2,920
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Laboratory diagnosis of Lyme borreliosis: Current state of the art and future perspectives

, , &
Pages 219-245 | Received 08 Nov 2017, Accepted 06 Mar 2018, Published online: 02 Apr 2018

References

  • Berglund J, Eitrem R, Ornstein K, et al. An epidemiologic study of Lyme disease in Southern Sweden. N Engl J Med. 1995;333:1319–1324.
  • Aguero-Rosenfeld ME, Wang G, Schwartz I, et al. Diagnosis of lyme borreliosis. Clin Microbiol Rev. 2005;18:484–509.
  • Aguero-Rosenfeld ME. Lyme disease: laboratory issues. Infect Dis Clin North Am. 2008;22:301–313, vii.
  • Steere AC, Strle F, Wormser GP, et al. Lyme borreliosis. Nat Rev Dis Primers. 2016;2:16090.
  • Sykes RA, Makiello P. An estimate of Lyme borreliosis incidence in Western Europe. J Public Health (Oxf). 2017;39:74–81.
  • Huppertz HI, Böhme M, Standaert SM, et al. Incidence of Lyme borreliosis in the Würzburg Region of Germany. Eur J Clin Microbiol Infect Dis. 1999;18:697–703.
  • Nelson CA, Saha S, Kugeler KJ, et al. Incidence of clinician-diagnosed Lyme disease, United States, 2005–2010. Emerg Infect Dis. 2015;21:1625–1631.
  • Müller I, Freitag MH, Poggensee G, et al. Evaluating frequency, diagnostic quality, and cost of Lyme borreliosis testing in Germany: a retrospective model analysis. Clin Dev Immunol. 2012;2012:1–13.
  • Burgdorfer W, Lane RS, Barbour AG, et al. The western black-legged tick, Ixodes pacificus: a vector of Borrelia burgdorferi. Am J Trop Med Hyg. 1985;34:925–930.
  • Ružić-Sabljić E, Cerar T. Progress in the molecular diagnosis of Lyme disease. Expert Rev Mol Diagn. 2016;17:19–30.
  • Buchwald A. Ein Fall von diffuser idiopathischer Hautatrophie. Vjschr Dermatol. 1883;15:553–556.
  • Bäfverstädt B. Über Lymphadenosis benigna cutis. Acta Derm Venereol. 1943;24:1–202.
  • Bannwarth A. Chronische lymphozytäre Meningitis, entzündliche Polyneuritis und Rheumatismus. Ein Beitrag zum Problem Allergie und Nervensystem in zwei Teilen. Archiv Psychiatrie. 1941;113:284–376.
  • Afzelius A. Erythema chronicum migrans. Acta Dermatovenereol. 1921;2:120–125.
  • Garin C, Bujadoux C. Paralysie par les tiques. J Med Lyon. 1922;71:765–767.
  • Burgdorfer W, Barbour AG, Hayes SF, et al. Lyme disease-a tick-borne spirochetosis? Science. 1982;216:1317–1319.
  • Gern L, Aeschlimann A, Schwan T, et al. A tribute to Dr. Willy Burgdorfer, medical entomologist extraordinaire. Ticks Tick Borne Dis. 2016;7:66–67.
  • Santino I, Comite P, Gandolfo GM. Borrelia burgdorferi, a great chameleon: know it to recognize it!. Neurol Sci. 2010;31:193–196.
  • Rebaudet S, Parola P. Epidemiology of relapsing fever borreliosis in Europe. FEMS Immunol Med Microbiol. 2006;48:11–15.
  • Stanek G, Fingerle V, Hunfeld K, et al. Lyme borreliosis: clinical case definitions for diagnosis and management in Europe. Clin Microbiol Infect. 2011;17:69–79.
  • Hunfeld KP, Wichelhaus TA, Brade V. Borreliosis. In: Thomas L, editor. Clinical laboratory diagnostics. Vol. 8, English ed. Frankfurt: TH-Books; 2016. p. 1955–1965.
  • Fukunaga M, Takahashi Y, Tsuruta Y, et al. Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. Int J Syst Evol Microbiol. 1995;45:804–810.
  • Platonov AE, Karan LS, Kolyasnikova NM, et al. Humans infected with relapsing fever spirochete Borrelia miyamotoi, Russia. Emerg Infect Dis. 2011;17:1816–1823.
  • Cutler SJ, Rudenko N, Golovchenko M, et al. Diagnosing borreliosis. Vector Borne Zoonotic Dis. 2017;17:2–11.
  • Boden K, Lobenstein S, Hermann B, et al. Borrelia miyamotoi-associated neuroborreliosis in immunocompromised person. Emerg Infect Dis. 2016;22:1617–1620.
  • Hunfeld K, Brade V. [Borrelien]. In: Suerbaum S, Hahn H, Burchard G, et al., editors. Medizinische Mikrobiologie Und Infektiologie. Berlin, Heidelberg: Springer; 2012. p. 372–378.
  • Dickeson DJ, Chen SC, Sintchenko VG. Concordance of four commercial enzyme immunoassay and three immunoblot formats for the detection of Lyme borreliosis antibodies in human serum: the two-tier approach remains. Pathology. 2016;48:251–256.
