633
Views
16
CrossRef citations to date
0
Altmetric
Review Articles

The current status of blood epigenetic biomarkers for dementia

ORCID Icon & ORCID Icon
Pages 435-457 | Received 18 Feb 2019, Accepted 30 Jun 2019, Published online: 22 Jul 2019

References

  • Patterson C, World Alzheimer Report 2018. Alzheimer’s Disease International (ADI), London. 2018.
  • Hugo J, Ganguli M. Dementia and cognitive impairment: epidemiology, diagnosis, and treatment. Clin Geriatr Med. 2014;30:421–442.
  • Chertkow H, Feldman HH, Jacova C, et al. Definitions of dementia and predementia states in Alzheimer's disease and vascular cognitive impairment: consensus from the Canadian conference on diagnosis of dementia. Alzheimer's Res Ther. 2013;5:S2.
  • McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34:939–944.
  • Trivedi D. Cochrane Review Summary: Mini-Mental State Examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations. Prim Health Care Res Dev. 2017;18:527–528.
  • Cullen B, O'Neill B, Evans JJ, et al. A review of screening tests for cognitive impairment. J Neurol Neurosurg Psychiatr. 2007;78:790–799.
  • Health Quality Ontario. The appropriate use of neuroimaging in the diagnostic work-up of dementia: an evidence-based analysis. Ont Health Technol Assess Ser. 2014;14(1):1–64.
  • Harper L, Fumagalli GG, Barkhof F, et al. MRI visual rating scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. Brain. 2016;139:1211–1225.
  • Chrisp TAC, Thomas BD, Goddard WA, et al. Dementia timeline: journeys, delays and decisions on the pathway to an early diagnosis. Dementia. 2011;10:555–570.
  • Ryan J, Fransquet P, Wrigglesworth J, et al. Phenotypic heterogeneity in dementia: a challenge for epidemiology and biomarker studies. Front Public Health. 2018;6:181
  • Cunningham EL, McGuinness B, Herron B, et al. Dementia. Ulster Med J. 2015;84:79–87.
  • Gao FB, Almeida S, Lopez-Gonzalez R. Dysregulated molecular pathways in amyotrophic lateral sclerosis-frontotemporal dementia spectrum disorder. EMBO J. 2017;36:2931–2950.
  • Strimbu K, Tavel JA. What are biomarkers? Curr Opin Hiv Aids. 2010;5:463–466.
  • Mythili S, Malathi N. Diagnostic markers of acute myocardial infarction. Biomed Rep. 2015;3:743–748.
  • Dorcely B, Katz K, Jagannathan R, et al. Novel biomarkers for prediabetes, diabetes, and associated complications. DMSO. 2017;10:345–361.
  • Engelborghs S, Niemantsverdriet E, Struyfs H, et al. Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimer's Dement. 2017;8:111–126.
  • Ritchie C, Smailagic N, Noel-Storr AH, et al. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017;(3):CD010803.
  • Niemantsverdriet E, Valckx S, Bjerke M, et al. Alzheimer's disease CSF biomarkers: clinical indications and rational use. Acta Neurol Belg. 2017;117:591–602.
  • Mounsey AL, Zeitler MR. Cerebrospinal fluid biomarkers for detection of alzheimer disease in patients with mild cognitive impairment. Am Fam Physician. 2018;97:714–715.
  • Ahmed SV, Jayawarna C, Jude E. Post lumbar puncture headache: diagnosis and management. Postgrad Med J. 2006;82:713–716.
  • Payoux P, Salabert AS. New PET markers for the diagnosis of dementia. Curr Opin Neurol. 2017;30:608–616.
  • Iaccarino L, Sala A, Caminiti SP, et al. The emerging role of PET imaging in dementia. F1000Res. 2017;6:1830.
  • Johnson KA, Minoshima S, Bohnen NI, et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association. Alzheimer's Dement. 2013;9:e-1–16.
  • Dubois B, Hampel H, Feldman HH, et al. Preclinical Alzheimer's disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 2016;12:292–323.
  • Hostetler ED, Walji AM, Zeng Z, et al. Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med. 2016;57:1599–1606.
  • Chételat G, La Joie R, Villain N, et al. Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer's disease. NeuroImage Clin. 2013;2:356–365.
