505
Views
31
CrossRef citations to date
0
Altmetric
Review Article

Designing and optimizing new antimicrobial peptides: all targets are not the same

ORCID Icon, ORCID Icon & ORCID Icon
Pages 351-373 | Received 10 Dec 2018, Accepted 10 Jun 2019, Published online: 09 Aug 2019

References

  • (a) Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40:277–283.
  • Fleischmann C, Scherag A, Adhikari NK. Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations. Am J Respir Crit Care Med. 2016;193:259–272.
  • O’Neill J. Tackling drug-resistant infections globally: Final report and recommendations. Review on antimicrobial resistance. 2016:84. Availabe from: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
  • WHO. Global action plan on antimicrobial resistance. 2015. Availabe from: https://www.who.int/antimicrobial-resistance/global-action-plan/en/
  • Haney EF, Mansour SC, Hancock RE. Antimicrobial peptides: an introduction. Methods Mol Biol. 2017;1548:3–22.
  • Lai Y, Villaruz AE, Li M, et al. The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. Mol Microbiol. 2007;63:497–506.
  • Soblosky L, Ramamoorthy A, Chen Z. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy. Chem Phys Lipids. 2015;187:20–33.
  • Le CF, Fang CM, Sekaran SD. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother. 2017;61:pii: e02340-16.
  • Fox JL. Antimicrobial peptides stage a comeback [News]. Nat Biotechnol. 2013;31:379–382.
  • Ramesh S, Govender T, Kruger HG, et al. Short antimicrobial peptides (SAMPs) as a class of extraordinary promising therapeutic agents. J Pept Sci. 2016;22:438–451.
  • Hu J, Chen C, Zhang S, et al. Designed antimicrobial and antitumor peptides with high selectivity. Biomacromolecules. 2011;12:3839–3843.
  • Rotem S, Mor A. Antimicrobial peptide mimics for improved therapeutic properties. Biochim Biophys Acta. 2009;1788:1582–1592.
  • Edwards IA, Elliott AG, Kavanagh AM, et al. Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of beta-hairpin peptides. ACS Infect Dis. 2016;2:442–450.
  • Zhang SK, Song JW, Gong F, et al. Design of an alpha-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep. 2016;6:27394.
  • Lv Y, Wang J, Gao H, et al. Antimicrobial properties and membrane-active mechanism of a potential alpha-helical antimicrobial derived from cathelicidin PMAP-36. PLoS One. 2014;9:e86364.
  • Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013;6:1543–1575.
  • Kasuga G, Tanaka M, Harada Y, et al. Homologous expression and characterization of Gassericin T and Gassericin S, a novel class iib bacteriocin produced by Lactobacillus gasseri LA327. Appl Environ Microbiol. 2019;85:pii: e02815-18.
  • Steiner H, Hultmark D, Engstrom A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981;292:246–248.
  • Wang M, Lin J, Sun Q, et al. Design, expression, and characterization of a novel cecropin A-derived peptide with high antibacterial activity. Appl Microbiol Biotechnol. 2019;103:1765–1775.
  • Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA. 1987;84:5449–5453.
  • Mor A, Hani K, Nicolas P. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem. 1994;269:31635–31641.
  • Ghosh JK, Shaool D, Guillaud P, et al. Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis. J Biol Chem. 1997;272:31609–31616.
  • Alfred RL, Palombo EA, Panozzo JF, et al. The antimicrobial domains of wheat puroindolines are cell-penetrating peptides with possible intracellular mechanisms of action. PLoS One. 2013;8:e75488.
  • Vriens K, Cammue BP, Thevissen K. Antifungal plant defensins: mechanisms of action and production [Research Support, Non-U.S. Gov't Review]. Molecules. 2014;19:12280–12303.
  • Huang Y, Huang J, Chen Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell. 2010;1:143–152.
  • Wang G. Post-translational modifications of natural antimicrobial peptides and strategies for peptide engineering. Curr Biotechnol. 2012;1:72–79.
  • Kleshchenko YE, Zhigunova AV, Dalin MV, et al. Peptides selected using phage library variants, effectively inhibit Trypanosoma cruzi infection. Bull Exp Biol Med. 2017;163:361–364.
  • Rondon-Villarreal P, Sierra DA, Torres R. Machine learning in the rational design of antimicrobial peptides. Curr Comput Aided Drug Des. 2014;10:183–190.
  • Maccari G, Di Luca M, Nifosì R. In silico design of antimicrobial peptides. Methods Mol Biol. 2015;1268:195–219.
  • McCarthy KA, Kelly MA, Li K, et al. Phage display of dynamic covalent binding motifs enables facile development of targeted antibiotics. J Am Chem Soc. 2018;140:6137–6145.
  • Nagarajan D, Nagarajan T, Roy N, et al. Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. J Biol Chem. 2017;293:3492–3509.
  • Wang XJ, Wang XM, Teng D, et al. Recombinant production of the antimicrobial peptide NZ17074 in Pichia pastoris using SUMO3 as a fusion partner. Lett Appl Microbiol. 2014;59:71–78.
  • Omardien S, Drijfhout JW, van Veen H, et al. Synthetic antimicrobial peptides delocalize membrane bound proteins thereby inducing a cell envelope stress response. Biochim Biophys Acta. 2018;1860:2416–2427.