  • Paster BJ, Dewhirst FE, Weisburg WG, et al. Phylogenetic analysis of the spirochetes. J Bacteriol. 1991;173:6101–6109.
  • Schmidt BL. PCR in laboratory diagnosis of human Borrelia burgdorferi infections. Clin Microbiol Rev. 1997;10:185–201.
  • Indest KJ, Howell JK, Jacobs MB, et al. Analysis of Borrelia burgdorferi vlsE gene expression and recombination in the Tick Vector. Infect Immun. 2001;69:7083–7090.
  • Eicken C, Sharma V, Klabunde T, et al. Crystal structure of Lyme disease variable surface antigen VlsE of Borrelia burgdorferi. J Biol Chem. 2002;277:21691–21696.
  • Fingerle V, Eiffert H, Gesser A, et al. MiQ 12 Lyme-Borreliose. München: Elsevier Urban & Fischer Verlag; 2016. p. 18–19.
  • Baranton G, Postic D, Saint Girons I, et al. Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol. 1992;42:378–383.
  • Stanek G, Reiter M. The expanding Lyme Borrelia complex-clinical significance of genomic species? Clin Microbiol Infect. 2011;17:487–493.
  • Hauser U, Krahl H, Peters H, et al. Impact of strain heterogeneity on Lyme disease serology in Europe: comparison of enzyme-linked immunosorbent assays using different species of Borrelia burgdorferi sensu lato. J Clin Microbiol. 1998;36:427–436.
  • Wilske B, Preac-Mursic V, Göbel UB, et al. An OspA serotyping system for Borrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. J Clin Microbiol. 1993;31:340–350.
  • Wang G, van Dam AP, Schwartz I, et al. Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin Microbiol Rev. 1999;12:633–653.
  • Margos G, Notter I, Fingerle V. Species identification and phylogenetic analysis of Borrelia burgdorferi sensu lato using molecular biological methods. Methods Mol Biol. 2018;1690:13–33.
  • Margos G, Sing A, Fingerle V. Published data do not support the notion that Borrelia valaisiana is human pathogenic. Infection. 2017;45:567–569.
  • Margos G, Lane RS, Fedorova N, et al. Borrelia bissettiae sp. nov. and Borrelia californiensis sp. nov. prevail in diverse enzootic transmission cycles. Int J Syst Evol Microbiol. 2016;66:1447–1452.
  • Pritt BS, Respicio-Kingry LB, Sloan LM, et al. Borrelia mayonii sp. nov., a member of the Borrelia burgdorferi sensu lato complex, detected in patients and ticks in the upper midwestern United States. Int J Syst Evol Microbiol. 2016;66:4878–4880.
  • Golovchenko M, Vancová M, Clark K, et al. A divergent spirochete strain isolated from a resident of the southeastern United States was identified by multilocus sequence typing as Borrelia bissettii. Parasites Vectors. 2016;9:633.
  • Fingerle V, Schulte-Spechtel UC, Ruzic-Sabljic E, et al. Epidemiological aspects and molecular characterization of Borrelia burgdorferi s.l. from southern Germany with special respect to the new species Borrelia spielmanii sp. nov. Int J Med Microbiol. 2008;298:279–290.
  • Koch R. Die Aetiologie der Tuberculose. Mitt Kaiser Gesundh. 1884;1–88.
  • Koch R. Ueber bakteriologische Forschung. Verh. X. Int. Med. Congr. Berlin 1890 [cited 2018 Feb 22] Availabe from: http://edoc.rki.de/documents/rk/508-650-660/PDF/650-660.pdf. Accessed on 22 February 2018.
  • Henle J. Von den Miasmen und Contagien. [On Miasmata and Contagie]. Pathologische Untersuchungen, Berlin: August Hirschwald Verlag, 1840: 1–82.
  • Margos G, Vollmer SA, Ogden NH, et al. Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol. 2011;11:1545–1563.
  • Barbour AG, Cook VJ. Genotyping strains of Lyme disease agents directly from ticks, blood, or tissue. Methods Mol Biol. 2018;1690:1–11
  • Eshoo MW, Schutzer SE, Crowder CD, et al. Achieving molecular diagnostics for Lyme disease. Expert Rev Mol Diagn. 2014;13:875–883.
  • Aase A, Hajdusek O, Øines Ø, et al. Validate or falsify: lessons learned from a microscopy method claimed to be useful for detecting Borrelia and Babesia organisms in human blood. Infect Dis (Lond). 2016;48:411–419.
  • Lindblom A, Wallménius K, Sjöwall J, et al. Prevalence of Rickettsia spp. in ticks and serological and clinical outcomes in tick-bitten individuals in Sweden and on the Åland Islands. PLoS One. 2016;11:e0166653.
  • Marques A, Telford SR, Turk S, et al. Xenodiagnosis to detect Borrelia burgdorferi infection: a first-in-human study. Clin Infect Dis. 2014;58:937–945.
  • Turk S, Williams C, Marques A. Xenodiagnosis using ixodes scapularis larval ticks in humans. Methods Mol Biol. 2018;1690:337–346.
  • Bockenstedt LK, Radolf JD. Editorial commentary: Xenodiagnosis for posttreatment Lyme disease syndrome: resolving the conundrum or adding to it? Clin Infect Dis. 2014;58:946–948.