  • Brown RK, Bohnen NI, Wong KK, et al. Brain PET in suspected dementia: patterns of altered FDG metabolism. Radiographics. 2014;34:684–701.
  • Herholz K. Guidance for reading FDG PET scans in dementia patients. Q J Nucl Med Mol Imaging. 2014;58(4):332–343.
  • Scott KR, Barrett AM. Dementia syndromes: evaluation and treatment. Exp Rev Neurother. 2007;7:407–422.
  • Londin ER, Keller MA, D'Andrea MR, et al. Whole-exome sequencing of DNA from peripheral blood mononuclear cells (PBMC) and EBV-transformed lymphocytes from the same donor. BMC Genomics. 2011;12:464–464.
  • Terry MB, Delgado-Cruzata L, Vin-Raviv N, et al. DNA methylation in white blood cells: association with risk factors in epidemiologic studies. Epigenetics. 2011;6:828–837.
  • Li W, Zhang X, Lu X, et al. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. Cell Res. 2017;27:1243–1257.
  • Chen S-H, Bu X-L, Jin W-S, et al. Altered peripheral profile of blood cells in Alzheimer disease: a hospital-based case-control study. Medicine. 2017;96:e6843–e6843.
  • Claus M, Dychus N, Ebel M, et al. Measuring the immune system: a comprehensive approach for the analysis of immune functions in humans. Arch Toxicol. 2016;90:2481–2495.
  • Wu J, Li L. Autoantibodies in Alzheimer's disease: potential biomarkers, pathogenic roles, and therapeutic implications. J Biomed Res. 2016;30:361–372.
  • Couderc R, Antar M, Bonnefont-Rousselot D, et al. Blood lipid tests in 2017. Ann Biol Clin. 2017;75:646–652.
  • Rahaghi FN, Gough DA. Blood glucose dynamics. Diabetes Technol Ther. 2008;10:81–94.
  • Nissum M, Foucher AL. Analysis of human plasma proteins: a focus on sample collection and separation using free-flow electrophoresis. Expert Rev Proteomics. 2008;5:571–587.
  • Prabhakar NR, Semenza GL. Oxygen sensing and homeostasis. Physiology. 2015;30:340–348.
  • Peters TL, Beard JD, Umbach DM, et al. Blood levels of trace metals and amyotrophic lateral sclerosis. Neurotoxicology. 2016;54:119–126.
  • Menéndez-González M. Routine lumbar puncture for the early diagnosis of Alzheimer's disease. Is it safe? Front Aging Neurosci. 2014;6:65.
  • Arbor SC, LaFontaine M, Cumbay M. Amyloid-beta Alzheimer targets — protein processing, lipid rafts, and amyloid-beta pores. Yale J Biol Med. 2016;89:5–21.
  • Okamura N, Harada R, Furumoto S, et al. Tau PET imaging in Alzheimer's disease. Curr Neurol Neurosci Rep. 2014;14:500.
  • Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15:673–684.
  • Chen Z, Mengel D, Keshavan A, et al. Learnings about the complexity of extracellular tau aid development of a blood-based screen for Alzheimer's disease. Alzheimers Dement. 2018;15(3):487–496.
  • Lue LF, Guerra A, Walker DG. Amyloid beta and tau as Alzheimer's disease blood biomarkers: promise from new technologies. Neurol Ther. 2017;6:25–36.
  • Blennow K. A review of fluid biomarkers for Alzheimer's disease: moving from CSF to blood. Neurol Ther. 2017;6:15–24.
  • Yang SY, Chiu MJ, Chen TF, et al. Detection of plasma biomarkers using immunomagnetic reduction: a promising method for the early diagnosis of Alzheimer's disease. Neurol Ther. 2017;6:37–56.
  • Liu TC, Lee YC, Ko CY, et al. Highly sensitive/selective 3D nanostructured immunoparticle-based interface on a multichannel sensor array for detecting amyloid-beta in Alzheimer's disease. Theranostics. 2018;8:4210–4225.
  • Sun L, Zhong Y, Gui J, et al. A hydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers. Int J Nanomedicine. 2018;13:843–856.
  • Kim H, Lee JU, Song S, et al. A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer's disease biomarkers. Biosens Bioelectron. 2018;101:96–102.