  • Conlon JM, Galadari S, Raza H, et al. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7. Chem Biol Drug Des. 2008;72:58–64.
  • Maturana P, Martinez M, Noguera ME, et al. Lipid selectivity in novel antimicrobial peptides: implication on antimicrobial and hemolytic activity. Colloids Surf B Biointerfaces. 2017;153:152–159.
  • Kim EY, Rajasekaran G, Shin SY. LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity. Eur J Med Chem. 2017;136:428–441.
  • Thery T, O'Callaghan Y, O'Brien N, et al. Optimisation of the antifungal potency of the amidated peptide H-Orn-Orn-Trp-Trp-NH2 against food contaminants. Int J Food Microbiol. 2018;265:40–48.
  • Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163–175.
  • Lyu Y, Yang Y, Lyu X, et al. Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Sci Rep. 2016;6:27258.
  • CLSI CaLSI. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; Approved Standard - Second Edition. CLSI document M38-A2. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.
  • CLSI CaLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard – Ninth Edition. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.
  • Rivas-Santiago B, Rivas Santiago CE, Castaneda-Delgado JE, et al. Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis. Int J Antimicrob Agents. 2013;41:143–148.
  • FDA. The Drug Development Process. 2018. Available from: https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process.
  • Chou HT, Wen HW, Kuo TY, et al. Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity. Peptides. 2010;31:1811–1820.
  • Sun S, Zhao G, Huang Y, et al. Enantiomeric effect of d-amino acid substitution on the mechanism of action of alpha-helical membrane-active peptides. Int J Mol Sci. 2017;19:pii: E67.
  • Gunasekera S, Muhammad T, Stromstedt AA, et al. Alanine and lysine scans of the LL-37-derived peptide fragment KR-12 reveal key residues for antimicrobial activity. Chem Biochem. 2018;19:931–939.
  • Greber KE, Dawgul M. Antimicrobial peptides under clinical trials. Curr Top Med Chem. 2017;17:620–628.
  • European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 2003;9:ix–xv.
  • Tran KN, Rybak MJ. Beta-lactams combinations with vancomycin provide synergy against VSSA, hVISA, and VISA. Antimicrob Agents Chemother. 2018;62:pii: e00157-18.
  • Zeitler B, Herrera Diaz A, Dangel A, et al. De-novo design of antimicrobial peptides for plant protection. PLoS One. 2013;8:e71687.
  • Peng SY, You RI, Lai MJ, et al. Highly potent antimicrobial modified peptides derived from the Acinetobacter baumannii phage endolysin LysAB2. Sci Rep. 2017;7:11477.
  • Rathinakumar R, Walkenhorst WF, Wimley WC. Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity. J Am Chem Soc. 2009;131:7609–7617.
  • Sitaram N, Chandy M, Pillai VN, et al. Change of glutamic acid to lysine in a 13-residue antibacterial and hemolytic peptide results in enhanced antibacterial activity without increase in hemolytic activity. Antimicrob Agents Chemother. 1992;36:2468–2472.
  • Chen Y, Mant CT, Farmer SW, et al. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem. 2005;280:12316–12329.
  • Munk JK, Uggerhoj LE, Poulsen TJ, et al. Synthetic analogs of anoplin show improved antimicrobial activities. J Pept Sci. 2013;19:669–675.
  • Domhan C, Uhl P, Meinhardt A, et al. A novel tool against multiresistant bacterial pathogens – lipopeptide modification of the natural antimicrobial peptide ranalexin for enhanced antimicrobial activity and improved pharmacokinetics. Int J Antimicrob Agents. 2018;52:52–62.
  • Hwang PM, Vogel HJ. Structure-function relationships of antimicrobial peptides. Biochem Cell Biol. 1998;76:235–246.
  • Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta. 2006;1758:1184–1202.
  • Abdel Monaim SAH, Jad YE, El-Faham A, et al. Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study. Bioorg Med Chem. 2017;26:2788–2796.
  • Ahn M, Jacob B, Gunasekaran P, et al. Poly-lysine peptidomimetics having potent antimicrobial activity without hemolytic activity. Amino Acids. 2014;46:2259–2269.
  • Barreto-Santamaria A, Curtidor H, Arevalo-Pinzon G, et al. A new synthetic peptide having two target of antibacterial action in E. coli ML35. Front Microbiol. 2016;7:2006.
  • Amirkia VD, Qiubao P. The Antimicrobial Index: a comprehensive literature-based antimicrobial database and reference work. Bioinformation. 2011;5:365–366.
  • Flamm RK, Rhomberg PR, Simpson KM, et al. In vitro spectrum of pexiganan activity when tested against pathogens from diabetic foot infections and with selected resistance mechanisms. Antimicrob Agents Chemother. 2015;59:1751–1754.
  • National Center for Biotechnology Information. [Internet]. [cited 2018 Apr 13]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/16132253
  • Katvars LK, Mercer DK, O’Neil DA. Novarifyn® (NP432), a novel antimicrobial peptide rapidly active against multi-drug-resistant Acinetobacter baumannii and methicillin resistant Staphylococcus aureus. Vienna (Austria): European Congress of Clinical Microbiology and Infectious Diseases (ECCMID); 2017.
