705
Views
5
CrossRef citations to date
0
Altmetric
Review Article

The role of the clinical laboratory in diagnosing acid–base disorders

&
Pages 147-169 | Received 13 Aug 2018, Accepted 09 Jan 2019, Published online: 27 Mar 2019

References

  • Berend K. Acid–base pathophysiology after 130 years: confusing, irrational and controversial. J Nephrol. 2013;26:254–265.
  • Berend K, De Vries AP, Gans RO. Physiological approach to assessment of acid–base disturbances. N Engl J Med. 2014;371:1434–1445.
  • Narins RG, Emmett M. Simple and mixed acid–base disorders: a practical approach. Medicine (Baltimore). 1980;59:161–187.
  • Finkel KW, Dubose TF. Metabolic acidosis. In: Dubose T Jr, Hamm L, editors. Acid base and electrolyte disorders: a companion to Brenner & Rector’s the kidney. Philadelphia: Saunders; 2002. p. 55–66.
  • Berend K. Diagnostic use of base excess in acid–base disorders. N Engl J Med. 2018;378:1419–1428.
  • Halperin ML, Kamel KS, Goldstein MB. Fluid, electrolyte and acid–base physiology: a problem-based approach. Philadelphia (PA): Saunders Elsevier; 2010. p. 43–320.
  • Reddy P. Clinical approach to renal tubular acidosis in adult patients. Int J Clin Pract. 2011;65:350–360.
  • Severinghaus JW, Astrup PB. History of blood gas analysis. II. pH and acid–base balance measurements. J Clin Monit. 1985;1:259–277.
  • Sørensen SPL. Enzymstudien II. Mitteilung über die Messung und die Bedeutung der Wasserstoffionen-konzentration bein enzymatischen Prozessen. Biochem Z. 1909;21:131–304.
  • Hasselbalch KA, Lundsgaard C. Elektrometrische Reaktionsbestimmung des Blutes bei Körpertemperatur. Biochem Z. 1912;38:77–91.
  • Severinghaus JW, Astrup P, Murray JF. Blood gas analysis and critical care medicine. Am J Respir Crit Care Med. 1998;157:S114–S122.
  • Severinghaus JW, Astrup PB. History of blood gas analysis. III. Carbon dioxide tension. J Clin Monit. 1986;2:60–73.
  • Morris CG, Low J. Metabolic acidosis in the critically ill: part 2: classification and pathophysiology. Anaesthesia. 2008;63:396–411.
  • Kellum JA. Determinants of plasma acid–base balance. Crit Care Clin. 2005;21:329–346.
  • Jones NL. A quantitative physicochemical approach to acid–base physiology. Clin Biochem. 1990;23:189–195.
  • Rosenthal TB. The effect of temperature on the pH of blood and plasma in vitro. J Biol Chem. 1948;173:25–30.
  • Mohammadhoseini E, Safavi E, Seifi S. Effect of sample storage temperature and time delay on blood gases, bicarbonate and pH in human arterial blood samples. Iran Red Crescent Med J. 2015;17:e13577.
  • Berend K. Is the reference arterial pH higher than usually acknowledged? Am J Respir Crit Care Med. 2011;183:140–142.
  • Kaehny WD. Pathophysiology and management of respiratory and mixed acid–base disorders. In: Schrier RW, editor. Renal and electrolyte disorders. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2010. p. 122–136.
  • Fischbach FT, Fischbach MA. Fischbach's manual of laboratory and diagnostic tests. 10th ed. Philadelphia: Wolters Kluwer; 2018. p. 924–928.
  • Wilkinson I, Raine T, Wiles W, et al. Oxford handbook of clinical medicine. 10th ed. New York: Oxford University Press; 2017. p. 670.
  • Seifter JL. Acid–base disorders. In: Goldman L, Schafer AL, editors. Goldman-Cecil medicine. 25th ed. Philadelphia (PA): Elsevier/Saunders; 2016. p. 762–774.
  • Palmer BF. Normal acid–base balance. Chapter 11. In: Johnson RJ, Feehally J, Floege J, editors. Comprehensive clinical nephrology. 5th ed. Philadelphia: Saunders, Elsevier; 2015. p. 142–148.
  • Tanner GA. Acid–base homeostasis. In: Rhoades RA, Bell DR, editors. Medical physiology: principles for clinical medicine. 4th ed. Philadelphia: Wolters Kluwer, Lippincott Williams & Wilkins; 2013. p. 451–471.
  • DuBose TD, Acidosis and alkalosis. In: Jameson JL, Kasper DL, Longo DL, et al. Harrison's principles of internal medicine. 20th ed. New York: McGraw-Hill; 2018. p. 315–324.