  • Shen L, Liao L, Chen C, et al. Proteomics analysis of blood serums from Alzheimer's disease patients using iTRAQ labeling technology. J Alzheimers Dis. 2017;56:361–378.
  • An SSA, Lee BS, Yu JS, et al. Dynamic changes of oligomeric amyloid beta levels in plasma induced by spiked synthetic Abeta42. Alzheimers Res Ther. 2017;9:86.
  • Gupta VB, Hone E, Pedrini S, et al. Altered levels of blood proteins in Alzheimer's disease longitudinal study: results from Australian Imaging Biomarkers Lifestyle Study of Ageing cohort. Alzheimers Dement. 2017;8:60–72.
  • Hsu JL, Lee WJ, Liao YC, et al. The clinical significance of plasma clusterin and Abeta in the longitudinal follow-up of patients with Alzheimer's disease. Alzheimers Res Ther. 2017;9:91.
  • D'Anna L, Abu-Rumeileh S, Fabris M, et al. Serum interleukin-10 levels correlate with cerebrospinal fluid amyloid beta deposition in Alzheimer disease patients. Neurodegener Dis. 2017;17:227–234.
  • Villarreal AE, O'Bryant SE, Edwards M, et al. Serum-based protein profiles of Alzheimer's disease and mild cognitive impairment in elderly Hispanics. Neurodegener Dis Manage. 2016;6:203–213.
  • Mohd Hasni DS, Lim SM, Chin AV, et al. Peripheral cytokines, C-X-C motif ligand10 and interleukin-13, are associated with Malaysian Alzheimer's disease. Geriatr Gerontol Int. 2017;17:839–846.
  • Hesse R, Wahler A, Gummert P, et al. Decreased IL-8 levels in CSF and serum of AD patients and negative correlation of MMSE and IL-1beta. BMC Neurol. 2016;16:185.
  • Shen XN, Niu LD, Wang YJ, et al. Inflammatory markers in Alzheimer's disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry. 2019;90:590–598.
  • Lauriola M, Paroni G, Ciccone F, et al. Erythrocyte associated amyloid-beta as potential biomarker to diagnose dementia. Curr Alzheimer Res. 2018;15:381–385.
  • Goozee K, Chatterjee P, James I, et al. Alterations in erythrocyte fatty acid composition in preclinical Alzheimer's disease. Sci Rep. 2017;7:676.
  • Defrancesco M, Marksteiner J, Humpel C. Reduced beta-amyloid sensitivity for platelet-monocyte aggregates in EDTA blood of alzheimer patients. Int Psychogeriatr. 2018;30:147–152.
  • Tramutola A, Abate G, Lanzillotta C, et al. Protein nitration profile of CD3(+) lymphocytes from Alzheimer disease patients: novel hints on immunosenescence and biomarker detection. Free Radic Biol Med. 2018;129:430–439.
  • Balietti M, Giuli C, Conti F. Peripheral blood brain-derived neurotrophic factor as a biomarker of Alzheimer's disease: are there methodological biases? Mol Neurobiol. 2018;55:6661–6672.
  • Wang R, Chen Z, Fu Y, et al. Plasma cystatin C and high-density lipoprotein are important biomarkers of Alzheimer's disease and vascular dementia: a cross-sectional study. Front Aging Neurosci. 2017;9:26.
  • Han SH, Park JC, Byun MS, et al. Blood acetylcholinesterase level is a potential biomarker for the early detection of cerebral amyloid deposition in cognitively normal individuals. Neurobiol Aging. 2019;73:21–29.
  • Varma VR, Varma S, An Y, et al. Alpha-2 macroglobulin in Alzheimer's disease: a marker of neuronal injury through the RCAN1 pathway. Mol Psychiatry. 2017;22:13–23.
  • Toledo JB, Arnold M, Kastenmuller G, et al. Metabolic network failures in Alzheimer's disease: a biochemical road map. Alzheimers Dement. 2017;13:965–984.
  • Siotto M, Simonelli I, Pasqualetti P, et al. Association between serum ceruloplasmin specific activity and risk of Alzheimer's disease. J Alzheimers Dis. 2016;50:1181–1189.
  • Hare DJ, Doecke JD, Faux NG, et al. Decreased plasma iron in Alzheimer's disease is due to transferrin desaturation. ACS Chem Neurosci. 2015;6:398–402.