  • Pfaller MA, Mendes RE, Sader HS, et al. Activity of dalbavancin tested against Gram-positive clinical isolates causing skin and skin-structure infections in paediatric patients from US hospitals (2014–2015). J Glob Antimicrob Resist. 2017;11:4–7. 
  • Pfaller MA, Flamm RK, Castanheira M, et al. Dalbavancin in vitro activity obtained against gram-positive clinical isolates causing bone and joint infections in United States and european hospitals (2011–2016). Int J Antimicrob Agents. 2018;51:608–611.
  • Galluzzo M, D'Adamio S, Bianchi L, et al. Pharmacokinetic drug evaluation of dalbavancin for the treatment of skin infections. Expert Opin Drug Metab Toxicol. 2018;14:197–206.
  • Kowalski RP, Romanowski EG, Yates KA, et al. An independent evaluation of a novel peptide mimetic, Brilacidin (PMX30063), for Ocular Anti-infective. J Ocul Pharmacol Ther. 2016;32:23–27.
  • Zhang L, Scheicher S, Harris S, et al. Lipohexapeptide HB1345: a novel anti-infective for acne. Chicago (IL): American Academy of Dermatology Meeting; 2008.
  • Citron DM, Tyrrell KL, Merriam CV, et al. In vitro activities of CB-183,315, vancomycin, and metronidazole against 556 strains of Clostridium difficile, 445 other intestinal anaerobes, and 56 Enterobacteriaceae species. Antimicrob Agents Chemother. 2012;56:1613–1615.
  • Snydman DR, Jacobus NV, McDermott LA. Activity of a novel cyclic lipopeptide, CB-183,315, against resistant Clostridium difficile and other Gram-positive aerobic and anaerobic intestinal pathogens. Antimicrob Agents Chemother. 2012;56:3448–3452.
  • Saravolatz LD, Pawlak J, Johnson L, et al. In vitro activities of LTX-109, a synthetic antimicrobial peptide, against methicillin-resistant, vancomycin-intermediate, vancomycin-resistant, daptomycin-nonsusceptible, and linezolid-nonsusceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56:4478–4482.
  • Umerska A, Cassisa V, Bastiat G, et al. Synergistic interactions between antimicrobial peptides derived from plectasin and lipid nanocapsules containing monolaurin as a cosurfactant against Staphylococcus aureus. Int J Nanomedicine. 2017;12:5687–5699.
  • Fritsche TR, Rhomberg PR, Sader HS, et al. Antimicrobial activity of omiganan pentahydrochloride tested against contemporary bacterial pathogens commonly responsible for catheter-associated infections. J Antimicrob Chemother. 2008;61:1092–1098.
  • Ghobrial OG, Derendorf H, Hillman JD. Pharmacodynamic activity of the lantibiotic MU1140. Int J Antimicrob Agents. 2009;33:70–74.
  • Kaplan CW, Sim JH, Shah KR, et al. Selective membrane disruption: mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob Agents Chemother. 2011;55:3446–3452.
  • Rothstein DM, Spacciapoli P, Tran LT, et al. Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother. 2001;45:1367–1373.
  • Katvars L, Smith D, Duncan V, et al. NP339 as a novel approach against respiratory fungal infections. Vienna (Austria): European Congress of Clinical Microbiology and Infectious Diseases ECCMID; 2017.
  • Li S, Breaker RR. Fluoride enhances the activity of fungicides that destabilize cell membranes. Bioorg Med Chem Lett. 2012;22:3317–3322.
  • North JR, Takenaka S, Rozek A, et al. A novel approach for emerging and antibiotic resistant infections: Innate defense regulators as an agnostic therapy. J Biotechnol. 2016;226:24–34.
  • Ramachandran G, Kaempfer R, Chung CS, et al. CD28 homodimer interface mimetic peptide acts as a preventive and therapeutic agent in models of severe bacterial sepsis and gram-negative bacterial peritonitis. J Infect Dis. 2015;211:995–1003.
  • Usachev KS, Efimov SV, Kolosova OA, et al. Antimicrobial peptide protegrin-3 adopt an antiparallel dimer in the presence of DPC micelles: a high-resolution NMR study. J Biomol Nmr. 2015;62:71–79.
  • Avitabile C, D'Andrea LD, Romanelli A. Circular dichroism studies on the interactions of antimicrobial peptides with bacterial cells. Sci Rep. 2014;4:4293.
  • Chai H, Allen WE, Hicks RP. Spectroscopic investigations of the binding mechanisms between antimicrobial peptides and membrane models of Pseudomonas aeruginosa and Klebsiella pneumoniae. Bioorg Med Chem. 2014;22:4210–4222.
  • Wang G. Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol Biol. 2015;1268:43–66.
  • Jin L, Bai X, Luan N, et al. designed tryptophan- and lysine/arginine-rich antimicrobial peptide with therapeutic potential for clinical antibiotic-resistant Candida albicans vaginitis. J Med Chem. 2016;59:1791–1799.
  • Munoz A, Lopez-Garcia B, Perez-Paya E, et al. Antimicrobial properties of derivatives of the cationic tryptophan-rich hexapeptide PAF26. Biochem Biophys Res Comm. 2007;354:172–177.
