365–377
  • Hajitou A, Sounni N E, Devy L. Down-regulation of vascular endothelial growth factor by tissue inhibitor of metalloproteinase-2: effect on in vivo mammary tumor growth and angiogenesis. Cancer Res 2001; 61: 3450–3457
  • Li H, Lindenmeyer F, Grenet C, Opolon P, Menashi S, Soria C, Yeh P, Perricaudet M, Lu H. AdTIMP2 inhibits tumor growth, angiogenesis, and metastasis, and prolongs survival in mice. Hum Gene Ther 2001; 12: 515–526
  • Lafleur M A, Handsley M M, Knauper V, Murphy G, Edwards D R. Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J Cell Sci 2002; 115: 3427–3438
  • Bayless K J, Davis G E. Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem Biophys Res Commun 2003; 312: 903–913
  • Feldman A L, Stetler-Stevenson W G, Costouros N G, Knezevic V, Baibakov G, Alexander H R, Jr., Lorang D, Hewitt S M, Seo D W, Miller M S, O'Connor S, Libutti S K. Modulation of tumor-host interactions, angiogenesis, and tumor growth by tissue inhibitor of metalloproteinase 2 via a novel mechanism. Cancer Res 2004; 64: 4481–4486
  • Sounni N E, Roghi C, Chabottaux V, Janssen M, Munaut C, Maquoi E, Galvez B G, Gilles C, Frankenne F, Murphy G, et al. Up-regulation of vascular endothelial growth factor-A by active membrane-type 1 matrix metalloproteinase through activation of Src-tyrosine kinases. J Biol Chem 2004; 279: 13564–13574
  • Blavier L, Lazaryev A, Dorey F, Shackleford G M, DeClerck Y A. Matrix metalloproteinases play an active role in Wnt1-induced mammary tumorigenesis. Cancer Res 2006; 66: 2691–2699
  • Saunders W B, Bohnsack B L, Faske J B, Anthis N J, Bayless K J, Hirschi K K, Davis G E. Coregulation of vascular tube stabilization by endothelial cell TIMP2 and pericyte TIMP3. J Cell Biol 2006; 175: 179–191
  • Collen A, Hanemaaijer R, Lupu F, Quax P H, van Lent N, Grimbergen J, Peters E, Koolwijk P, van Hinsbergh V W. Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix. Blood 2003; 101: 1810–1817
  • Ma D H, Chen J I, Zhang F, Hwang D G, Chen J K. Inhibition of fibroblast-induced angiogenic phenotype of cultured endothelial cells by the overexpression of tissue inhibitor of metalloproteinase (TIMP)-3. J Biomed Sci 2003; 10: 526–534
  • Cruz-Munoz W, Kim I, Khokha R. TIMP3 deficiency in the host, but not in the tumor, enhances tumor growth and angiogenesis. Oncogene 2006; 25: 650–655
  • Fernandez C A, Moses M A. Modulation of angiogenesis by tissue inhibitor of metalloproteinase-4. Biochem Biophys Res Commun 2006; 345: 523–529
  • Chun T H, Sabeh F, Ota I, Murphy H, McDonagh K T, Holmbeck K, Birkedal-Hansen H, Allen E D, Weiss S J. MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J Cell Biol 2004; 167: 757–767
  • Spurbeck W W, Ng C Y, Vanin E F, Davidoff A M. Retroviral vector-producer cell-mediated in vivo gene transfer of TIMP3 restricts angiogenesis and neuroblastoma growth in mice. Cancer Gene Ther 2003; 10: 161–167
  • Qi J H, Ebrahem Q, Yeow K, Edwards D R, Fox P L, Anand-Apte B. Expression of Sorsby's fundus dystrophy mutations in human retinal pigment epithelial cells reduces matrix metalloproteinase inhibition and may promote angiogenesis. J Biol Chem 2002; 277: 13394–13400
  • Bigg H F, Morrison C J, Butler G S, Bogoyevitch M A, Wang Z, Soloway P D, Overall C M. Tissue inhibitor of metalloproteinases-4 inhibits but does not support the activation of gelatinase A via efficient inhibition of membrane type 1-matrix metalloproteinase. Cancer Res 2001; 61: 3610–3618