  • Zhou W, Zhang J, Ye F, et al. Plasma neurofilament light chain levels in Alzheimer's disease. Neurosci Lett. 2017;650:60–64.
  • Ashton NJ, Leuzy A, Lim YM, et al. Increased plasma neurofilament light chain concentration correlates with severity of post-mortem neurofibrillary tangle pathology and neurodegeneration. Acta Neuropathol Commun. 2019;7:5.
  • Preische O, Schultz SA, Apel A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease. Nat Med. 2019;25:277.
  • Lewczuk P, Ermann N, Andreasson U, et al. Plasma neurofilament light as a potential biomarker of neurodegeneration in Alzheimer's disease. Alz Res Therapy. 2018;10:71.
  • Moosavi A, Motevalizadeh Ardekani A. Role of epigenetics in biology and human diseases. Iran Biomed J. 2016;20:246–258.
  • Huang K, Fan G. DNA methylation in cell differentiation and reprogramming: an emerging systematic view. Regen Med. 2010;5:531–544.
  • Wu W. MicroRNA sequencing data analysis toolkits. Methods Mol Biol. 2018;1699:211–215.
  • Miao F, Wu X, Zhang L, et al. Histone methylation patterns are cell-type specific in human monocytes and lymphocytes and well maintained at core genes. J Immunol. 2008;180:2264–2269.
  • Dmitrijeva M, Schaefer MH, Ossowski S, et al. Tissue-specific DNA methylation loss during ageing and carcinogenesis is linked to chromosome structure, replication timing and cell division rates. Nucleic Acids Res. 2018;46:7022–7039.
  • Biamonte F, Zolea F, Santamaria G, et al. Human haematological and epithelial tumor-derived cell lines express distinct patterns of onco-microRNAs. Cell Mol Biol (Noisy-le-Grand). 2017;63:75–85.
  • Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13:343–357.
  • Klein H-U, Bennett DA, De Jager PL. The epigenome in Alzheimer's disease: current state and approaches for a new path to gene discovery and understanding disease mechanism. Acta Neuropathol. 2016;132:503–514.
  • Fransquet PD, Lacaze P, Saffery R, et al. Blood DNA methylation as a potential biomarker of dementia: a systematic review. Alzheimers Dement. 2017;14:81–103.
  • Fransquet PD, Ryan J. Micro RNA as a potential blood-based epigenetic biomarker for Alzheimer's disease. Clin Biochem. 2018;58:5–14.
  • Auclair G, Weber M. Mechanisms of DNA methylation and demethylation in mammals. Biochimie. 2012;94:2202–2211.
  • Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacol. 2013;38:23–38.
  • De Jager PL, Srivastava G, Lunnon K, et al. Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci. 2014;17:1156–1163.
  • Bradburn S, McPhee J, Bagley L, et al. Dysregulation of C-X-C motif ligand 10 during aging and association with cognitive performance. Neurobiol Aging. 2018;63:54–64.
  • Chen W, Zhou X, Duan Y, et al. Association of OGG1 and DLST promoter methylation with Alzheimer's disease in Xinjiang population. Exp Ther Med. 2018;16:3135–3142.
  • Cooper YA, Nachun D, Dokuru D, et al. Progranulin levels in blood in Alzheimer's disease and mild cognitive impairment. Ann Clin Transl Neurol. 2018;5:616–629.
  • Liu J, Zhao W, Ware EB, et al. DNA methylation in the APOE genomic region is associated with cognitive function in African Americans. BMC Med Genomics. 2018;11:43.
  • Madrid A, Hogan KJ, Papale LA, et al. DNA hypomethylation in blood links B3GALT4 and ZADH2 to Alzheimer's disease. J Alzheimers Dis. 2018;66:927–934.
  • Marioni RE, McRae AF, Bressler J, et al. Meta-analysis of epigenome-wide association studies of cognitive abilities. Mol Psychiatry. 2018;23:2133–2144.
  • Mercorio R, Pergoli L, Galimberti D, et al. PICALM gene methylation in blood of Alzheimer's disease patients is associated with cognitive decline. J Alzheimers Dis. 2018;65:283–292.
  • Sao T, Yoshino Y, Yamazaki K, et al. MEF2C mRNA expression and cognitive function in Japanese patients with Alzheimer's disease. Psychiatry Clin Neurosci. 2018;72:160–167.