  • Telford SR, Hu LT, Marques A. Is there a place for xenodiagnosis in the clinic? Expert Rev Anti Infect Ther. 2014;12:1307–1310.
  • Berger BW, Clemmensen OJ, Ackerman AB. Lyme disease is a spirochetosis. A review of the disease and evidence for its cause. Am J Dermatopathol. 1983;5:111–124.
  • Bergler-Klein J, Sochor H, Stanek G, et al. Indium 111-monoclonal antimyosin antibody and magnetic resonance imaging in the diagnosis of acute Lyme myopericarditis. Arch Intern Med. 1993;153:2696–2700.
  • Koning J, de Bosma RB, Hoogkamp-Korstanje JAA. Demonstration of spirochaetes in patients with Lyme disease with a modified silver stain. J Med Microbiol. 1987;23:261–267.
  • Coyle PK, Deng Z, Schutzer SE, et al. Detection of Borrelia burgdorferi antigens in cerebrospinal fluid. Neurology. 1993;43:1093–1098.
  • Coyle PK, Schutzer SE, Deng Z, et al. Detection of Borrelia burgdorferi-specific antigen in antibody-negative cerebrospinal fluid in neurologic Lyme disease. Neurology. 1995;45:2010–2015.
  • Dorward DW, Schwan TG, Garon CF. Immune capture and detection of Borrelia burgdorferi antigens in urine, blood, or tissues from infected ticks, mice, dogs, and humans. J Clin Microbiol. 1991;29:1162–1170.
  • Hyde FW, Johnson RC, White TJ, et al. Detection of antigens in urine of mice and humans infected with Borrelia burgdorferi, etiologic agent of Lyme disease. J Clin Microbiol. 1989;27:58–61.
  • Klempner MS, Schmid CH, Hu L, et al. Intralaboratory reliability of serologic and urine testing for Lyme disease. Am J Med. 2001;110:217–219.
  • Wormser GP, Dattwyler RJ, Shapiro ED, et al. The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2006;43:1089–1134.
  • Hofmann H, Fingerle V, Hunfeld K, et al. Cutaneous Lyme borreliosis: Guideline of the German Dermatology Society. Ger Med Sci. 2017;15:Doc14. doi: 10.3205/000255. eCollection 2017.
  • Magni R, Espina BH, Shah K, et al. Application of Nanotrap technology for high sensitivity measurement of urinary outer surface protein A carboxyl-terminus domain in early stage Lyme borreliosis. J Transl Med. 2015;13:311.
  • Magni R. 14th International Symposium on Tick-Borne Pathogens and Disease (ITPD). (Oral presentation, unpublished.) September 24–26, Vienna, Austria; 2017.
  • Wilske B, Fingerle V, Schulte-Spechtel U. Microbiological and serological diagnosis of Lyme borreliosis. FEMS Immunol Med Microbiol. 2007;49:13–21.
  • Dessau RB, Bangsborg J, Hansen K, et al. Lyme Borreliose: Klinik, diagnostik og behandling i Danmark (2. ed.) (Lyme Disease: Clinic, Diagnostics and Treatment in Denmark) [Internet] 2014. Available from: www.dskm.dk.
  • 16e Conférence de consensus en thérapeutique anti-infectiese de la Spilf. Borréliose de Lyme: démarches diagnostiques, thérapeutiques et préventives. [Lyme borreliose: diagnostic, therapeutic and preventive approaches]. Med Mal Infect. 2007;37:S153–S174.
  • Rijksinstituut voor Volksgezonheid en Milieu. LCI-richtlijn Lymeziekte 2013.[[LCI guideline on Lyme disease 2013] [cited 2018 Feb 22]. Available from: https://lci.rivm.nl/richtlijnen/lymeziekte
  • Veinović G, Ružić-Sabljić E, Strle F, et al. Comparison of growth of Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi sensu stricto at five different temperatures. PLoS One. 2016;11:e0157706.
  • Ružić-Sabljić E, Maraspin V, Cimperman J, et al. Comparison of isolation rate of Borrelia burgdorferi sensu lato in two different culture media, MKP and BSK-H. Clin Microbiol Infect. 2014;20:636–641.
  • Liveris D, Schwartz I, Bittker S, et al. Improving the yield of blood cultures from patients with early Lyme disease. J Clin Microbiol. 2011;49:2166–2168.
  • Nowakowski J, McKenna D, Nadelman RB, et al. Blood cultures for patients with extracutaneous manifestations of Lyme disease in the United States. Clin Infect Dis. 2009;49:1733–1735.
  • Preac-Mursic V, Pfister HW, Spiegel H, et al. First isolation of Borrelia burgdorferi from an iris biopsy. J Clin Neuroophthalmol. 1993;13:155–161. Discussion 162.
  • Stanek G, Klein J, Bittner R, et al. Isolation of Borrelia burgdorferi from the myocardium of a patient with longstanding cardiomyopathy. N Engl J Med. 1990;322:249–252.
  • Sapi E, Pabbati N, Datar A, et al. Improved culture conditions for the growth and detection of Borrelia from human serum. Int J Med Sci. 2013;10:362–376.