  • Lefever KJ, Paulanka BJ, Polek CB. Acid–base balance and imbalance. In: Handbook of fluid, electrolyte, and acid–base imbalances. 3rd ed. Clifton Park (NY): Delmar Cengage Learning; 2010. p. 239–244.
  • Seifter JL. Acid–base disorders. In: Andreoli TE, Cecil RL, editors. Andreoli and Carpenter's Cecil essentials of medicine. 8th ed. Philadelphia (PA): Saunders/Elsevier; 2010. p. 741–752.
  • Halperin ML, Kamel KS, Goldstein MB. Fluid, electrolyte and acid–base physiology: a problem-based approach. Philadelphia (PA): Saunders Elsevier; 2010.
  • Simple and mixed acid–base disorders [Internet]; 2016; [cited 2018 Jul 25]. Available from: https://www.uptodate.com/contents/simple-and-mixed-acid-base-disorders
  • Fisher C. Master the wards. Internal medicine handbook. New York: McGraw Hill; 2016. p. 215–218.
  • Stewart P. Whole-body acid–base balance. In: Kellum JA, Elbers PW, editors. Stewart’s textbook of acid–base. 2nd ed. UK: Lulu Enterprises; 2009. p. 181–197.
  • DuBose TD, Hamm LL, editors. Acid–base and electrolyte disorders: a companion to Brenner & Rector’s the kidney. London, UK: Elsevier; 2002. p. 1, 129, 165.
  • Rennke HG, Denker BM, Rose BD. Chapter 5. Acid–base physiology and metabolic alkalosis. In: Renal pathophysiology: the essentials. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 127–156.
  • Grooth H, Schraverus P, Elbers WG. Acid–base. In: Ronco C, Bellomo R, Kellum JA, et al. Critical care nephrology. 3rd ed. Philadelphia: Saunders/Elsevier; 2019. p. 374–423.
  • Phuong-Chi TP, Phuong-Thu T. Chapter 2. Acid–base. In: Nephrology and hypertension board review. Philadelphia: Wolters Kluwer Heath; 2017. p. 38–48.
  • Sisson SD. Acid–base disorders and renal tubular acidosis. In: Miller RG, Ashar BH, Sisson SD, editors. The Johns Hopkins internal medicine board review 2008–2009. 2nd ed. Philadelphia (PA): Mosby Elsevier; 2008. p. 273–278.
  • Guyton AC, Hall JE. Acid–base regulation. Chapter 30. In: Textbook of medical physiology. 11th ed. Philadelphia: Elsevier Saunders; 2006. p. 379–396.
  • Klaestrup E, Trydal T, Pedersen JF, et al. Reference intervals and age and gender dependency for arterial blood gases and electrolytes in adults. Clin Chem Lab Med. 2011;49:1495–1500.
  • Crapo RO, Jensen R, Hegewald M, et al. Arterial blood gas reference values for sea level and an altitude of 1,400 meters. Am J Respir Crit Care Med. 1999;160:1525–1531.
  • Funk GC, Doberer D, Kneidinger N, et al. Acid–base disturbances in critically ill patients with cirrhosis. Liver Int. 2007;27:901–909.
  • Zavorsky GS, Lands LC, Schneider W, et al. Comparison of fingertip to arterial blood samples at rest and during exercise. Clin J Sport Med. 2005;15:263–270.
  • Fan JL, Burgess KR, Basnyat R, et al. Influence of high altitude on cerebrovascular and ventilatory responsiveness to CO2. J Physiol (Lond). 2010;588:539–549.
  • Hardie JA, Morkve O, Ellingsen I. Effect of body position on arterial oxygen tension in the elderly. Respiration. 2002;69:123–128.
  • Rossi P, Boussuges A. Hyperoxia-induced arterial compliance decrease in healthy man. Clin Physiol Funct Imaging. 2005;25:10–15.
  • Mollard P, Bourdillon N, Letournel M, et al. Validity of arterialized earlobe blood gases at rest and exercise in normoxia and hypoxia. Respir Physiol Neurobiol. 2010;172:179–183.
  • Krapf R, Caduff P, Wagdi P, et al. Plasma potassium response to acute respiratory alkalosis. Kidney Int. 1995;47:217–224.
  • England SJ, Farhi LE. Fluctuations in alveolar CO2 and in base excess during the menstrual cycle. Respir Physiol. 1976;26:157–161.
  • Lima-Oliveira G, Lippi G, Salvagno G, et al. Different manufacturers of syringes: a new source of variability in blood gas, acid–base balance and related laboratory test? Clin Biochem. 2012;45:683–687.
  • Carraro P, Plebani M. Errors in a stat laboratory: types and frequencies 10 years later. Clin Chem. 2007;53:1338–1342.
  • Lu JY, Kao JT, Chien TI, et al. Effects of air bubbles and tube transportation on blood oxygen tension in arterial blood gas analysis. J Formos Med Assoc. 2003;102:246–249.