  • Gonzalez R, Mendive-Tapia L, Pastrian MB, et al. Enhanced antimicrobial activity of a peptide derived from human lysozyme by arylation of its tryptophan residues. J Pept Sci. 2016;22:123–128.
  • He R, Di Bonaventura I, Visini R, et al. Design, crystal structure and atomic force microscopy study of thioether ligated d,l-cyclic antimicrobial peptides against multidrug resistant Pseudomonas aeruginosa. Chem Sci. 2017;8:7464–7475.
  • Li X, Li Y, Han H, et al. Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J Am Chem Soc. 2006;128:5776–5785.
  • Townsley LE, Tucker WA, Sham S, et al. Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles. Biochemistry. 2001;40:11676–11686.
  • Becucci L, Valensin D, Innocenti M, et al. Dermcidin, an anionic antimicrobial peptide: influence of lipid charge, pH and Zn2+ on its interaction with a biomimetic membrane. Soft Matter. 2014;10:616–626.
  • Wang G. Database-guided discovery of potent peptides to combat HIV-1 or superbugs. Pharmaceuticals (Basel). 2013;6:728–758.
  • Mulder KC, Lima LA, Miranda VJ, et al. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol. 2013;4:321.
  • Ueno S, Minaba M, Nishiuchi Y, et al. Generation of novel cationic antimicrobial peptides from natural non-antimicrobial sequences by acid-amide substitution. Ann Clin Microbiol Antimicrob. 2011;10:11.
  • da Silva AV, De Souza BM, Dos Santos Cabrera MP, et al. The effects of the C-terminal amidation of mastoparans on their biological actions and interactions with membrane-mimetic systems. Biochim Biophys Acta. 2014;1838:2357–2368.
  • Bea Rde L, Petraglia AF, Johnson LE. Synthesis, antimicrobial activity and toxicity of analogs of the scorpion venom BmKn peptides. Toxicon. 2015;101:79–84.
  • Jenssen H. Therapeutic approaches using host defence peptides to tackle herpes virus infections. Viruses. 2009;1:939–964.
  • Xiao H, Shao F, Wu M, et al. The application of antimicrobial peptides as growth and health promoters for swine. J Anim Sci Biotechnol. 2015;6:19.
  • Vermeer LS, Lan Y, Abbate V, et al. Conformational flexibility determines selectivity and antibacterial, antiplasmodial, and anticancer potency of cationic alpha-helical peptides. J Biol Chem. 2012;287:34120–34133.
  • Wang G, Hanke ML, Mishra B, et al. Transformation of human cathelicidin LL-37 into selective, stable, and potent antimicrobial compounds. ACS Chem Biol. 2014;9:1997–2002.
  • Hwang H, Hyun S, Kim Y, et al. Reduction of helical content by insertion of a disulfide bond leads to an antimicrobial peptide with decreased hemolytic activity. ChemMedChem. 2013;8:59–62.
  • Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55:27–55.
  • Son M, Lee Y, Hwang H, et al. Disruption of interactions between hydrophobic residues on nonpolar faces is a key determinant in decreasing hemolysis and increasing antimicrobial activities of alpha-helical amphipathic peptides. ChemMedChem. 2013;8:1638–1642.
  • Chang TW, Wei SY, Wang SH, et al. Hydrophobic residues are critical for the helix-forming, hemolytic and bactericidal activities of amphipathic antimicrobial peptide TP4. PLoS One. 2017;12:e0186442.
  • Yang G, Wang J, Lu S, et al. Short lipopeptides specifically inhibit the growth of Propionibacterium acnes with antibacterial and anti-inflammatory dual action. Br J Pharmacol. 2019;176:1603–1618.
  • Gautier R, Douguet D, Antonny B, et al. HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics. 2008;24:2101–2102.
  • Blazyk J, Wiegand R, Klein J, et al. A novel linear amphipathic beta-sheet cationic antimicrobial peptide with enhanced selectivity for bacterial lipids. J Biol Chem. 2001;276:27899–27906.
  • Omardien S, Drijfhout JW, Vaz FM, et al. Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer. Biochim Biophys Acta Biomembr. 2018;1860:2404–2415.
  • Dziuba B, Dziuba M. New milk protein-derived peptides with potential antimicrobial activity: an approach based on bioinformatic studies. Int J Mol Sci. 2014;15:14531–14545.
  • Wackett LP. Antimicrobial peptides: an annotated selection of world wide web sites relevant to the topics in microbial biotechnology. Microb Biotechnol. 2019;12:180–181.
  • Waghu FH, Barai RS, Gurung P, et al. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 2016;44:D1094–D1097.
  • Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44:D1087–D1093.
  • Porto WF, Pires AS, Franco OL. Computational tools for exploring sequence databases as a resource for antimicrobial peptides. Biotechnol Adv. 2017;35:337–349.
  • Liu S, Fan L, Sun J, et al. Computational resources and tools for antimicrobial peptides. J Pept Sci. 2017;23:4–12.
  • Torres MDT, Sothiselvam S, Lu TK, et al. Peptide design principles for antimicrobial applications. J Mol Biol. 2019;pii: S0022-2836(18)31289-0.
  • Mishra B, Wang G. Ab initio design of potent anti-MRSA peptides based on database filtering technology. J Am Chem Soc. 2012;134:12426–12429.