  • Johnson Barbara JB, Pilgard MA,  Russell TM. Assessment of new culture method for detection of Borrelia species from serum of lyme disease patients. J Clin Microbiol. 2014;52:721–724.
  • Alby K, Capraro GA. Alternatives to serologic testing for diagnosis of Lyme disease. Clin Lab Med. 2015;35:815–825.
  • Liveris D, Wang G, Girao G, et al. Quantitative detection of Borrelia burgdorferi in 2-millimeter skin samples of erythema migrans lesions: correlation of results with clinical and laboratory findings. J Clin Microbiol. 2002;40:1249–1253.
  • Schwaiger M, Péter O, Cassinotti P. Routine diagnosis of Borrelia burgdorferi (sensu lato) infections using a real-time PCR assay. Clin Microbiol Infect. 2001;7:461–469.
  • Schwartz I, Wormser GP, Schwartz JJ, et al. Diagnosis of early Lyme disease by polymerase chain reaction amplification and culture of skin biopsies from erythema migrans lesions. J Clin Microbiol. 1992;30:3082–3088.
  • Casjens SR, Mongodin EF, Qiu W, et al. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One. 2012;7:e33280.
  • Ojaimi C, Davidson BE, Girons IS, et al. Conservation of gene arrangement and an unusual organization of rRNA genes in the linear chromosomes of the Lyme disease spirochaetes Borrelia burgdorferi, B. garinii and B. afzelii. Microbiology. 1994;140:2931–2940.
  • Schwartz JJ, Gazumyan A, Schwartz I. rRNA gene organization in the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol. 1992;174:3757–3765.
  • Persing DH, Rutledge BJ, Rys PN, et al. Target imbalance: disparity of Borrelia burgdorferi genetic material in synovial fluid from Lyme arthritis patients. J Infect Dis. 1994;169:668–672.
  • Zore A, Ruzić-Sabljić E, Maraspin V, et al. Sensitivity of culture and polymerase chain reaction for the etiologic diagnosis of erythema migrans. Wien Klin Wochenschr. 2002;114:606–609.
  • Ecker DJ, Sampath R, Li H, et al. New technology for rapid molecular diagnosis of bloodstream infections. Exp Rev Mol Diagn. 2014;10:399–415.
  • Rounds MA, Crowder CD, Matthews HE, et al. Identification of endosymbionts in ticks by broad-range polymerase chain reaction and electrospray ionization mass spectrometry. J Med Entomol. 2012;49:843–850.
  • Eshoo MW, Crowder CC, Rebman AW, et al. Direct molecular detection and genotyping of Borrelia burgdorferi from whole blood of patients with early Lyme disease. PLoS One. 2012;7:e36825.
  • Roux F, Boyer E, Jaulhac B, et al. Lyme meningoradiculitis: prospective evaluation of biological diagnosis methods. Eur J Clin Microbiol Infect Dis. 2007;26:685–693.
  • Amouriaux P, Assous M, Margarita D, et al. Polymerase chain reaction with the 30-kb circular plasmid of Borrelia burgdorferi B31 as a target for detection of the Lyme borreliosis agents in cerebrospinal fluid. Res Microbiol. 1993;144:211–219.
  • Priem S, Rittig MG, Kamradt T, et al. An optimized PCR leads to rapid and highly sensitive detection of Borrelia burgdorferi in patients with Lyme borreliosis. J Clin Microbiol. 1997;35:685–690.
  • Gooskens J, Templeton K, Claas E, et al. Evaluation of an internally controlled real-time PCR targeting the ospA gene for detection of Borrelia burgdorferi sensu lato DNA in cerebrospinal fluid. Clin Microbiol Infect. 2006;12:894–900.
  • Lebech AM, Hansen K. Detection of Borrelia burgdorferi DNA in urine samples and cerebrospinal fluid samples from patients with early and late Lyme neuroborreliosis by polymerase chain reaction. J Clin Microbiol. 1992;30:1646–1653.
  • Brettschneider S, Bruckbauer H, Klugbauer N, et al. Diagnostic value of PCR for detection of Borrelia burgdorferi in skin biopsy and urine samples from patients with skin borreliosis. J Clin Microbiol. 1998;36:2658–2665.
  • Aberer E, Bergmann AR, Derler AM, et al. Course of Borrelia burgdorferi DNA shedding in urine after treatment. Acta Derm Venereol. 2007;87:39–42.
  • Rauter C, Mueller M, Diterich I, et al. Critical evaluation of urine-based PCR assay for diagnosis of Lyme borreliosis. Clin Diagn Lab Immunol. 2005;12:910–917.
  • Hunfeld K, Ruzic-Sabljic E, Norris DE, et al. In vitro susceptibility testing of Borrelia burgdorferi sensu lato isolates cultured from patients with erythema migrans before and after antimicrobial chemotherapy. Antimicrob Agents Chemother. 2005;49:1294–1301.
  • Iyer R, Mukherjee P, Wang K, et al. Detection of Borrelia burgdorferi nucleic acids after antibiotic treatment does not confirm viability. J Clin Microbiol. 2013;51:857–862.