  • Groft L L, Muzik H, Rewcastle N B, Johnston R N, Knauper V, Lafleur M A, Forsyth P A, Edwards D R. Differential expression and localization of TIMP1 and TIMP4 in human gliomas. Br J Cancer 2001; 85: 55–63
  • Yamada E, Tobe T, Yamada H, Okamoto N, Zack D J, Werb Z, Soloway P D, Campochiaro P A. TIMP1 promotes VEGF-induced neovascularization in the retina. Histol Histopathol 2001; 16: 87–97
  • Kurschat P, Zigrino P, Nischt R, Breitkopf K, Steurer P, Klein C E, Krieg T, Mauch C. Tissue inhibitor of matrix metalloproteinase-2 regulates matrix metalloproteinase-2 activation by modulation of membrane-type 1 matrix metalloproteinase activity in high and low invasive melanoma cell lines. J Biol Chem 1999; 274: 21056–21062
  • Kleiner D E, Stetler-Stevenson W G. Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 1999; 43(Suppl)S42–S51
  • Ho A T, Voura E B, Soloway P D, Watson K L, Khokha R. MMP inhibitors augment fibroblast adhesion through stabilization of focal adhesion contacts and up-regulation of cadherin function. J Biol Chem 2001; 276: 40215–40224
  • Reid H M, McElligott A M, McGlynn H. Phenotypic alterations in Caki-1 cells as a consequence of TIMP1 overexpression. Cancer Lett 2001; 169: 189–198
  • Roeb E, Winograd R, Breuer B, Nguyen H, Matern S. Increased TIMP1 activity results in increased expression of gelatinases and altered cell motility. J Cell Biochem 1999; 75: 346–355
  • Ray J M, Stetler-Stevenson W G. Gelatinase A activity directly modulates melanoma cell adhesion and spreading. EMBO J 1995; 14: 908–917
  • Miyake H, Hara I, Gohji K, Yamanaka K, Hara S, Arakawa S, Nakajima M, Kamidono S. Relative expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in mouse renal cell carcinoma cells regulates their metastatic potential. Clin Cancer Res 1999; 5: 2824–2829
  • Kioi M, Yamamoto K, Higashi S, Koshikawa N, Fujita K, Miyazaki K. Matrilysin (MMP-7) induces homotypic adhesion of human colon cancer cells and enhances their metastatic potential in nude mouse model. Oncogene 2003; 22: 8662–8670
  • Rolli M, Fransvea E, Pilch J, Saven A, Felding-Habermann B. Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 9482–9487
  • Lluri G, Langlois G D, Soloway P D, Jaworski D M. Tissue inhibitor of metalloproteinase-2 (TIMP2) regulates myogenesis and beta1 integrin expression in vitro. Exp Cell Res 2008; 314: 11–24
  • Chang H, Lee J, Poo H, Noda M, Diaz T, Wei B, Stetler-Stevenson W G, Oh J. TIMP2 promotes cell spreading and adhesion via upregulation of Rap1 signaling. Biochem Biophys Res Commun 2006; 345: 1201–1206
  • Gruss C, Herlyn M. Role of cadherins and matrixins in melanoma. Curr Opin Oncol 2001; 13: 117–123
  • Covington M D, Burghardt R C, Parrish A R. Ischemia-induced cleavage of cadherins in NRK cells requires MT1-MMP (MMP-14). Am J Physiol Renal Physiol 2006; 290: F43–51
  • Covington M D, Bayless K J, Burghardt R C, Davis G E, Parrish A R. Ischemia-induced cleavage of cadherins in NRK cells: evidence for a role of metalloproteinases. Am J Physiol Renal Physiol 2005; 289: F280–288
  • Nash G F, Turner L F, Scully M F, Kakkar A K. Platelets and cancer. Lancet Oncol 2002; 3: 425–430
  • Sawicki G, Salas E, Murat J, Miszta-Lane H, Radomski M W. Release of gelatinase A during platelet activation mediates aggregation. Nature 1997; 386: 616–619