  • Shao Y, Shaw M, Todd K, et al. DNA methylation of TOMM40-APOE-APOC2 in Alzheimer's disease. J Hum Genet. 2018;63:459–471.
  • Verschoor CP, McEwen LM, Kobor MS, et al. DNA methylation patterns are related to co-morbidity status and circulating C-reactive protein levels in the nursing home elderly. Exper Gerontol. 2018;105:47–52.
  • Wezyk M, Spolnicka M, Pospiech E, et al. Hypermethylation of TRIM59 and KLF14 influences cell death signaling in familial Alzheimer's disease. Oxid Med Cell Longev. 2018;2018:6918797.
  • Xu C, Liu G, Ji H, et al. Elevated methylation of OPRM1 and OPRL1 genes in Alzheimer's disease. Mol Med Report. 2018;18:4297–4302.
  • Yoshino Y, Funahashi Y, Nakata S, et al. Ghrelin cascade changes in the peripheral blood of Japanese patients with Alzheimer's disease. J Psychiatr Res. 2018;107:79–85.
  • Boden KA, Barber IS, Clement N, et al. Methylation profiling RIN3 and MEF2C identifies epigenetic marks associated with sporadic early onset Alzheimer's disease. J Alzheimer Dis Rep. 2017;1:97–108.
  • Funahashi Y, Yoshino Y, Yamazaki K, et al. DNA methylation changes at SNCA intron 1 in patients with dementia with Lewy bodies. Psychiatry Clin Neurosci. 2017;71:28–35.
  • Karimi M, Vedin I, Levi YF, et al. DHA-rich n-3 fatty acid supplementation decreases DNA methylation in blood leukocytes: the OmegAD study. Am J Clin Nutr. 2017;106:1157–1165.
  • Liu G, Ji H, Liu J, et al. Association of OPRK1 and OPRM1 methylation with mild cognitive impirment in Xinjiang Han and Uygur populations. Neurosci Lett. 2017;636:170–176.
  • Mise A, Yoshino Y, Yamazaki K, et al. TOMM40 and APOE gene expression and cognitive decline in Japanese Alzheimer's disease subjects. J Alzheimer Dis. 2017;60:1107–1117.
  • Ozaki Y, Yoshino Y, Yamazaki K, et al. DNA methylation changes at TREM2 intron 1 and TREM2 mRNA expression in patients with Alzheimer's disease. J Psychiatr Res. 2017;92:74–80.
  • Raina A, Zhao X, Grove ML, et al. Cerebral white matter hyperintensities on MRI and acceleration of epigenetic aging: the atherosclerosis risk in communities study. Clin Epigenet. 2017;9:21.
  • Sliwinska A, Sitarek P, Toma M, et al. Decreased expression level of BER genes in Alzheimer's disease patients is not derivative of their DNA methylation status. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79:311–316.
  • Starnawska A, Tan Q, McGue M, et al. Epigenome-wide association study of cognitive functioning in middle-aged monozygotic twins. Front Aging Neurosci. 2017;9:413.
  • Stoccoro A, Siciliano G, Migliore L, et al. Decreased methylation of the mitochondrial D-loop region in late-onset Alzheimer's disease. J Alzheimers Dis. 2017;59:559–564.
  • Xie B, Xu Y, Liu Z, et al. Elevation of peripheral BDNF promoter methylation predicts conversion from amnestic mild cognitive impairment to Alzheimer's disease: a 5-year longitudinal study. J Alzheimers Dis. 2017;56:391–401.
  • Yoshino Y, Yamazaki K, Ozaki Y, et al. INPP5D mRNA expression and cognitive decline in Japanese Alzheimer's disease subjects. J Alzheimers Dis. 2017;58:687–694.
  • Zhang M, Tartaglia MC, Moreno D, et al. DNA methylation age-acceleration is associated with disease duration and age at onset in C9orf72 patients. Acta Neuropathol. 2017;134:271–279.
  • Horvath S, Garagnani P, Bacalini MG, et al. Accelerated epigenetic aging in Down syndrome. Aging Cell. 2015;14:491–495.