  • Porto WF, Irazazabal L, Alves ESF, et al. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nature Comm. 2018;9:1490.
  • Chou S, Wang J, Shang L, et al. Short, symmetric-helical peptides have narrow-spectrum activity with low resistance potential and high selectivity. Biomaterials Sci. 2019;7:2349–2409.
  • Andreu D, Torrent M. Prediction of bioactive peptides using artificial neural networks. Methods Mol Biol. 2015;1260:101–118.
  • Madanchi H, Akbari S, Shabani AA, et al. Alignment-based design and synthesis of new antimicrobial Aurein-derived peptides with improved activity against Gram-negative bacteria and evaluation of their toxicity on human cells. Drug Dev Res. 2019;80:162–170.
  • Pillong M, Hiss JA, Schneider P, et al. Rational design of membrane-pore-forming peptides. Small. 2017;13. DOI:10.1002/smll.201701316.
  • Rondon-Villarreal P, Pinzon-Reyes E. Computer aided design of non-toxic antibacterial peptides. Curr Top Med Chem. 2018;18:1044–1052.
  • Yan J, Wang K, Dang W, et al. Two hits are better than one: membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin. Antimicrob Agents Chemother. 2013;57:220–228.
  • Hao G, Shi YH, Tang YL, et al. The intracellular mechanism of action on Escherichia coli of BF2-A/C, two analogues of the antimicrobial peptide Buforin 2. J Microbiol. 2013;51:200–206.
  • Dangel A, Ackermann N, Abdel-Hadi O, et al. A de novo-designed antimicrobial peptide with activity against multiresistant Staphylococcus aureus acting on RsbW kinase. FASEB J. 2013;27:4476–4488.
  • Malanovic N, Leber R, Schmuck M, et al. Phospholipid-driven differences determine the action of the synthetic antimicrobial peptide OP-145 on Gram-positive bacterial and mammalian membrane model systems. Biochim Biophys Acta. 2015;1848:2437–2447.
  • Sun S, Zhao G, Huang Y, et al. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy. Sci Rep. 2016;6:29145.
  • Arouri A, Dathe M, Blume A. Peptide induced demixing in PG/PE lipid mixtures: a mechanism for the specificity of antimicrobial peptides towards bacterial membranes? Biochim Biophys Acta. 2009;1788:650–659.
  • Patino-Marquez IA, Manrique-Moreno M, Patino-Gonzalez E, et al. Effect of antimicrobial peptides from Galleria mellonella on molecular models of Leishmania membrane. Thermotropic and fluorescence anisotropy study. J Antibiot (Tokyo). 2018;71:642–652.
  • Epand RF, Schmitt MA, Gellman SH, et al. Role of membrane lipids in the mechanism of bacterial species selective toxicity by two alpha/beta-antimicrobial peptides. Biochim Biophys Acta. 2006;1758:1343–1350.
  • Dickson RC. Sphingolipid functions in Saccharomyces cerevisiae: comparison to mammals. Annu Rev Biochem. 1998;67:27–48.
  • Daleke DL. Regulation of phospholipid asymmetry in the erythrocyte membrane. Curr Opin Hematol. 2008;15:191–195.
  • van der Rest ME, Kamminga AH, Nakano A, et al. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev. 1995;59:304–322.
  • Ebenhan T, Gheysens O, Kruger HG, et al. Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. Biomed Res Int. 2014;2014:867381.
  • Lee DK, Bhunia A, Kotler SA, et al. Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: a solid-state nuclear magnetic resonance study. Biochemistry. 2015;54:1897–1907.
  • Zwaal RF, Comfurius P, Bevers EM. Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci. 2005;62:971–988.
  • Whitman WB. The modern concept of the procaryote. J Bacteriol. 2009;191:2000–2005.
  • Hobot J, Bacterial ultrastructure. Chapter 2. In: Tang Y-W, Sussman M, Liu D, et al., eds. Molecular medical microbiology. 2nd ed. Cardiff, UK: Elsevier Science; 2014:7–32.
  • Epand RF, Savage PB, Epand RM. Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim Biophys Acta. 2007;1768:2500–2509.
  • Ahmed A, Rushworth JV, Hirst NA, et al. Biosensors for whole-cell bacterial detection. Clin Microbiol Rev. 2014;27:631–646.
  • Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 2009;1794:808–816.
  • Miller SI. Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. MBio. 2016;7:pii: e01541-16.
  • Piers KL, Brown MH, Hancock RE. Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob Agents Chemother. 1994;38:2311–2316.
  • Zawadzka K, Bernat P, Felczak A, et al. Antibacterial activity of high concentrations of carvedilol against Gram-positive and Gram-negative bacteria. Int J Antimicrob Agents. 2018;51:458–467.
  • Hasper HE, Kramer NE, Smith JL, et al. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Sci. 2006;313:1636–1637.
  • Percy MG, Grundling A. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol. 2014;68:81–100.
  • Saar-Dover R, Bitler A, Nezer R, et al. D-alanylation of lipoteichoic acids confers resistance to cationic peptides in group B streptococcus by increasing the cell wall density. PLoS Pathog. 2012;8:e1002891.
  • Malanovic N, Lohner K. Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochim Biophys Acta. 2016;1858:936–946.