  • Alonso-Escolano D, Strongin A Y, Chung A W, Deryugina E I, Radomski M W. Membrane type-1 matrix metalloproteinase stimulates tumour cell-induced platelet aggregation: role of receptor glycoproteins. Br J Pharmacol 2004; 141: 241–252
  • Kazes I, Elalamy I, Sraer J D, Hatmi M, Nguyen G. Platelet release of trimolecular complex components MT1-MMP/TIMP2/MMP2: involvement in MMP2 activation and platelet aggregation. Blood 2000; 96: 3064–3069
  • Radomski A, Jurasz P, Sanders E J, Overall C M, Bigg H F, Edwards D R, Radomski M W. Identification, regulation and role of tissue inhibitor of metalloproteinases-4 (TIMP4) in human platelets. Br J Pharmacol 2002; 137: 1330–1338
  • Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 2000; 14: 163–176
  • Fiore E, Fusco C, Romero P, Stamenkovic I. Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity. Oncogene 2002; 21: 5213–5223
  • McQuibban G A, Gong J H, Tam E M, McCulloch C A, Clark-Lewis I, Overall C M. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 2000; 289: 1202–1206
  • Sheu B C, Hsu S M, Ho H N, Lien H C, Huang S C, Lin R H. A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res 2001; 61: 237–242
  • Mohammed F F, Smookler D S, Taylor S E, Fingleton B, Kassiri Z, Sanchez O H, English J L, Matrisian L M, Au B, Yeh W C, Khokha R. Abnormal TNF activity in Timp3-/-mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat Genet 2004; 36: 969–977
  • Alexander C M, Werb Z. Targeted disruption of the tissue inhibitor of metalloproteinases gene increases the invasive behavior of primitive mesenchymal cells derived from embryonic stem cells in vitro. J Cell Biol 1992; 118: 727–739
  • Soloway P D, Alexander C M, Werb Z, Jaenisch R. Targeted mutagenesis of Timp1 reveals that lung tumor invasion is influenced by Timp1 genotype of the tumor but not by that of the host. Oncogene 1996; 13: 2307–2314
  • Tsuchiya Y, Sato H, Endo Y, Okada Y, Mai M, Sasaki T, Seiki M. Tissue inhibitor of metalloproteinase 1 is a negative regulator of the metastatic ability of a human gastric cancer cell line, KKLS, in the chick embryo. Cancer Res 1993; 53: 1397–1402
  • Koop S, Khokha R, Schmidt E E, MacDonald I C, Morris V L, Chambers A F, Groom A C. Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumor growth. Cancer Res 1994; 54: 4791–4797
  • Kruger A, Fata J E, Khokha R. Altered tumor growth and metastasis of a T-cell lymphoma in Timp1 transgenic mice. Blood 1997; 90: 1993–2000
  • Kruger A, Sanchez-Sweatman O H, Martin D C, Fata J E, Ho A T, Orr F W, Ruther U, Khokha R. Host TIMP1 overexpression confers resistance to experimental brain metastasis of a fibrosarcoma cell line. Oncogene 1998; 16: 2419–2423
  • Yamauchi K, Ogata Y, Nagase H, Shirouzu K. Inhibition of liver metastasis from orthotopically implanted colon cancer in nude mice by transfection of the TIMP1 gene into KM12SM cells. Surg Today 2001; 31: 791–798
  • de Lorenzo M S, Ripoll G V, Yoshiji H, Yamazaki M, Thorgeirsson U P, Alonso D F, Gomez D E. Altered tumor angiogenesis and metastasis of B16 melanoma in transgenic mice overexpressing tissue inhibitor of metalloproteinases-1. In Vivo 2003; 17: 45–50
  • Elezkurtaj S, Kopitz C, Baker A H, Perez-Canto A, Arlt M J, Khokha R, Gansbacher B, Anton M, Brand K, Kruger A. Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinases-1 in the liver: efficient protection against T-cell lymphoma and colon carcinoma metastasis. J Gene Med 2004; 6: 1228–1237
  • DeClerck Y A, Perez N, Shimada H, Boone T C, Langley K E, Taylor S M. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res 1992; 52: 701–708