  • Gaubitz M, Dressler F, Huppertz HI, et al. Diagnostik und Therapie der Lyme-Arthritis. Empfehlungen der Kommission Pharmakotherapie der DGRh [Diagnosis and treatment of Lyme arthritis. Recommendations of the Pharmacotherapy Commission of the Deutsche Gesellschaft für Rheumatologie (German Society for Rheumatology)]. Zeitschr Rheumatol. 2014;73:469–474.
  • Bockenstedt LK, Gonzalez DG, Haberman AM, et al. Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy. J Clin Invest. 2012;122:2652–2660.
  • Pícha D, Moravcová L, Vaňousová D, et al. DNA persistence after treatment of Lyme borreliosis. Folia Microbiol (Praha). 2014;59:115–125.
  • van Dam AP. Molecular diagnosis of Borrelia bacteria for the diagnosis of Lyme disease. Expert Opin Med Diagn. 2011;5:135–149.
  • Reischl U, Schneider W, Maaß M, et al. Bakteriengenom-Nachweis PCR/NAT: Auswertung des Ringversuchs April 2010 von INSTAND e.V. zur externen Qualitätskontrolle molekularbiologischer Nachweisverfahren in der bakteriologischen Diagnostik. [Bacterial genome detection PCR/NAT: evaluation of the round robin test April 2010 by INSTAND e.V. for the external quality control of molecular biological detection methods in bacteriological diagnostics.]. Der Mikrobiologe. 2010;20:181–197.
  • Hunfeld KP, Reischl U. 12th International Symposium on Tick-Borne Pathogens and Disease (ITPD). (Oral presentation, unpublished.) September 27–30, Vienna, Austria; 2015.
  • CDC. Notice to Readers: caution regarding testing for Lyme disease. MMWR Morb Mortal Wkly Rep. 2005;54:125.
  • Wyres KL, Conway TC, Garg S, et al. WGS Analysis and interpretation in clinical and public health microbiology laboratories: what are the requirements and how do existing tools compare? Pathogens. 2014;3:437–458.
  • Troy EB, Lin T, Gao L, et al. Understanding barriers to Borrelia burgdorferi dissemination during infection using massively parallel sequencing. Infect Immun. 2013;81:2347–2357.
  • Leichty AR, Brisson D. Selective whole genome amplification for resequencing target microbial species from complex natural samples. Genetics. 2014;198:473–481.
  • Carpi G, Walter KS, Bent SJ, et al. Whole genome capture of vector-borne pathogens from mixed DNA samples: a case study of Borrelia burgdorferi. BMC Genomics. 2015;16:469.
  • Margos G, Hepner S, Mang C, et al. Completed genome sequences of Borrelia burgdorferi sensu stricto B31(NRZ) and closely related patient isolates from Europe. Genome Announc. 2017;5:e00637-17. pii: doi: 10.1128/genomeA.00637-17
  • Margos G, Hepner S, Mang C, et al. Lost in plasmids: next generation sequencing and the complex genome of the tick-borne pathogen Borrelia burgdorferi. BMC Genomics. 2017;18:422.
  • Jaulhac B, Heller R, Limbach FX, et al. Direct molecular typing of Borrelia burgdorferi sensu lato species in synovial samples from patients with lyme arthritis. J Clin Microbiol. 2000;38:1895–1900.
  • Wormser GP, Brisson D, Liveris D, et al. Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J Infect Dis. 2008;198:1358–1364.
  • Cerar T, Strle F, Stupica D, et al. Differences in genotype, clinical features, and inflammatory potential of Borrelia burgdorferi sensu stricto strains from Europe and the United States. Emerg Infect Dis. 2016;22:818–827.
  • Ružić-Sabljić E, Zore A, Strle F. Characterization of Borrelia burgdorferi sensu lato isolates by pulsed-field gel electrophoresis after MluI restriction of genomic DNA. Res Microbiol. 2008;159:441–448.
  • Belfaiza J, Postic D, Bellenger E, et al. Genomic fingerprinting of Borrelia burgdorferi sensu lato by pulsed-field gel electrophoresis. J Clin Microbiol. 1993;31:2873–2877.
  • Busch U, Hizo Teufel C, Boehmer R, et al. Differentiation of Borrelia burgdorferi sensu lato strains isolated from skin biopsies and tick by pulsed-field gel electrophoresis. Rocz Akad Med Bialymst. 1996;41:51–58.
  • Picken RN, Cheng Y, Strle F, et al. Molecular characterization of Borrelia burgdorferi sensu lato from Slovenia revealing significant differences between tick and human isolates. Eur J Clin Microbiol Infect Dis. 1996;15:313–323.
  • Wilske B, Jauris-Heipke S, Lobentanzer R, et al. Phenotypic analysis of outer surface protein C (OspC) of Borrelia burgdorferi sensu lato by monoclonal antibodies: relationship to genospecies and OspA serotype. J Clin Microbiol. 1995;33:103–109.
  • Brisson D, Dykhuizen DE. ospC diversity in Borrelia burgdorferi: different hosts are different niches. Genetics. 2004;168:713–722.
  • Postic D, Assous MV, Grimont PA, et al. Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)-rrl (23S) intergenic spacer amplicons. Int J Syst Bacteriol. 1994;44:743–752.