  • Lazarus J, Mather KA, Armstrong NJ, et al. DNA methylation in the apolipoprotein-A1 gene is associated with episodic memory performance in healthy older individuals. J Alzheimers Dis. 2015;44:175–182.
  • Lunnon K, Smith RG, Cooper I, et al. Blood methylomic signatures of presymptomatic dementia in elderly subjects with type 2 diabetes mellitus. Neurobiol Aging. 2015;36:1600.e1–1600.e4.
  • Basavaraju M, de Lencastre A. Alzheimer's disease: presence and role of microRNAs. Biomol Concepts. 2016;7:241–252.
  • O'Brien J, Hayder H, Zayed Y, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402–402.
  • Nelson PT, Wang WX. MiR-107 is reduced in Alzheimer's disease brain neocortex: validation study. J Alzheimers Dis. 2010;21:75–79.
  • Wang WX, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci. 2008;28:1213–1223.
  • Caggiu E, Paulus K, Mameli G, et al. Differential expression of miRNA 155 and miRNA 146a in Parkinson's disease patients. eNeurologicalSci. 2018;13:1–4.
  • Denk J, Oberhauser F, Kornhuber J, et al. Specific serum and CSF microRNA profiles distinguish sporadic behavioural variant of frontotemporal dementia compared with Alzheimer patients and cognitively healthy controls. PLoS One. 2018;13:e0197329.
  • Kumar S, Reddy PH. MicroRNA-455-3p as a potential biomarker for Alzheimer's disease: an update. Front Aging Neurosci. 2018;10:41.
  • Kume K, Iwama H, Deguchi K, et al. Serum microRNA expression profiling in patients with multiple system atrophy. Mol Med Report. 2018;17:852–860.
  • Piscopo P, Grasso M, Puopolo M, et al. Circulating miR-127-3p as a potential biomarker for differential diagnosis in frontotemporal dementia. J Alzheimers Dis. 2018;65:455–464.
  • Vrabec K, Bostjancic E, Koritnik B, et al. Differential expression of several miRNAs and the host genes AATK and DNM2 in leukocytes of sporadic ALS patients. Front Mol Neurosci. 2018;11:106.
  • Yang TT, Liu CG, Gao SC, et al. The serum exosome derived microRNA-135a, -193b, and -384 were potential Alzheimer's disease biomarkers. Biomed Environ Sci. 2018;31:87–96.
  • Cao XY, Lu JM, Zhao ZQ, et al. MicroRNA biomarkers of Parkinson's disease in serum exosome-like microvesicles. Neurosci Lett. 2017;644:94–99.
  • Cosin-Tomas M, Antonell A, Llado A, et al. Plasma miR-34a-5p and miR-545-3p as early biomarkers of Alzheimer's disease: potential and limitations. Mol Neurobiol. 2017;54:5550–5562.
  • Guo R, Fan G, Zhang J, et al. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer's disease. J Alzheimers Dis. 2017;60:1365–1377.
  • Hara N, Kikuchi M, Miyashita A, et al. Serum microRNA miR-501-3p as a potential biomarker related to the progression of Alzheimer's disease. Acta Neuropathol Commun. 2017;5:10.
  • Kumar S, Vijayan M, Reddy PH. MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer's disease. Hum Mol Genet. 2017;26:3808–3822.
  • Nagaraj S, Laskowska-Kaszub K, Debski KJ, et al. Profile of 6 microRNA in blood plasma distinguish early stage Alzheimer's disease patients from non-demented subjects. Oncotarget. 2017;8:16122–16143.
  • Pang X, Zhao Y, Wang J, et al. The bioinformatic analysis of the dysregulated genes and microRNAs in entorhinal cortex, hippocampus, and blood for Alzheimer's disease. BioMed Res Int. 2017;2017:1.
  • Prabhakar P, Chandra SR, Christopher R. Circulating microRNAs as potential biomarkers for the identification of vascular dementia due to cerebral small vessel disease. Age Ageing. 2017;46:861–864.
  • Sheinerman KS, Toledo JB, Tsivinsky VG, et al. Circulating brain-enriched microRNAs as novel biomarkers for detection and differentiation of neurodegenerative diseases. Alz Res Therapy. 2017;9:89.
  • Wu Y, Xu J, Cheng J, et al. Lower serum levels of miR-29c-3p and miR-19b-3p as biomarkers for Alzheimer's disease. Tohoku J Exp Med. 2017;242:129–136.