  • Mueller RG, Lan GE, Beam JM. Bubbles in samples for blood gas determinations. A potential source of error. Am J Clin Pathol. 1976;65:242–249.
  • O’Connor TM, Barry PJ, Jahangir A, et al. Comparison of arterial and venous blood gases and the effects of analysis delay and air contamination on arterial samples in patients with chronic obstructive pulmonary disease and healthy controls. Respiration. 2011;18:18–25.
  • Woolley A, Hickling K. Errors in measuring blood gases in the intensive care unit: effect of delay in estimation. J Crit Care. 2003;18:31–37.
  • Smajić J, Kadić D, Hasić S, et al. Effects of post-sampling analysis time, type of blood samples and collection tubes on values of blood gas testing. Med Glas (Zenica). 2015;12:108–112.
  • Eldrige F, Fretwell LK. Change in oxygen tension of shed blood at various temperature. J Appl Physiol. 1965;20(4):790–792; Hess CE, Nichols Ab, Hunt WB, et al. Pseudohypoxemia secondary to leukemia and thrombocytosis. N Engl J Med. 1979;301:361–363.
  • Hess CE, Nichols AB, Hunt WB, et al. Pseudohypoxemia secondary to leukemia and thrombocytosis. N Engl J Med. 1979;301:361.
  • CLSI. Blood gas and pH analysis and related measurements; approved guide line. CLSI document C46-A2. 2nd ed. Wayne (PA): Clinical and Laboratory Standards Institute; 2009.
  • Winters RW. Terminology of acid–base disorders. Ann N Y Acad Sci. 1966;133:211–224.
  • Martinu T, Menzies D, Dial S. Re-evaluation of acid–base prediction rules in patients with chronic respiratory acidosis. Can Respir J. 2003;10:311–315.
  • Cohen JJ, Brackett NC, Jr, Schwartz WB. The nature of the carbon dioxide titration curve in the normal dog. J Clin Invest. 1964;43:777–786.
  • Kuleš J, Brkljačić M, Crnogaj M, et al. Arterial blood acid–base and electrolyte values in dogs: conventional and “strong ion” approach. Vet Archiv. 2015;85:533–545.
  • Adrogue HJ, Madias NE. Secondary responses to altered acid–base status: the rules of engagement. J Am Soc Nephrol. 2010;21:920–923.
  • Grimbert F, Reynaert M, Perret C. Acid–base response to chronic hypocapnia in man. Bull Eur Physiopathol Respir. 1977;13:659–667.
  • Guh JY, Lai YH, Yu LK, et al. Evaluation of ventilatory responses in severe acidemia in diabetic ketoacidosis. Am J Nephrol. 1997;17:36–41.
  • Olaciregui Dague K, Surges R, Litmathe J, et al. The discriminative value of blood gas analysis parameters in the differential diagnosis of transient disorders of consciousness. J Neurol. 2018. DOI:10.1007/s00415-018-8967-8. [Epub ahead of print]
  • Powrie RO, Larson L, Rosene-Montella K, et al. Alveolar–arterial oxygen gradient in acute pulmonary embolism in pregnancy. Am J Obstet Gynecol. 1998;178:394–396.
  • Moammar MQ, Azam HM, Blamoun AL, et al. Alveolar–arterial oxygen gradient, pneumonia severity index and outcomes in patients hospitalized with community acquired pneumonia. Clin Exp Pharmacol Physiol. 2008;35:1032–1037.
  • Karbing DS, Kjærgaard S, Smith BW, et al. Variation in the PaO2/FiO2 ratio with FiO2: mathematical and experimental description, and clinical relevance. Crit Care. 2007;11:R118.
  • Wettstein RB, Shelledy DC, Peters JI. Delivered oxygen concentrations using low-flow and high-flow nasal cannulas. Respir Care. 2005;50:604–609.
  • Marston N, Kehl D, Copp J, et al. Alkalotics anonymous: severe metabolic alkalosis. Am J Med. 2014;127:25–27.
  • Pahadiya HR, Lakhotia M, Gandhi R, et al. The mysterious story of brown blood and high saturation gap. Indian J Hematol Blood Transfus. 2016;32:517–518.
  • Singh S, Sethi N, Pandith S, et al. Dapsone-induced methemoglobinemia: "Saturation gap"—the key to diagnosis. J Anaesthesiol Clin Pharmacol. 2014;30:86.
  • Skold A, Cosco DL, Klein R. Methemoglobinemia: pathogenesis, diagnosis, and management. South Med J. 2011;104:757–761.
  • McMahon GM. Acid–base disturbances. In: Singh AK, Loscalzo J, editors. The Brigham intensive review of internal medicine. 3rd ed. Philadelphia (PA): Elsevier; 2019. p. 606–614.