  • Dessau RB, van Dam AP, Fingerle V, et al. To test or not to test? Laboratory support for the diagnosis of Lyme borreliosis. Clin Microbiol Infect. 2017;24:118–124.
  • Dessau RB, Bangsborg JM, Ejlertsen T, et al. Utilization of serology for the diagnosis of suspected Lyme borreliosis in Denmark: survey of patients seen in general practice. BMC Infect Dis. 2010;10:317.
  • Coumou J, Hovius JWR, van Dam AP. Borrelia burgdorferi sensu lato serology in the Netherlands: guidelines versus daily practice. Eur J Clin Microbiol Infect Dis. 2014;33:1803–1808.
  • Seltzer EG, Shapiro ED. Misdiagnosis of Lyme disease: when not to order serologic tests. Pediatr Infect Dis J. 1996;15:762–763.
  • Gordis L. Assessing the validity and reliability of diagnostic and screening tests. In: Gordis L, editor. Epidemiology. 2nd ed. Philadelphia, London, New York: WB Saunders; 2000. p. 63–80.
  • Mausner JS, Kramer S. Mausner & Bahn epidemiology: an introductory text. 2nd ed. Philadelphia: W.B. Saunders; 1985. p. 221.
  • CDC. Recommendations for test performance and interpretation from the Second National Conference on Serologic Diagnosis of Lyme Disease. MMWR Morb Mortal Wkly Rep. 1995;44:590–591.
  • Sillanpää H, Lahdenne P, Sarvas H, et al. Immune responses to borrelial VlsE IR6 peptide variants. Int J Med Microbiol. 2007;297:45–52.
  • Ang CW, Notermans DW, Hommes M, et al. Large differences between test strategies for the detection of anti-Borrelia antibodies are revealed by comparing eight ELISAs and five immunoblots. Eur J Clin Microbiol Infect Dis. 2011;30:1027–1032.
  • Goettner G, Schulte-Spechtel U, Hillermann R, et al. Improvement of Lyme Borreliosis serodiagnosis by a newly developed recombinant immunoglobulin G (IgG) and IgM line immunoblot assay and addition of VlsE and DbpA homologues. J Clin Microbiol. 2005;43:3602–3609.
  • Schoen RT. Editorial commentary: Better laboratory testing for Lyme disease: no more western blot. Clin Infect Dis. 2013;57:341–343.
  • Branda JA, Strle F, Strle K, et al. Performance of United States serologic assays in the diagnosis of Lyme borreliosis acquired in Europe. Clin Infect Dis. 2013;57:333–340.
  • Branda JA, Linskey K, Kim YA, et al. Two-tiered antibody testing for Lyme disease with use of 2 enzyme immunoassays, a whole-cell sonicate enzyme immunoassay followed by a VlsE C6 peptide enzyme immunoassay. Clin Infect Dis. 2011;53:541–547.
  • CDC. Lyme disease - United States, 2003-2005. MMWR Morb Mortal Wkly Rep. 2007;56:573–576.
  • Hamann-Brand A, Flondor M, Brade V. Evaluation of a passive hemagglutination assay as screening test and of a recombinant immunoblot as confirmatory test for serological diagnosis of Lyme disease. Eur J Clin Microbiol Infect Dis. 1994;13:572–575.
  • Hansen K, Asbrink E. Serodiagnosis of erythema migrans and acrodermatitis chronica atrophicans by the Borrelia burgdorferi flagellum enzyme-linked immunosorbent assay. J Clin Microbiol. 1989;27:545–551.
  • Jauris-Heipke S, Rössle B, Wanner G, et al. Osp17, a novel immunodominant outer surface protein of Borrelia afzelii: recombinant expression in Escherichia coli and its use as a diagnostic antigen for serodiagnosis of Lyme borreliosis. Med Microbiol Immunol. 1999;187:213–219.
  • Hauser U, Lehnert G, Wilske B. Diagnostic value of proteins of three Borrelia species (Borrelia burgdorferi sensu lato) and implications for development and use of recombinant antigens for serodiagnosis of Lyme borreliosis in Europe. Clin Diagn Lab Immunol. 1998;5:456–462.
  • Robertson J, Guy E, Andrews N, et al. A European multicenter study of immunoblotting in serodiagnosis of lyme borreliosis. J Clin Microbiol. 2000;38:2097–2102.
  • Hunfeld KP, Fingerle V, Stanek G, et al. European multicenter study for evaluation of a new enzyme immunoassay for detection of IgG antibodies against Borrelia burgdorferi sensu lato. Tenth International Conference on Lyme Borreliosis and Other Emerging Tick-Borne Diseases. (Poster presentation, unpublished.) Munich, Germany, 11–15 September 2005.
  • Wilske B, Fingerle V, Herzer P, et al. Recombinant immunoblot in the serodiagnosis of Lyme borreliosis. Med Microbiol Immunol. 1993;182:255–270.
  • Liang FT, Jacobson RH, Straubinger RK, et al. Characterization of a Borrelia burgdorferi VlsE invariable region useful in canine Lyme disease serodiagnosis by enzyme-linked immunosorbent assay. J Clin Microbiol. 2000;38:4160–4166.