  • Zeng Q, Zou L, Qian L, et al. Expression of microRNA-222 in serum of patients with Alzheimer's disease. Molecul Med Rep. 2017;16:5575–5579.
  • Asahchop EL, Akinwumi SM, Branton WG, et al. Plasma microRNA profiling predicts HIV-associated neurocognitive disorder. Aids. 2016;30:2021–2031.
  • Ding H, Huang Z, Chen M, et al. Identification of a panel of five serum miRNAs as a biomarker for Parkinson's disease. Parkinsonism Relat Disord. 2016;22:68–73.
  • Jia LH, Liu YN. Downregulated serum miR-223 servers as biomarker in Alzheimer's disease. Cell Biochem Funct. 2016;34:233.
  • Keller A, Backes C, Haas J, et al. Validating Alzheimer's disease micro RNAs using next-generation sequencing. Alzheimer's Dement. 2016;12:565–576.
  • Ren RJ, Zhang YF, Dammer EB, et al. Peripheral blood microRNA expression profiles in Alzheimer's disease: screening, validation, association with clinical phenotype and implications for molecular mechanism. Mol Neurobiol. 2016;53:5772–5781.
  • Yilmaz SG, Erdal ME, Ozge AA, et al. Can peripheral microRNA expression data serve as epigenomic (upstream) biomarkers of Alzheimer's disease? Omics. 2016;20:456–461.
  • Zirnheld AL, Shetty V, Chertkow H, et al. Distinguishing mild cognitive impairment from Alzheimer's disease by increased expression of key circulating microRNAs. Curr Neurobiol. 2016;7:38–50.
  • Cheng L, Doecke JD, Sharples RA, et al. Prognostic serum miRNA biomarkers associated with Alzheimer's disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry. 2015;20:1188–1196.
  • Dong H, Li J, Huang L, et al. Serum microRNA profiles serve as novel biomarkers for the diagnosis of Alzheimer's disease. Disease Markers. 2015;2015:1.
  • Lugli G, Cohen AM, Bennett DA, et al. Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLoS One. 2015;10:e0139233.
  • Satoh JI, Kino Y, Niida S. MicroRNA-Seq data analysis pipeline to identify blood biomarkers for Alzheimer's disease from public data. Biomark Insights. 2015;10:21–31.
  • Xie B, Zhou H, Zhang R, et al. Serum miR-206 and miR-132 as potential circulating biomarkers for mild cognitive impairment. J Alzheimers Dis. 2015;45:721–731.
  • Bhatnagar S, Chertkow H, Schipper HM, et al. Increased microRNA-34c abundance in Alzheimer's disease circulating blood plasma. Front Mol Neurosci. 2014;7:2.
  • De Felice B, Annunziata A, Fiorentino G, et al. miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics. 2014;15:243–253.
  • De Felice B, Mondola P, Sasso A, et al. Small non-coding RNA signature in multiple sclerosis patients after treatment with interferon-beta. BMC Med Genomics. 2014;7:26.
  • Galimberti D, Villa C, Fenoglio C, et al. Circulating miRNAs as potential biomarkers in Alzheimer's disease. J Alzheimers Dis. 2014;42:1261–1267.
  • Kiko T, Nakagawa K, Tsuduki T, et al. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer's disease. J Alzheimers Dis. 2014;39:253–259.
  • Liu CG, Wang JL, Li L, et al. MicroRNA-135a and -200b, potential Biomarkers for Alzheimer's disease, regulate beta secretase and amyloid precursor protein. Brain Res. 2014;1583:55–64.
  • Liu CG, Song J, Zhang YQ, et al. MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer's disease. Mol Med Rep. 2014;10:2395–2400.
  • Liu CG, Wang JL, Li L, et al. MicroRNA-384 regulates both amyloid precursor protein and beta-secretase expression and is a potential biomarker for Alzheimer's disease. Int J Mol Med. 2014;34:160–166.
  • Tan L, Yu JT, Liu QY, et al. Circulating miR-125b as a biomarker of Alzheimer's disease. J Neurol Sci. 2014;336:52–56.
  • Tan L, Yu JT, Tan MS, et al. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer's disease. J Alzheimers Dis. 2014;40:1017–1027.