  • Chakladar A, Willers JW, Pereskokova E, et al. White powder, blue patient: methaemoglobinaemia associated with benzocaine-adulterated cocaine. Resuscitation. 2010;81:138–139.
  • Haymond S, Cariappa R, Eby CS, et al. Laboratory assessment of oxygenation in methemoglobinemia. Clin Chem. 2005;51:434–444.
  • D'sa SR, Victor P, Jagannati M, et al. Severe methemoglobinemia due to ingestion of toxicants. Clin Toxicol (Phila). 2014;52:897–900.
  • Gamble JL. Extracellular fluid and its maintenance. N Engl J Med. 1936;250:1150–1152.
  • Roberts W, Johnson RD. The serum anion gap. Has the reference interval really fallen? Arch Pathol Lab Med. 1997;121:568–572.
  • Balasubramanyan N, Havens PL, Hoffman GM. Unmeasured anions identified by the Fencl–Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med. 1999;27:1577–1581.
  • Story DA, Poustie S, Bellomo R. Estimating unmeasured anions in critically ill patients: anion-gap, base-deficit, and strong-ion-gap. Anaesthesia. 2002;57:1109–1114.
  • Moe OW, Fuster D. Clinical acid–base pathophysiology: disorders of plasma anion gap. Best Pract Res Clin Endocrinol Metab. 2003;17:559–574.
  • Hassan H, Joh JH, Bacon BR, et al. Evaluation of serum anion gap in patients with liver cirrhosis of diverse etiologies. Mt Sinai J Med. 2004;71:281–284.
  • Feldman M, Soni N, Dickson B. Influence of hypoalbuminemia or hyperalbuminemia on the serum anion gap. J Lab Clin Med. 2005;146:317–320.
  • Emmett M. Anion-gap interpretation: the old and the new. Nat Clin Pract Nephrol. 2006;2:4–5.
  • Lee S, Kang KP, Kang SK. Clinical usefulness of the serum anion gap. Electrolyte Blood Press. 2006;4:44–46.
  • Kraut JA, Madias NE. Serum anion gap: its uses and limitations in clinical medicine. Clin J Am Soc Nephrol. 2007;2:162–174.
  • Sood MM, Richardson R. Negative anion gap and elevated osmolar gap due to lithium overdose. CMAJ. 2007;176:921–923.
  • Kaae J, De Morais HA. Anion gap and strong ion gap: a quick reference. Vet Clin N Am Small Anim Pract. 2008;38:443–447.
  • Mehta AN, Emmett JB, Emmett M. GOLD MARK: an anion gap mnemonic for the 21st century. Lancet. 2008;372:892.
  • Navaneethan SD, Mooney R, Sloand J. Pseudo-anion gap acidosis. NDT Plus. 2008;1:94–96.
  • Jones BJ, Twomey PJ. The anion gap revisited. Int J Clin Pract. 2009;63:1409–1412.
  • Berend K. Review of the diagnostic evaluation of normal anion gap metabolic acidosis. Kidney Dis. 2017;3:149–159.
  • Berend K, Andrew L. Narrowing the gap between the anion gap and the strong ion gap. J Anesth Intens Care Med. 2017;3:555601.
  • Reddy P, Mooradian AD. Clinical utility of anion gap in deciphering acid–base disorders. Int J Clin Pract. 2009;63:1516–1525.
  • Sadjadi SA, Pi A. Hyperphosphatemia, a cause of high anion gap metabolic acidosis: report of a case and review of the literature. Am J Case Rep. 2017;18:463–466.
  • Klauer KM. Life beyond MUDPILES. Air Med J. 2002;21:37–41.
  • Kastendieck E, Paulick R, Martius J. Lactate in fetal tissue during hypoxia; correlation to lactate, pH and base deficit in the fetal blood. Eur J Obstet Gynecol Reprod Biol. 1988;29:61–71.
  • Landow L. The relationship between base deficit and lactate concentration in resuscitation. J Trauma. 1994;37:869–870.
  • Mikulaschek A, Henry SM, Donovan R, et al. Serum lactate is not predicted by anion gap or base excess after trauma resuscitation. J Trauma. 1996;40:218–222, discussion 222–224.
  • Baron BJ, Sinert RH, Sinha AK, et al. Effects of traditional versus delayed resuscitation on serum lactate and base deficit. Resuscitation. 1999;43:39–46.
  • Ewaschuk JB, Naylor JM, Zello GA. Anion gap correlates with serum d- and dl-lactate concentration in diarrheic neonatal calves. J Vet Int Med. 2003;17:940–942.
  • Tailor P, Raman T, Garganta CL, et al. Recurrent high anion gap metabolic acidosis secondary to 5-oxoproline (pyroglutamic acid). Am J Kidney Dis. 2005;46:e4–e10.