  • Imren S, Kohn D B, Shimada H, Blavier L, DeClerck Y A. Overexpression of tissue inhibitor of metalloproteinases-2 retroviral-mediated gene transfer in vivo inhibits tumor growth and invasion. Cancer Res 1996; 56: 2891–2895
  • Sacco M G, Cato E M, Ceruti R, Soldati S, Indraccolo S, Caniatti M, Scanziani E, Vezzoni P. Systemic gene therapy with anti-angiogenic factors inhibits spontaneous breast tumor growth and metastasis in MMTVneu transgenic mice. Gene Ther 2001; 8: 67–70
  • Lee Y K, So I S, Lee S C, Lee J H, Lee C W, Kim W M, Park M K, Lee S T, Park D Y, Shin D Y, et al. Suppression of distant pulmonary metastasis of MDA-MB 435 human breast carcinoma established in mammary fat pads of nude mice by retroviral-mediated TIMP2 gene transfer. J Gene Med 2005; 7: 145–157
  • Khokha R, Zimmer M J, Graham C H, Lala P K, Waterhouse P. Suppression of invasion by inducible expression of tissue inhibitor of metalloproteinase-1 (TIMP1) in B16-F10 melanoma cells. J Natl Cancer Inst 1992; 84: 1017–1022
  • Engers R, Springer E, Michiels F, Collard J G, Gabbert H E. Rac affects invasion of human renal cell carcinomas by up-regulating tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP2 expression. J Biol Chem 2001; 276: 41889–41897
  • Rigg A S, Lemoine N R. Adenoviral delivery of TIMP1 or TIMP2 can modify the invasive behavior of pancreatic cancer and can have a significant antitumor effect in vivo. Cancer Gene Ther 2001; 8: 869–878
  • Kong Y, Poon R, Nadesan P, Di Muccio T, Fodde R, Khokha R, Alman B A. Matrix metalloproteinase activity modulates tumor size, cell motility, and cell invasiveness in murine aggressive fibromatosis. Cancer Res 2004; 64: 5795–5803
  • Ahn S M, Jeong S J, Kim Y S, Sohn Y, Moon A. Retroviral delivery of TIMP2 inhibits H-ras-induced migration and invasion in MCF10A human breast epithelial cells. Cancer Lett 2004; 207: 49–57
  • Lu K V, Jong K A, Rajasekaran A K, Cloughesy T F, Mischel P S. Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. Lab Invest 2004; 84: 8–20
  • Sun Y, Kim H, Parker M, Stetler-Stevenson W G, Colburn N H. Lack of suppression of tumor cell phenotype by overexpression of TIMP3 in mouse JB6 tumor cells identification of a transfectant with increased tumorigenicity and invasiveness. Anticancer Res 1996; 16: 1–7
  • Kang J A, Kim J T, Song H S, Bae M K, Yi E Y, Kim K W, Kim Y J. Anti-angiogenic and anti-tumor invasive activities of tissue inhibitor of metalloproteinase-3 from shark, Scyliorhinus torazame. Biochim Biophys Acta 2003; 1620: 59–64
  • Yonemura Y, Endo Y, Takino T, Sakamoto K, Bandou E, Kinoshita K, Fushida S, Miwa K, Sugiyama K, Sasaki T. Membrane-type 1 matrix metalloproteinase enhances lymph node metastasis of gastric cancer. Clin Exp Metastasis 2000; 18: 321–327
  • Ala-Aho R, Johansson N, Baker A H, Kahari V M. Expression of collagenase-3 (MMP-13) enhances invasion of human fibrosarcoma HT-1080 cells. Int J Cancer 2002; 97: 283–289
  • Hasegawa S, Koshikawa N, Momiyama N, Moriyama K, Ichikawa Y, Ishikawa T, Mitsuhashi M, Shimada H, Miyazaki K. Matrilysin-specific antisense oligonucleotide inhibits liver metastasis of human colon cancer cells in a nude mouse model. Int J Cancer 1998; 76: 812–816
  • London C A, Sekhon H S, Arora V, Stein D A, Iversen P L, Devi G R. A novel antisense inhibitor of MMP-9 attenuates angiogenesis, human prostate cancer cell invasion and tumorigenicity. Cancer Gene Ther 2003; 10: 823–832