  • Ernst CM, Peschel A. Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Mol Microbiol. 2011;80:290–299.
  • Zhang T, Muraih JK, Tishbi N, et al. Cardiolipin prevents membrane translocation and permeabilization by daptomycin. J Biol Chem. 2014;289:11584–11591.
  • Maria-Neto S, de Almeida KC, Macedo ML, et al. Understanding bacterial resistance to antimicrobial peptides: from the surface to deep inside. Biochim Biophys Acta. 2015;1848:3078–3088.
  • Rautenbach M, Troskie AM, Vosloo JA. Antifungal peptides: to be or not to be membrane active. Biochimie. 2016;130:132–145.
  • Wang K, Yan J, Dang W, et al. Dual antifungal properties of cationic antimicrobial peptides polybia-MPI: membrane integrity disruption and inhibition of biofilm formation. Peptides. 2014;56:22–29.
  • Henderson CM, Block DE. Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol. 2014;80:2966–2972.
  • Feigin AM, Schagina LV, Takemoto JY, et al. The effect of sterols on the sensitivity of membranes to the channel-forming antifungal antibiotic, syringomycin E. Biochim Biophys Acta. 1997;1324:102–110.
  • Czub J, Baginski M. Comparative molecular dynamics study of lipid membranes containing cholesterol and ergosterol. Biophys J. 2006;90:2368–2382.
  • Smits GJ, Kapteyn JC, van den Ende H, et al. Cell wall dynamics in yeast. Curr Opin Microbiol. 1999;2:348–352.
  • Endo M, Takesako K, Kato I, et al. Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1997;41:672–676.
  • Levitz SM, Selsted ME, Ganz T, et al. In vitro killing of spores and hyphae of Aspergillus fumigatus and Rhizopus oryzae by rabbit neutrophil cationic peptides and bronchoalveolar macrophages. J Infect Dis. 1986;154:483–489.
  • Osumi M. The ultrastructure of yeast: cell wall structure and formation. Micron. 1998;29:207–233.
  • Ruiz-Herrera J, Mormeneo S, Vanaclocha P, et al. Structural organization of the components of the cell wall from Candida albicans. Microbiology. 1994;140: 1513–1523.
  • van der Weerden NL, Hancock RE, Anderson MA. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. J Biol Chem. 2010;285:37513–37520.
  • Yeaman MR, Buttner S, Thevissen K. Regulated cell death as a therapeutic target for novel antifungal peptides and biologics. Oxid Med Cell Longev. 2018;2018:1.
  • Shartouny JR, Jacob J. Mining the tree of life: host defense peptides as antiviral therapeutics. Semin Cell Dev Biol. 2019;88:147–155.
  • Falco A, Ortega-Villaizan M, Chico V, et al. Antimicrobial peptides as model molecules for the development of novel antiviral agents in aquaculture. Mini Rev Med Chem. 2009;9:1159–1164.
  • Hsieh IN, Hartshorn KL. The role of antimicrobial peptides in influenza virus infection and their potential as antiviral and immunomodulatory therapy. Pharmaceuticals. 2016;9:pii: E53.
  • Owen SM, Rudolph DL, Wang W, et al. RC-101, a retrocyclin-1 analogue with enhanced activity against primary HIV type 1 isolates. AIDS Res Hum Retroviruses. 2004;20:1157–1165.
  • Tripathi S, Wang G, White M, et al. Antiviral activity of the human cathelicidin, ll-37, and derived peptides on seasonal and pandemic influenza A viruses. PLoS One. 2015;10:e0124706.
  • Aloia RC, Tian H, Jensen FC. Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Nat Acad Sci USA. 1993;90:5181–5185.
  • Lorizate M, Krausslich HG. Role of lipids in virus replication. Cold Spring Harbor Perspect Biol. 2011;3:a004820.
  • Buck CB, Day PM, Thompson CD, et al. Human alpha-defensins block papillomavirus infection. Proc Nat Acad Sciences USA. 2006;103:1516–1521.
  • Chang TL, Vargas J, Jr., DelPortillo A, et al. Dual role of alpha-defensin-1 in anti-HIV-1 innate immunity. J Clin Invest. 2005;115:765–773.
  • Jacobs T, Bruhn H, Gaworski I, et al. NK-lysin and its shortened analog NK-2 exhibit potent activities against Trypanosoma cruzi. Antimicrob Agents Chemother. 2003;47:607–613.
  • Gelhaus C, Jacobs T, Andra J, et al. The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum. Antimicrob Agents Chemother. 2008;52:1713–1720.
  • Hernandez C, Mor A, Dagger F, et al. Functional and structural damage in Leishmania mexicana exposed to the cationic peptide dermaseptin. Eur J Cell Biol. 1992;59:414–424.
  • Mor A. Multifunctional host defense peptides: antiparasitic activities. FEBS J. 2009;276:6474–6482.
  • Sherman IW, Prudhomme J, Tait JF. Altered membrane phospholipid asymmetry in Plasmodium falciparum-infected erythrocytes. Parasitol Today (Regul. Ed.). 1997;13:242–243.
  • Eda S, Sherman IW. Cytoadherence of malaria-infected red blood cells involves exposure of phosphatidylserine. Cell Physiol Biochem. 2002;12:373–384.