  • Lawrenz MB, Hardham JM, Owens RT, et al. Human antibody responses to VlsE antigenic variation protein of Borrelia burgdorferi. J Clin Microbiol. 1999;37:3997–4004.
  • Panelius J, Lahdenne P, Saxén H, et al. Diagnosis of Lyme neuroborreliosis with antibodies to recombinant proteins DbpA, BBK32, and OspC, and VlsE IR6 peptide. J Neurol. 2003;250:1318–1327.
  • Schulte-Spechtel U, Lehnert G, Liegl G, et al. Significant improvement of the recombinant Borrelia-specific immunoglobulin G immunoblot test by addition of VlsE and a DbpA homologue derived from Borrelia garinii for diagnosis of early neuroborreliosis. J Clin Microbiol. 2003;41:1299–1303.
  • Leeflang MMG, Ang CW, Berkhout J, et al. The diagnostic accuracy of serological tests for Lyme borreliosis in Europe: a systematic review and meta-analysis. BMC Infect Dis. 2016;16:31.
  • Hunfeld K, Stanek G, Straube E, et al. Quality of Lyme disease serology. Lessons from the German Proficiency Testing Program 1999–2001. A preliminary report. Wien Klin Wochenschr. 2002;114:591–600.
  • Hunfeld KP, Kraiczy P. When is the best time to order a Western blot and how should it be interpreted? Curr Probl Dermatol. 2009;37:167–177.
  • Hauser U, Lehnert G, Wilske B. Validity of interpretation criteria for standardized Western blots (immunoblots) for serodiagnosis of Lyme borreliosis based on sera collected throughout Europe. J Clin Microbiol. 1999;37:2241–2247.
  • Norman GL, Antig JM, Bigaignon G, et al. Serodiagnosis of Lyme borreliosis by Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii western blots (immunoblots). J Clin Microbiol. 1996;34:1732–1738.
  • Bykowski T, Babb K, Lackum KV, et al. Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein. J Bacteriol. 2006;188:4879–4889.
  • Porwancher RB, Hagerty CG, Fan J, et al. Multiplex immunoassay for Lyme disease using VlsE1-IgG and pepC10-IgM antibodies: improving test performance through bioinformatics. Clin Vaccine Immunol. 2011;18:851–859.
  • Dessau RB, Moller JK, Kolmos B, et al. Multiplex assay (Mikrogen recomBead) for detection of serum IgG and IgM antibodies to 13 recombinant antigens of Borrelia burgdorferi sensu lato in patients with neuroborreliosis: the more the better? J Med Microbiol. 2015;64:224–231.
  • WHO Workshop on Lyme Borreliosis Diagnosis and Surveillance. Ref. WHO/CDS/VPH/95.141. Geneva, Switzerland; 1995 [cited 2018 Feb 22]. Availabe from: http://www.who.int/zoonoses/resources/borreliosis/en/
  • Hunfeld KP. Borrelia spp. In: Podbielski A, Abele-Horn M, Becker K, et al., editors. MiQ 35a, Infektionsimmunologische Methoden, Teil I. [Immunological Methods for the Detection of Infectious Diseases, Part I.] Deutsche Gesellschaft für Hygiene und Mikrobiologie München: Urban & Fischer Elsevier; 2017. p. 41–53.
  • Hunfeld KP, Wellinghausen N. Definition serologischer Grundbegriffe. [Definition of serological principels]. In: Podbielski A, Abele-Horn M, Becker K, et al., editors. MiQ 35a, Infektionsimmunologische Methoden, Teil I. [Immunological Methods for the Detection of Infectious Diseases, Part I.] Deutsche Gesellschaft für Hygiene und Mikrobiologie. München: Urban & Fischer Elsevier; 2016. p. 6–24.
  • Steere AC. Lyme disease. N Engl J Med. 1989;321:586–596.
  • Eiffert H, Hanefeld F, Thomssen R, et al. Reinfection in Lyme borreliosis. Infection. 1996;24:437–439.
  • Dessau RB. Diagnostic accuracy and comparison of two assays for Borrelia-specific IgG and IgM antibodies: proposals for statistical evaluation methods, cut-off values and standardization. J Med Microbiol. 2013;62:1835–1844.
  • Dessau R, Ejlertsen T, Hilden J. Simultaneous use of serum IgG and IgM for risk scoring of suspected early Lyme borreliosis: graphical and bivariate analyses. Apmis. 2010;118:313–323.
  • Glatz M, Golestani M, Kerl H, et al. Clinical relevance of different IgG and IgM serum antibody responses to Borrelia burgdorferi after antibiotic therapy for erythema migrans. Arch Dermatol. 2006;142:862–868.
  • Goossens HA, van den Bogaard AE, Nohlmans MK. Reduced specificity of combined IgM and IgG enzyme immunoassay testing for lyme borreliosis. Eur J Clin Microbiol Infect Dis. 2000;19:400–402.
  • Kalish RA, McHugh G, Granquist J, et al. Persistence of immunoglobulin M or immunoglobulin G antibody responses to Borrelia burgdorferi 10–20 years after active Lyme disease. Clin Infect Dis. 2001;33:780–785.
  • Seriburi V, Ndukwe N, Chang Z, et al. High frequency of false positive IgM immunoblots for Borrelia burgdorferi in Clinical Practice. Clin Microbiol Infect. 2012;18:1236–1240.