  • Adams BD, Bonzani TA, Hunter CJ. The anion gap does not accurately screen for lactic acidosis in emergency department patients. Emerg Med J. 2006;23:179–182.
  • Chawla LS, Jagasia D, Abell LM, et al. Anion gap, anion gap corrected for albumin, and base deficit fail to accurately diagnose clinically significant hyperlactatemia in critically ill patients. J Intensive Care Med. 2008;23:122–127.
  • Lu J, Zello GA, Randell E, et al. Closing the anion gap: contribution of d-lactate to diabetic ketoacidosis. Clin Chim Acta. 2011;412:286–291.
  • Frontino G, Rigamonti A, Bonfanti R. Acid–base problems in diabetic ketoacidosis. N Engl J Med. 2015;372:1969.
  • Palmer BF, Clegg DJ. Electrolyte and acid–base disturbances in patients with diabetes mellitus. N Engl J Med. 2015;373:548–559.
  • Kuru B, Sever M, Aksay E, et al. Comparing finger-stick β-hydroxybutyrate with dipstick urine tests in the detection of ketone bodies. Turk J Emerg Med. 2014;14:47–52.
  • Umpierrez GE, Watts NB, Phillips LS. Clinical utility of beta-hydroxybutyrate determined by reflectance meter in the management of diabetic ketoacidosis. Diabetes Care. 1995;18:137–138.
  • Guerci B, Tubiana-Rufi N, Bauduceau B, et al. Advantages to using capillary blood betahydroxybutyrate determination for the detection and treatment of diabetic ketosis. Diabetes Metab. 2005;31:401–406.
  • Hojer J. Severe metabolic acidosis in the alcoholic: differential diagnosis and management. Hum Exp Toxicol. 1996;15:482–488.
  • Jensen IW, Jensen S. Diabetic ketoalkalosis. Diabetes Care. 1988;11:368–369.
  • Heireman L, Mahieu B, Helbert M, et al. High anion gap metabolic acidosis induced by cumulation of ketones, l- and d-lactate, 5-oxoproline and acute renal failure. Acta Clin Belg. 2017;27:1–4.
  • Jacob J, Lavonas EJ. Falsely normal anion gap in severe salicylate poisoning caused by laboratory interference. Ann Emerg Med. 2011;58:280–281.
  • Kaul V, Imam SH, Gambhir HS, et al. Negative anion gap metabolic acidosis in salicylate overdose – a zebra! Am J Emerg Med. 2013;31:1536e3–1536.e4.
  • Emmett M. Approach to the patient with a negative anion gap. Am J Kidney Dis. 2016;67:143–150.
  • Berend K, Van Hulsteijn LH, Gans RO. Chloride: the queen of electrolytes? Eur J Intern Med. 2012;23:203–211.
  • Rastegar M, Nagami GT. Non-anion gap metabolic acidosis: a clinical approach to evaluation. Am J Kidney Dis. 2017;69:296–301.
  • Batlle D, Ba Aqeel SH, Marquez A. The urine anion gap in context. Clin J Am Soc Nephrol. 2018;13:195–197.
  • Raphael KL, Gilligan S, Ix JH. Urine anion gap to predict urine ammonium and related outcomes in kidney disease. Clin J Am Soc Nephrol. 2018;13:205–212.
  • Yi JH, Han SW, Song JS, et al. Metabolic alkalosis from unsuspected ingestion: use of urine pH and anion gap. Am J Kidney Dis. 2012;59:577–581.
  • Maehle K, Haug B, Flaatten H, et al. Metabolic alkalosis is the most common acid–base disorder in ICU patients. Crit Care. 2014;18:420.
  • Lee Hamm L, Hering-Smith KS, Nakhoul NL. Acid–base and potassium homeostasis. Semin Nephrol. 2013;33:257–264.
  • Wagner CA. Effect of mineralocorticoids on acid–base balance. Nephron Physiol. 2014;128:26–34.
  • Filippatos TD, Rizos CV, Tzavella E, et al. Gitelman syndrome: an analysis of the underlying pathophysiologic mechanisms of acid–base and electrolyte abnormalities. Int Urol Nephrol. 2018;50:91–96.
  • Kitterer D, Schwab M, Alscher MD, et al. Drug-induced acid–base disorders. Pediatr Nephrol. 2015;30:1407–1423.
  • Adrogue HJ. Mixed acid–base disturbances. J Nephrol. 2006;19:S97–S103.
  • Rastegar A. Use of the DeltaAG/DeltaHCO3– ratio in the diagnosis of mixed acid–base disorders. J Am Soc Nephrol. 2007;18:429–431.
  • Markowitz DH. Diagnosing the cause of a hyperosmolar anion-gap metabolic acidosis. J Intensive Care Med. 2003;18:160–162.
