686
Views
2
CrossRef citations to date
0
Altmetric
Review Article

High-resolution proteomics and metabolomics in thyroid cancer: Deciphering novel biomarkers

, , &
Pages 446-457 | Received 14 Aug 2017, Accepted 16 Oct 2017, Published online: 30 Oct 2017

References

  • Navas-Carrillo D, Ríos A, Rodríguez JM, et al. Familial nonmedullary thyroid cancer: screening, clinical, molecular and genetic findings. Biochim Biophys Acta. 2014;1846:468–476.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.
  • Bonora E, Tallini G, Romeo G. Genetic predisposition to familial nonmedullary thyroid cancer: an update of molecular findings and state-of-the-art studies. J Oncol. 2010;2010:385206.
  • El-Naggar AK, Chan JKC, Grandis JR, et al., editors. WHO/IARC classification of tumours. 4th ed. vol. 9. WHO/IARC Classification of Head and Neck Tumours. Lyon: IARC Publications; 2017.
  • Paschke R, Cantara S, Crescenzi A, et al. European thyroid association guidelines regarding thyroid nodule molecular fine-needle aspiration cytology diagnostics. Eur Thyroid J. 2017;6:115–129.
  • Martínez-Aguilar J, Clifton-Bligh R, Molloy MP. Proteomics of thyroid tumours provides new insights into their molecular composition and changes associated with malignancy. Sci Rep. 2016;6:23660.
  • Kenyon GL, DeMarini DM, Fuchs E, et al. Defining the mandate of proteomics in the post-genomics era: workshop report. Mol Cell Proteomics. 2002;1:763–780.
  • Orenes-Piñero E, Cortón M, González-Peramato P, et al. Searching urinary tumor markers for bladder cancer using a two-dimensional differential gel electrophoresis (2D-DIGE) approach. J Proteome Res. 2007;6:4440–4448.
  • Navas-Carrillo D, Marín F, Valdés M, et al. Deciphering acute coronary syndrome biomarkers: high-resolution proteomics in platelets, thrombi and microparticles. Crit Rev Clin Lab Sci. 2017;54:49–58.
  • Keshishian H, Burgess MW, Gillette MA, et al. Multiplexed, quantitative workflow for sensitive biomarker discovery in plasma yields novel candidates for early myocardial injury. Mol Cell Proteomics. 2015;14:2375–2393.
  • Farrokhi-Yekta R, Rezaie-Tavirani M, Arefi-Oskouie A, et al. The metabolomics and lipidomics window into thyroid cancer research. Biomarkers. 2016;15:1–9.
  • Wojakowska A, Chekan M, Widlak P, et al. Application of metabolomics in thyroid cancer research. Int J Endocrinol. 2015;2015:258763.
  • Duarte IF, Gil AM. Metabolic signatures of cancer unveiled by NMR spectroscopy of human biofluids. Prog Nucl Magn Reson Spectrosc. 2012;62:51–74.
  • Brown LM, Helmke SM, Hunsucker SW, et al. Quantitative and qualitative differences in protein expression between papillary thyroid carcinoma and normal thyroid tissue. Mol Carcinog. 2006;45:613–626.
  • Netea-Maier RT, Hunsucker SW, Hoevenaars BM, et al. Discovery and validation of protein abundance differences between follicular thyroid neoplasms. Cancer Res. 2008;68:1572–1580.
  • Mato E, Barceló-Batllori S, Orera I, et al. The proteomic 2D-DIGE approach reveals the protein voltage-dependent anion channel 2 as a potential therapeutic target in epithelial thyroid tumours. Mol Cell Endocrinol. 2015;404:37–45.
  • Paricharttanakul NM, Saharat K, Chokchaichamnankit D, et al. Unveiling a novel biomarker panel for diagnosis and classification of well-differentiated thyroid carcinomas. Oncol Rep. 2016;35:2286–2296.
  • Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3:1154–1169.
  • Ruppen I, Grau L, Orenes-Piñero E, et al. Differential protein expression profiling by iTRAQ-two-dimensional LC–MS/MS of human bladder cancer EJ138 cells transfected with the metastasis suppressor KiSS-1 gene. Mol Cell Proteomics. 2010;9:2276–2291.
  • Mainini V, Lalowski M, Gotsopoulos A, et al. MALDI-imaging mass spectrometry on tissues. Methods Mol Biol. 2015;1243:139–164.
  • Min KW, Bang JY, Kim KP, et al. Imaging mass spectrometry in papillary thyroid carcinoma for the identification and validation of biomarker proteins. J Korean Med Sci. 2014;29:934–940.
  • Mosele N, Smith A, Galli M, et al. MALDI-MSI analysis of cytological smears: the study of thyroid cancer. Methods Mol Biol. 2017;1618:37–47.
  • Mainini V, Pagni F, Ferrario F, et al. MALDI imaging mass spectrometry in glomerulonephritis: feasibility study. Histopathology. 2014;64:901–906.
  • Meding S, Nitsche U, Balluff B, et al. Tumor classification of six common cancer types based on proteomic profiling by MALDI imaging. J Proteome Res. 2012;11:1996–2003.
  • Lei Z, Huhman DV, Sumner LW. Mass spectrometry strategies in metabolomics. J Biol Chem. 2011;286:25435–25442.
  • Serkova NJ, Spratlin JL, Eckhardt SG. NMR-based metabolomics: translational application and treatment of cancer. Curr Opin Mol Ther. 2007;9:572–585.
  • Liu X, Locasale JW. Metabolomics: a primer. Trends Biochem Sci. 2017;42:274–284.
  • Kouremenos KA, Johansson M, Marriott PJ. Advances in gas chromatographic methods for the identification of biomarkers in cancer. J Cancer. 2012;3:404–420.