  • Jiang X, Dutton C M, Qi W N, Block J A, Garamszegi N, Scully S P. siRNA mediated inhibition of MMP-1 reduces invasive potential of a human chondrosarcoma cell line. J Cell Physiol 2005; 202: 723–730
  • Wang P, Nie J, Pei D. The hemopexin domain of membrane-type matrix metalloproteinase-1 (MT1-MMP) Is not required for its activation of proMMP2 on cell surface but is essential for MT1-MMP-mediated invasion in three-dimensional type I collagen. J Biol Chem 2004; 279: 51148–51155
  • Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 1998; 58: 1048–1051
  • Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, Uehira M. Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 1999; 17: 177–181
  • Walther S E, Denhardt D T. Directed mutagenesis reveals that two histidines in tissue inhibitor of metalloproteinase-1 are each essential for the suppression of cell migration, invasion, and tumorigenicity. Cell Growth Differ 1996; 7: 1579–1588
  • Hoashi T, Kadono T, Kikuchi K, Etoh T, Tamaki K. Differential growth regulation in human melanoma cell lines by TIMP1 and TIMP2. Biochem Biophys Res Commun 2001; 288: 371–379
  • Brummer O, Athar S, Riethdorf L, Loning T, Herbst H. Matrix-metalloproteinases 1, 2, and 3 and their tissue inhibitors 1 and 2 in benign and malignant breast lesions: an in situ hybridization study. Virchows Arch 1999; 435: 566–573
  • Joo Y E, Seo K S, Kim J, Kim H S, Rew J S, Park C S, Kim S J. Role of tissue inhibitors of metalloproteinases (TIMPs) in colorectal carcinoma. J Korean Med Sci 1999; 14: 417–423
  • Hidalgo M, Eckhardt S G. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 2001; 93: 178–193
  • Bramhall S R, Rosemurgy A, Brown P D, Bowry C, Buckels J A. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J Clin Oncol 2001; 19: 3447–3455
  • Bramhall S R, Hallissey M T, Whiting J, Scholefield J, Tierney G, Stuart R C, Hawkins R E, McCulloch P, Maughan T, Brown P D, et al. Marimastat as maintenance therapy for patients with advanced gastric cancer: a randomised trial. Br J Cancer 2002; 86: 1864–1870
  • Coussens L M, Fingleton B, Matrisian L M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002; 295: 2387–2392
  • Pavlaki M, Zucker S. Matrix metalloproteinase inhibitors (MMPIs): the beginning of phase I or the termination of phase III clinical trials. Cancer Metastasis Rev 2003; 22: 177–203
  • Bissett D, O'Byrne K J, von Pawel J, Gatzemeier U, Price A, Nicolson M, Mercier R, Mazabel E, Penning C, Zhang M H, et al. Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. J Clin Oncol 2005; 23: 842–849
  • Leighl N B, Paz-Ares L, Douillard J Y. Randomized phase III study of matrix metalloproteinase inhibitor BMS-275291 in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: National Cancer Institute of Canada-Clinical Trials Group Study BR.18. J Clin Oncol 2005; 23: 2831–2839
  • Batist G, Patenaude F, Champagne P, Croteau D, Levinton C, Hariton C, Escudier B, Dupont E. Neovastat (AE-941) in refractory renal cell carcinoma patients: report of a phase II trial with two dose levels. Ann Oncol 2002; 13: 1259–1263
  • Latreille J, Batist G, Laberge F, Champagne P, Croteau D, Falardeau P, Levinton C, Hariton C, Evans W K, Dupont E. Phase I/II trial of the safety and efficacy of AE-941 (Neovastat) in the treatment of non-small-cell lung cancer. Clin Lung Cancer 2003; 4: 231–236

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.