  • Moossavi S, Wadhwa NK, Nord EP. Recurrent severe anion gap metabolic acidosis secondary to episodic ethylene glycol intoxication. Clin Nephrol. 2003;60:205–210.
  • Ganesh A, Audu P. Hyperosmolar, increased-anion-gap metabolic acidosis and hyperglycemia after etomidate infusion. J Clin Anesth. 2008;20:290–293.
  • Kraut JA. Diagnosis of toxic alcohols: limitations of present methods. Clin Toxicol (Phila). 2015;53:589–595.
  • Lepeytre F, Ghannoum M, Ammann H, et al. Formulas for calculated osmolarity and osmolal gap: a study of diagnostic accuracy. Am J Kidney Dis. 2017;70:347–356.
  • Kraut JA, Xing SX. Approach to the evaluation of a patient with an increased serum osmolal gap and high-anion-gap metabolic acidosis. Am J Kidney Dis. 2011;58:480–484.
  • Heytens L, Neels H, Van Regenmortel N, et al. Near-fatal persistent anion- and osmolal-gap acidosis due to massive gamma-butyrolactone/ethanol intoxication. Ann Clin Biochem. 2015;52:283–287.
  • Tan EM, Kalimullah E, Sohail MR, et al. Diagnostic challenge in a patient with severe anion gap metabolic acidosis. Case Rep Crit Care. 2015;2015:272914.
  • Wu AH, Yang HS, Thoren K. Biological variation of the osmolality and the osmolal gap. Clin Biochem. 2014;47:130–131.
  • Whittington JE, La'ulu SL, Hunsaker JJ, et al. The osmolal gap: what has changed? Clin Chem. 2010;56:1353–1355.
  • Vetrano SJ, Schier JG. Ethanol and the osmolal gap. Ann Emerg Med. 2002;40(6):657–658.
  • Tormey WP. Reporting the 'osmolal gap' to 'accident and emergency'. Ir Med J. 1992;85:159–160.
  • Tormey WP. Limitations of the osmolal gap with toxin ingestion. Am J Clin Pathol. 1993;100:85.
  • Steinhart B. Case report: severe ethylene glycol intoxication with normal osmolal gap—“a chilling thought". J Emerg Med. 1990;8:583–585.
  • Srivali N, Laohaphan V, Thongprayoon C. Osmolal gap, the clue of diagnosis and role of sodium bicarbonate and hemodialysis in methanol intoxication. Am J Emerg Med. 2014;32:1549–1550.
  • Sklar AH, Linas SL. The osmolal gap in renal failure. Ann Intern Med. 1983;98:481–482.
  • Silvilotti ML, Collier CP, Choi SB. Ethanol and the osmolal gap. Ann Emerg Med. 2002;40:656–657; author reply 657–658.
  • Schelling JR, Howard RL, Winter SD, et al. Increased osmolal gap in alcoholic ketoacidosis and lactic acidosis. Ann Intern Med. 1990;113:580–582.
  • Purssell RA, Pudek M, Brubacher J, et al. Derivation and validation of a formula to calculate the contribution of ethanol to the osmolal gap. Ann Emerg Med. 2001;38:653–659.
  • Prevost M, Sun Y, Servilla KS, et al. Repeated intoxication presenting with azotemia, elevated serum osmolal gap, and metabolic acidosis with high anion gap: differential diagnosis, management, and prognosis. Int Urol Nephrol. 2012;44:309–314.
  • Meregalli P, Luthy C, Oetliker OH, et al. Modified urine osmolal gap: an accurate method for estimating the urinary ammonium concentration? Nephron. 1995;69:98–101.
  • Lolin Y ,Francis DA, Flanagan RJ, et al. Cerebral depression due to propylene glycol in a patient with chronic epilepsy – the value of the plasma osmolal gap in diagnosis. Postgrad Med J. 1988;64:610–613.
  • Liamis G, Filippatos TD, Liontos A, et al. Serum osmolal gap in clinical practice: usefulness and limitations. Postgrad Med. 2017;129:456–459.
  • Krasowski MD, Wilcoxon RM, Miron J. A retrospective analysis of glycol and toxic alcohol ingestion: utility of anion and osmolal gaps. BMC Clin Pathol. 2012;12:1.
  • Kapur G, Valentini RP, Imam AA, et al. Serum osmolal gap in patients with idiopathic nephrotic syndrome and severe edema. Pediatrics. 2007;119:e1404–e1407.
  • Hunderi OH, Hovda KE, Jacobsen D. Use of the osmolal gap to guide the start and duration of dialysis in methanol poisoning. Scand J Urol Nephrol. 2006;40:70–74.
  • Geller RJ, Spyker DA, Herold DA, et al. Serum osmolal gap and ethanol concentration: a simple and accurate formula. J Toxicol Clin Toxicol. 1986;24:77–84.