  • Bruckbauer HR, Preac-Mursic V, Fuchs R, et al. Cross-reactive proteins of Borrelia burgdorferi. Eur J Clin Microbiol Infect Dis. 1992;11:224–232.
  • Rauer S, Kastenbauer S (geteilte Erstautorenschaft), et al. S3-Leitlinie Neuroborreliose. [S3-Guideline on Neuroborreliosis] [Internet] 2017, in press. Available from: http://www.awmf.org/leitlinien/detail/ll/030-071.html
  • Oschmann P, Dorndorf W, Hornig C, et al. Stages and syndromes of neuroborreliosis. J Neurol. 1998;245:262–272.
  • Reiber H, Ressel CB, Spreer A. Diagnosis of neuroborreliosis – improved knowledge base for qualified antibody analysis and cerebrospinal fluid data pattern related interpretations. Neurol Psychiatry Brain Res. 2013;19:159–169.
  • Kaiser R. Variable CSF findings in early and late Lyme neuroborreliosis: a follow-up study in 47 patients. J Neurol. 1994;242:26–36.
  • Djukic M, Schmidt-Samoa C, Lange P, et al. Cerebrospinal fluid findings in adults with acute Lyme neuroborreliosis. J Neurol. 2012;259:630–636.
  • Mygland Å, Ljøstad U, Fingerle V, et al. EFNS guidelines on the diagnosis and management of European Lyme neuroborreliosis. Eur J Neurol. 2010;17:8–16.
  • Rupprecht TA, Plate A, Adam M, et al. The chemokine CXCL13 is a key regulator of B cell recruitment to the cerebrospinal fluid in acute Lyme neuroborreliosis. J Neuroinflammation. 2009;6:42.
  • Ljøstad U, Mygland Å. CSF B-lymphocyte chemoattractant (CXCL13) in the early diagnosis of acute Lyme neuroborreliosis. J Neurol. 2008;255:732–737.
  • Schmidt C, Plate A, Angele B, et al. A prospective study on the role of CXCL13 in Lyme neuroborreliosis. Neurology. 2011;76:1051–1058.
  • Dersch R, Hottenrott T, Senel M, et al. The chemokine CXCL13 is elevated in the cerebrospinal fluid of patients with neurosyphilis. Fluids Barriers Cns. 2015;12:12.
  • Hytönen J, Kortela E, Waris M, et al. CXCL13 and neopterin concentrations in cerebrospinal fluid of patients with Lyme neuroborreliosis and other diseases that cause neuroinflammation. J Neuroinflammation. 2014;11:103.
  • Rubenstein JL, Wong VS, Kadoch C, et al. CXCL13 plus interleukin 10 is highly specific for the diagnosis of CNS lymphoma. Blood. 2013;121:4740–4748.
  • Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen. Bundesärztekammer. [Guideline of the German Medical Association for Quality Assurance of Laboratory Medical Examinations.]. Dtsch Arztebl. 2014;111:A1583–A1618.
  • Dattwyler RJ, Volkman DJ, Halperin JJ, et al. Specific immune responses in Lyme borreliosis. Characterization of T cell and B cell responses to Borrelia burgdorferi. Ann NY Acad Sci. 1988;539:93–102.
  • Dessau R, Fingerle V, Gray J, et al. The lymphocyte transformation test for the diagnosis of Lyme borreliosis has currently not been shown to be clinically useful. Clin Microbiol Infect. 2014;20:O786.
  • von Baehr V. The lymphocyte transformation test for Borrelia detects active Lyme borreliosis and verifies effective antibiotic treatment. Toneuj. 2012;6:104–112.
  • Valentine-Thon E, Ilsemann K, Sandkamp M. A novel lymphocyte transformation test (LTT-MELISA) for Lyme borreliosis. Diagn Microbiol Infect Dis. 2007;57:27–34.
  • Nordberg M, Forsberg P, Nyman D, et al. Can ELISPOT be applied to a clinical setting as a diagnostic utility for neuroborreliosis? Cells. 2012;1:153–167.
  • Lantos PM, Auwaerter PG, Wormser GP. A systematic review of Borrelia burgdorferi morphologic variants does not support a role in chronic Lyme disease. Clin Infect Dis. 2014;58:663–671.
  • Stricker RB, Winger EE. Decreased CD57 lymphocyte subset in patients with chronic Lyme disease. Immunol Lett. 2001;76:43–48.
  • Hartmann F, Mueller-Marienburg H. Indirekter Neurotoxinnachweis durch den “Visual Contrast Sensitivity”-Test bei Patienten mit einer chronischen Borreliose. [Indirect proof of neurotoxin by the visual contrast sensitivity test in patients with chronic Lyme disease]. Die Medizinische Welt – Aus Der Wissenschaft in Die Praxis. 2003;2:248–251.
  • Smit PW, Kurkela S, Kuusi M, et al. Evaluation of two commercially available rapid diagnostic tests for Lyme borreliosis. Eur J Clin Microbiol Infect Dis. 2015;34:109–113.
  • Stanek G, Wormser GP, Gray J, et al. Lyme borreliosis. Lancet. 2012;379:461–473.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.