  • Henriques C, Atella GC, Bonilha VL, et al. Biochemical analysis of proteins and lipids found in parasitophorous vacuoles containing Leishmania amazonensis. Parasitol Res. 2003;89:123–133.
  • Krugliak M, Feder R, Zolotarev VY, et al. Antimalarial activities of dermaseptin S4 derivatives. Antimicrob Agents Chemother. 2000;44:2442–2451.
  • Marechal E, Riou M, Kerboeuf D, et al. Membrane lipidomics for the discovery of new antiparasitic drug targets. Trends Parasitol. 2011;27:496–504.
  • Merriman JA, Nemeth KA, Schlievert PM. Novel antimicrobial peptides that inhibit gram positive bacterial exotoxin synthesis. PLoS One. 2014;9:e95661.
  • Sarma P, Mahendiratta S, Prakash A, et al. Specifically targeted antimicrobial peptides: a new and promising avenue in selective antimicrobial therapy. Indian J Pharmacol. 2018;50:1–3.
  • Huo L, Huang X, Ling J, et al. Selective activities of STAMPs against Streptococcus mutans. Exp Ther Med. 2018;15:1886–1893.
  • He J, Anderson MH, Shi W, et al. Design and activity of a 'dual-targeted' antimicrobial peptide. Int J Antimicrob Agents. 2009;33:532–537.
  • de la Fuente-Nunez C, Torres MD, Mojica FJ, et al. Next-generation precision antimicrobials: towards personalized treatment of infectious diseases. Curr Opin Microbiol. 2017;37:95–102.
  • Torres MDT, Andrade GP, Sato RH, et al. Natural and redesigned wasp venom peptides with selective antitumoral activity. Beilstein J Org Chem. 2018;14:1693–1703.
  • Rasamiravaka T, Labtani Q, Duez P, et al. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int. 2015;2015:1.
  • Pletzer D, Coleman SR, Hancock R. Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr Opin Microbiol. 2016;33:35–40.
  • Ribeiro SM, de la Fuente-Nunez C, Baquir B, et al. Antibiofilm peptides increase the susceptibility of carbapenemase-producing Klebsiella pneumoniae clinical isolates to beta-lactam antibiotics. Antimicrob Agents Chemother. 2015;59:3906–3912.
  • Yasir M, Willcox MDP, Dutta D. Action of antimicrobial peptides against bacterial biofilms. Materials. 2018;11:pii: E2468.
  • de la Fuente-Nunez C, Cardoso MH, de Souza CE, et al. Synthetic antibiofilm peptides. Biochim Biophys Acta. 2016;1858:1061–1069.
  • Bevers EM, Comfurius P, Zwaal RF. Regulatory mechanisms in maintenance and modulation of transmembrane lipid asymmetry: pathophysiological implications. Lupus. 1996;5:480–487.
  • Baxter AA, Richter V, Lay FT, et al. The tomato defensin TPP3 binds phosphatidylinositol (4,5)-bisphosphate via a conserved dimeric cationic grip conformation to mediate cell lysis. Mol Cell Biol. 2015;35:1964–1978.
  • Tsai TL, Li AC, Chen YC, et al. Antimicrobial peptide m2163 or m2386 identified from Lactobacillus casei ATCC 334 can trigger apoptosis in the human colorectal cancer cell line SW480. Tumor Biol. 2015;36:3775–3789.
  • O'Connor S, Szwej E, Nikodinovic-Runic J, et al. The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials. 2013;34:2710–2718.
  • Felicio MR, Silva ON, Goncalves S, et al. Peptides with dual antimicrobial and anticancer activities. Front Chem. 2017;5:5.
  • Into T, Inomata M, Shibata K, et al. Effect of the antimicrobial peptide LL-37 on Toll-like receptors 2-, 3- and 4-triggered expression of IL-6, IL-8 and CXCL10 in human gingival fibroblasts. Cell Immunol. 2010;264:104–109.
  • Drago-Serrano ME, Campos-Rodriguez R, Carrero JC, et al. Lactoferrin and peptide-derivatives: antimicrobial agents with potential use in nonspecific immunity modulation. Curr Pharm Des. 2018;24:1067–1078.
  • Turner MD, Nedjai B, Hurst T, et al. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843:2563–2582.
  • Lee SH, Jun HK, Lee HR, et al. Antibacterial and lipopolysaccharide (LPS)-neutralising activity of human cationic antimicrobial peptides against periodontopathogens. Int J Antimicrob Agents. 2010;35:138–145.
  • Lee EY, Lee MW, Wong GCL. Modulation of toll-like receptor signaling by antimicrobial peptides. Semin Cell Dev Biol. 2019;88:173–184.
  • Sun Y, Shang D. Inhibitory effects of antimicrobial peptides on lipopolysaccharide-induced inflammation. Mediators Inflamm. 2015;2015:1.
  • Ageitos JM, Sanchez-Perez A, Calo-Mata P, et al. Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol. 2017;133:117–138.