  • Gaddam M, Velagapudi RK, Abu Sitta E, et al. Two gaps too many, three clues too few? Do elevated osmolal and anion gaps with crystalluria always mean ethylene glycol poisoning? BMJ Case Rep. 2017;2017. DOI:10.1136/bcr-2017-221739
  • Ford JB, Amiri-Davani NC, Diercks DB, et al. Effect of low-osmolality intravenous contrast on serum osmolal gap in adults. J Emerg Med. 2013;45:53–56.
  • Felton D, Ganetsky M, Berg AH. Osmolal gap without anion gap in a 43-year-old man. Clin Chem. 2014;60:446–448.
  • Demedts P, Wauters A, Daelemans R, et al. Osmol gap vs. residual osmolality or excess osmolal gap. J Toxicol Clin Toxicol. 1994;32:89–91, author reply 93–97.
  • Davidson DF. Excess osmolal gap in diabetic ketoacidosis explained. Clin Chem. 1992;38:755–757.
  • Cunningham CA, Ku K, Sue GR. Propylene glycol poisoning from excess whiskey ingestion: a case of high osmolal gap metabolic acidosis. J Investig Med High Impact Case Rep. 2015;3:2324709615603722. DOI:10.1177/2324709615603722. eCollection 2015 Jul-Sep.
  • Choy KW, Wijeratne N, Lu ZX, et al. Harmonisation of osmolal gap – can we use a common formula? Clin Biochem Rev. 2016;37:113–119.
  • Braden GL, Strayhorn CH, Germain MJ, et al. Increased osmolal gap in alcoholic acidosis. Arch Intern Med. 1993;153:2377–2380.
  • Bhagat CI, Garcia-Webb P, Beilby JP, et al. Unexplained osmolal gap in diabetic ketoacidosis (not due to acetone). Clin Chem. 1990;36:403–404.
  • Bhagat CI, Beilby JP, Garcia-Webb P, et al. Errors in estimating ethanol concentration in plasma by using the "osmolal gap". Clin Chem. 1985;31:647–648.
  • Ammar KA, Heckerling PS. Ethylene glycol poisoning with a normal anion gap caused by concurrent ethanol ingestion: importance of the osmolal gap. Am J Kidney Dis. 1996;27:130–133.
  • Almaghamsi AM, Yeung CK. Osmolal gap in alcoholic ketoacidosis. Clin Nephrol. 1997;48:52–53.
  • Alhamad T, Blandon J, Meza AT, et al. Acute kidney injury with oxalate deposition in a patient with a high anion gap metabolic acidosis and a normal osmolal gap. J Nephropathol. 2013;2:139–143.
  • Glasser L, Sternglanz PD, Combie J, et al. Serum osmolality and its applicability to drug overdose. Am J Clin Pathol. 1973;60:695–699.
  • Hoffman RS, Smilkstein MJ, Howland MA, et al. Osmol gaps revisited: normal values and limitations. J Toxicol Clin Toxicol. 1993;31:81–93.
  • Nazir S, Melnick S, Ansari S, et al. Mind the gap: a case of severe methanol intoxication. BMJ Case Rep. 2016;2016. DOI:10.1136/bcr-2015-214272.
  • Udagani C, Ramesh TN. Detection and quantitative determination of diethylene glycol in ethyl alcohol using gamma-ray spectroscopy. J Food Sci Technol. 2015;52:5311–5316.
  • Wu AH, Mckay C, Broussard LA, et al. National academy of clinical biochemistry laboratory medicine practice guidelines: recommendations for the use of laboratory tests to support poisoned patients who present to the emergency department. Clin Chem. 2003;49:357–379.
  • Vernon C, Letourneau J. Lactic acidosis: recognition, kinetics, and associated prognosis. Crit Care Clin. 2010;26:255–283.
  • van der Beek A, de Meijer PH, Meinders AE. Lactic acidosis: pathophysiology, diagnosis and treatment. Neth J Med. 2001;58:128–136.
  • Jastrzębski Z, Żychowska M, Konieczna A, et al. Changes in the acid–base balance and lactate concentration in the blood in amateur ultramarathon runners during a 100-km run. Biol Sport. 2015;32:261–265.
  • Harper LD, Clifford T, Briggs MA, et al. The effects of 120 minutes of simulated match play on indices of acid–base balance in professional academy soccer players. J Strength Cond Res. 2016;30:1517–1524.
  • Hanon C, Savarino J, Thomas C. Blood lactate and acid–base balance of world-class amateur boxers after three 3-minute rounds in international competition. J Strength Cond Res. 2015;29:942–946.
  • Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, et al. Comprehensive review on lactate metabolism in human health. Mitochondrion. 2014;17:76–100.
  • Bellomo R. Bench-to-bedside review: lactate and the kidney. Crit Care. 2002;6:322–326.