  • Link H, Fuhrer T, Gerosa L, et al. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat Methods. 2015;12:1091–1097.
  • Contrepois K, Jiang L, Snyder M. Optimized analytical procedures for the untargeted metabolomic profiling of human urine and plasma by combining hydrophilic interaction (hilic) and reverse-phase liquid chromatography (RPLC)–mass spectrometry. Mol Cell Proteomics. 2015;14:1684–1695.
  • Rosai J. Immunohistochemical markers of thyroid tumors: significance and diagnostic applications. Tumori. 2003;89:517–519.
  • Dunn AD, Crutchfield HE, Dunn JT. Thyroglobulin processing by thyroidal proteases. Major sites of cleavage by cathepsins B, D, and L. J Biol Chem. 1991;266:20198–20204.
  • Gondi CS, Lakka SS, Yanamandra N, et al. Adenovirus-mediated expression of antisense urokinase plasminogen activator receptor and antisense cathepsin B inhibits tumor growth, invasion, and angiogenesis in gliomas. Cancer Res. 2004;64:4069–4077.
  • Zafon C, Obiols G, Castellví J, et al. nm23-H1 immunoreactivity as a prognostic factor in differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2001;86:3975–3980.
  • Maldonado EN, Sheldon KL, DeHart DN, et al. Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin. J Biol Chem. 2013;288:11920–11929.
  • Lazarou M, Stojanovski D, Frazier AE, et al. Inhibition of bak activation by VDAC2 is dependent on the bak transmembrane anchor. J Biol Chem. 2010;285:36876–36883.
  • Cheng EHY, Sheiko TV, Fisher JK, et al. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science. 2003;301:513–517.
  • Dinets A, Pernemalm M, Kjellin H, et al. Differential protein expression profiles of cyst fluid from papillary thyroid carcinoma and benign thyroid lesions. PLoS One. 2015;10:e0126472.
  • de Matos LL, Del Giglio AB, Matsubayashi CO, et al. Expression of CK-19, galectin-3 and HBME-1 in the differentiation of thyroid lesions: systematic review and diagnostic meta-analysis. Diagn Pathol. 2012;7:97.
  • Sofeu-Feugaing DD, Gotte M, Viola M. More than matrix: the multifaceted role of decorin in cancer. Eur J Cell Biol. 2013;92:1–11.
  • Clementz AG, Harris A. Collagen XV: exploring its structure and role within the tumor microenvironment. Mol Cancer Res. 2013;11:1481–1486.
  • Orend G, Chiquet-Ehrismann R. Tenascin-C induced signaling in cancer. Cancer Lett. 2006;244:143–163.
  • Ko KH, Han NY, Kwon CI, et al. Recent advances in molecular imaging of premalignant gastrointestinal lesions and future application for early detection of Barrett esophagus. Clin Endosc. 2014;47:7–14.
  • Nipp M, Elsner M, Balluff B, et al. S100-A10, thioredoxin, and S100-A6 as biomarkers of papillary thyroid carcinoma with lymph node metastasis identified by MALDI imaging. J Mol Med. 2012;90:163–174.
  • Galli M, Pagni F, De Sio G, et al. Proteomic profiles of thyroid tumors by mass spectrometry-imaging on tissue microarrays. Biochim Biophys Acta. 2017;1865:817–827.
  • Pagni F, De Sio G, Garancini M, et al. Proteomics in thyroid cytopathology: relevance of MALDI-imaging in distinguishing malignant from benign lesions. Proteomics. 2016;16:1775–1784.
  • Park WS, Chung KW, Young MS, et al. Differential protein expression of lymph node metastases of papillary thyroid carcinoma harboring the BRAF mutation. Anticancer Res. 2013;33:4357–4364.
  • Carpenter B, MacKay C, Alnabulsi A, et al. The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression. Biochim Biophys Acta. 2006;1765:85–100.
  • Russell P, Lean CL, Delbridge L, et al. Proton magnetic resonance and human thyroid neoplasia. I: discrimination between benign and malignant neoplasms. Am J Med.1994;96:383–388.
  • Mackinnon WB, Delbridge L, Russell P, et al. Two-dimensional proton magnetic resonance spectroscopy for tissue characterization of thyroid neoplasms. World J Surg. 1996;20:841.
  • Yoshioka Y, Sasaki J, Yamamoto M, et al. Quantitation by (1)H-NMR of dolichol, cholesterol and choline-containing lipids in extracts of normal and pathological thyroid tissue. NMR Biomed. 2000;13:377–383.
  • Miccoli P, Torregrossa L, Shintu L, et al. Metabolomics approach to thyroid nodules: a high-resolution magic-angle spinning nuclear magnetic resonance-based study. Surgery. 2012;152:1118–1124.
  • Deja S, Dawiskiba T, Balcerzak W, et al. Follicular adenomas exhibit a unique metabolic profile. [1]H NMR studies of thyroid lesions. PLoS One. 2013;8:e84637.
  • Ishikawa S, Tateya I, Hayasaka T, et al. Increased expression of phosphatidylcholine (16:0/18:1) and (16:0/18:2) in thyroid papillary cancer. PLoS One. 2012;7:e48873.
  • Guo S, Qiu L, Wang Y, et al. Tissue imaging and serum lipidomic profiling for screening potential biomarkers of thyroid tumors by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry. Anal Bioanal Chem. 2014;406:4357–4370.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.