  • Food and Drug Administration. Antibacterial Drug Development Task Force. 2013. Availabe from: https://www.fda.gov/drugs/development-resources/antibacterial-drug-development-task-force
  • COMBACTE. Combatting antimicrobial resistance. Available from: https://www.combacte.com/about/
  • World Health Organization. Resolution WHA68.7. Global action plan on antimicrobial resistance. In: Sixty-eighth World Health Assembly. Geneva. 2015. Available from: https://www.who.int/antimicrobial-resistance/global-action-plan/en/
  • Goldstein-Research. Anti microbial peptides market outlook 2024: Global opportunity and demand analysis, market forecast, 2016-2024. 2017. p. 236. Available from: https://www.goldsteinresearch.com/report/anti-microbial-peptides-market-outlook-2024-global-opportunity-and-demand-analysis-market-forecast-2016-2024
  • Muller PY, Milton MN. The determination and interpretation of the therapeutic index in drug development. Nat Rev Drug Discov. 2012;11:751–761.
  • Vlieghe P, Lisowski V, Martinez J, et al. Synthetic therapeutic peptides: science and market. Drug Discov Today. 2010;15:40–56.
  • Santos GB, Ganesan A, Emery FS. Oral administration of peptide-based drugs: beyond Lipinski's rule. ChemMedChem. 2016;11:2245–2251.
  • Svenson J, Vergote V, Karstad R, et al. Metabolic fate of lactoferricin-based antimicrobial peptides: effect of truncation and incorporation of amino acid analogs on the in vitro metabolic stability. J Pharmacol Exp Therap. 2010;332:1032–1039.
  • Falanga A, Nigro E, De Biasi MG, et al. Cyclic peptides as novel therapeutic microbicides: engineering of human defensin mimetics. Molecules. 2017;22:pii: E1217.
  • Liu B, Zhang W, Gou S, et al. Intramolecular cyclization of the antimicrobial peptide Polybia-MPI with triazole stapling: influence on stability and bioactivity. J Pept Sci. 2017;23:824–832.
  • Silva AF, Torres MT, Silva LS, et al. Angiotensin II-derived constrained peptides with antiplasmodial activity and suppressed vasoconstriction. Sci Rep. 2017;7:14326.
  • Migon D, Neubauer D, Kamysz W. Hydrocarbon stapled antimicrobial peptides. Protein J. 2018;37:2–12.
  • Jenner ZB, Crittenden CM, Gonzalez M, et al. Hydrocarbon-stapled lipopeptides exhibit selective antimicrobial activity. Biopolymers. 2017;108. doi:10.1002/smll.201701316.
  • Lau YH, de Andrade P, Wu Y, et al. Peptide stapling techniques based on different macrocyclisation chemistries. Chem Soc Rev. 2015;44:91–102.
  • Czyzewski AM, Jenssen H, Fjell CD, et al. In vivo, in vitro, and in silico characterization of peptoids as antimicrobial agents. PLoS One. 2016;11:e0135961.
  • Bhosle GS, Nawale L, Yeware AM, et al. Antibacterial and anti-TB tat-peptidomimetics with improved efficacy and half-life. Eur J Med Chem. 2018;152:358–369.
  • Arias M, Piga KB, Hyndman ME, et al. Improving the activity of Trp-rich antimicrobial peptides by Arg/Lys substitutions and changing the length of cationic residues. Biomolecules. 2018;8:19.
  • Chu HL, Yu HY, Yip BS, et al. Boosting salt resistance of short antimicrobial peptides. Antimicrob Agents Chemother. 2013;57:4050–4052.
  • Xie D, Yao C, Wang L, et al. An albumin-conjugated peptide exhibits potent anti-HIV activity and long in vivo half-life. Antimicrob Agents Chemother. 2010;54:191–196.
  • Sivertsen A, Isaksson J, Leiros HK, et al. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. BMC Struct Biol. 2014;14:4.
  • Pei J, Feng Z, Ren T, et al. Purification, characterization and application of a novel antimicrobial peptide from Andrias davidianus blood. Lett Appl Microbiol. 2018;66:38–43.
  • Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20:122–128.
  • Carmona-Ribeiro AM, de Melo Carrasco LD. Novel formulations for antimicrobial peptides. Int J Mol Sci. 2014;15:18040–18083.
  • Seo M-D, Won H-S, Kim J-H, et al. Antimicrobial peptides for therapeutic applications: a review. Molecules. 2012;17:12276–12286.
  • Fang B, Guo HY, Zhang M, et al. The six amino acid antimicrobial peptide bLFcin6 penetrates cells and delivers siRNA. FEBS J. 2013;280:1007–1017.
  • Wang G. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem. 2008;283:32637–32643.
  • Bommarius B, Jenssen H, Elliott M, et al. Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides. 2010;31:1957–1965.
  • Cao J, de la Fuente-Nunez C, Ou RW, et al. Yeast-based synthetic biology platform for antimicrobial peptide production. ACS Synth Biol. 2018;7:896–902.
  • Holaskova E, Galuszka P, Micuchova A, et al. Molecular farming in barley: development of a novel production platform to produce human antimicrobial peptide LL-37. Biotechnol J. 2018;13:e1700628.
  • Merrifield B. Solid phase synthesis. Science. 1986;232:341–347.
  • Behrendt R, White P, Offer J. Advances in Fmoc solid-phase peptide synthesis. J Pept Sci. 2016;22:4–27.
  • Made V, Els-Heindl S, Beck-Sickinger AG. Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J Org Chem. 2014;10:1197–1212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.