  • Seheult J, Fitzpatrick G, Boran G. Lactic acidosis: an update. Clin Chem Lab Med. 2017;55:322–333.
  • Reddy AJ, Lam SW, Bauer SR, et al. Lactic acidosis: clinical implications and management strategies. Cleve Clin J Med. 2015;82:615–624.
  • Jones NL. Hydrogen ion balance during exercise. Clin Sci. 1980;59:85–91.
  • Pernet P, Bénéteau-Burnat B, Vaubourdolle M, et al. False elevation of blood lactate reveals ethylene glycol poisoning. Am J Emerg Med. 27:132.e1–132.e2.
  • Woo MY, Greenway DC, Nadler SP, et al. Artifactual elevation of lactate in ethylene glycol poisoning. J Emerg Med. 2003;25:289–293.
  • Boissier F, Weiss N, Faisy C. False positive ethylene glycol determination by spectrophotometry in the presence of severe lactic acidosis and ketosis. Ann Emerg Med. 2010;56:75–76.
  • Chaudhry SD, Pandurangan M, Pinnell AE. Lactate gap and ethylene glycol poisoning. Eur J Anaesthesiol. 2007;25:508–524.
  • Giner T, Ojinaga V, Neu N, et al. Ethylene glycol intoxication presenting with high anion gap metabolic acidosis, acute kidney injury and elevated lactate. Pediatr Int. 2018;60:194–195.
  • Nates J, Avidan A, Gozal Y, et al. Appearance of white urine during propofol anesthesia. Anesth Analg. 1995;81:210.
  • Stern AB, Stewart HD, Singh HK, et al. Pink urine after propofol anesthesia. Kidney Int. 2010;78:1193.
  • Blakey SA, Hixson-Wallace JA. Clinical significance of rare and benign side effects: propofol and green urine. Pharmacotherapy. 2000;20:1120.
  • Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15:412–426.
  • Vermeersch N, Stolte C, Fostier K, et al. An unusual case of hyperglycemia, abdominal pain, and increased anion gap acidosis. J Emerg Med. 2010;39:449–453.
  • Szrama J, Smuszkiewicz P. Acid–base disorder analysis during diabetic ketoacidosis using the Stewart approach—a case report. Anaesthesiol Intensive Ther. 2013;45:230–234.
  • Sinha N, Venkatram S, Diaz-Fuentes G. Starvation ketoacidosis: a cause of severe anion gap metabolic acidosis in pregnancy. Case Rep Crit Care. 2014;2014:906283.
  • Schillaci LP, Debrosse SD, McCandless SE. Inborn errors of metabolism with acidosis: organic acidemias and defects of pyruvate and ketone body metabolism. Pediatr Clin N Am. 2018;65:209–230.
  • Csako G. Mesna and other free-sulfhydryl compounds produce false-positive results in a urine test strip method for ascorbic acid. Clin Chem. 1999;45:2295–2296.
  • Rosenbloom AL, Malone JI. Recognition of impending ketoacidosis delayed by ketone reagent strip failure. JAMA. 1978;240:2462–2464.
  • Cook JD, Strauss KA, Caplan YH, et al. Urine pH: the effects of time and temperature after collection. J Anal Toxicol. 2007;31:486–496.
  • Kwong T, Robinson C, Spencer D, et al. Accuracy of urine pH testing in a regional metabolic renal clinic: is the dipstick accurate enough? Urolithiasis. 2013;41:129–132.
  • Delanghe J, Speeckaert M. Preanalytical requirements of urinalysis. Biochem Med (Zagreb). 2014;24:89–104.
  • Wrong O. Distal renal tubular acidosis: the value of urinary pH, PCO2 and NH4+ measurements. Pediatr Nephrol. 1991;5:249–255.
  • Raphael KL, Ix JH. Correlation of urine ammonium and urine osmolal gap in kidney transplant recipients. Clin J Am Soc Nephrol. 2018;13:638–640.
  • Soriano JR. Renal tubular acidosis: the clinical entity. Am Soc Nephrol. 2002;13:2160–2170.
  • Katzir Z, Dinour D, Reznik-Wolf H, et al. Familial pure proximal renal tubular acidosis—a clinical and genetic study. Nephrol Dial Transplant. 2008;23:1211–1215.
  • DuBose TD. Disorders of acid–base balance. In: Skorecki K, Chertow GM, Marsden PA, et al., editors. Brenner & Rector's the kidney. 10th ed. Philadelphia (PA): Elsevier; 2016. p. 512–558.
  • Alkahtani S, Sammons H, Choonara I. Epidemics of acute renal failure in children (diethylene glycol toxicity). Arch Dis Child. 2010;95:1062–1064.
  • Kraut JA, Kurtz I. Toxic alcohol ingestions: clinical features, diagnosis, and management. Clin J Am Soc Nephrol. 2008;3:208–225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.