  • Bekris LM, Lutz F, Montine TJ, et al. MicroRNA in Alzheimer's disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers. 2013;18:455–466.
  • Leidinger P, Backes C, Deutscher S, et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013;14:R78.
  • Sheinerman KS, Tsivinsky VG, Abdullah L, et al. Plasma microRNA biomarkers for detection of mild cognitive impairment: biomarker validation study. Aging. 2013;5:925–938.
  • Geekiyanage H, Jicha GA, Nelson PT, et al. Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease. Exp Neurol. 2012;235:491–496.
  • Sheinerman KS, Tsivinsky VG, Crawford F, et al. Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging. 2012;4:590–605.
  • Talbert PB, Ahmad K, Almouzni G, et al. A unified phylogeny-based nomenclature for histone variants. Epigenet Chromatin. 2012;5:7.
  • Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol. 2004;14:R546–R551.
  • Janssen KA, Sidoli S, Garcia BA. Recent achievements in characterizing the histone code and approaches to integrating epigenomics and systems biology. Methods Enzymol. 2017;586:359–378.
  • Drake J, Petroze R, Castegna A, et al. 4-Hydroxynonenal oxidatively modifies histones: implications for Alzheimer's disease. Neurosci Lett. 2004;356:155–158.
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–395.
  • Griffiths-Jones S, Grocock RJ, van DS, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;;34:D140–D144.
  • Saffery R, Gordon L. Time for a standardized system of reporting sites of genomic methylation. Genome Biol. 2015;16:85.
  • Pidsley R, Zotenko E, Peters TJ, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016;17:208.
  • Plagg B, Ehrlich D, Kniewallner KM, et al. Increased acetylation of histone H4 at lysine 12 (H4K12) in monocytes of transgenic Alzheimer's mice and in human patients. Curr Alzheimer Res. 2015;12:752–760.
  • Kim J, Kim H. Recruitment and biological consequences of histone modification of H3K27me3 and H3K9me3. ILAR J. 2012;53:232–239.
  • Kim J, Lee S, Choi BR, et al. Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways. Mol Nutr Food Res. 2017;61. DOI:10.1002/mnfr.201600194
  • Yamakawa H, Cheng J, Penney J, et al. The transcription factor Sp3 cooperates with HDAC2 to regulate synaptic function and plasticity in neurons. Cell Rep. 2017;20:1319–1334.
  • Gonzalez-Zuniga M, Contreras PS, Estrada LD, et al. c-Abl stabilizes HDAC2 levels by tyrosine phosphorylation repressing neuronal gene expression in Alzheimer's disease. Mol Cell. 2014;56:163–173.
  • Wang BY, Zhong Y, Zhao Z, et al. Epigenetic suppression of hippocampal BDNF mediates the memory deficiency induced by amyloid fibrils. Pharmacol Biochem Behav. 2014;126:83–89.
  • Janczura KJ, Volmar CH, Sartor GC, et al. Inhibition of HDAC3 reverses Alzheimer's disease-related pathologies in vitro and in the 3xTg-AD mouse model. Proc Natl Acad Sci USA. 2018;115:E11148–E11157.
  • Igarashi S, Morita H, Bennett KM, et al. Inducible PC12 cell model of Huntington's disease shows toxicity and decreased histone acetylation. Neuroreport. 2003;14:565–568.
  • Wood IC. The contribution and therapeutic potential of epigenetic modifications in Alzheimer's disease. Front Neurosci. 2018;12:649.
  • She A, Kurtser I, Reis SA, et al. Selectivity and kinetic requirements of HDAC inhibitors as progranulin enhancers for treating frontotemporal dementia. Cell Chem Biol. 2017;24:892–906.e5.
  • Sanchez-Arias JA, Rabal O, Cuadrado-Tejedor M, et al. Impact of scaffold exploration on novel dual-acting histone deacetylases and phosphodiesterase 5 inhibitors for the treatment of Alzheimer's disease. ACS Chem Neurosci 2017;8:638–661.
  • Sadri-Vakili G, Cha JH. Mechanisms of disease: histone modifications in Huntington's disease. Nat Rev Neurol. 2006;2:330–338.
  • Sadri-Vakili G, Cha JH. Histone deacetylase inhibitors: a novel therapeutic approach to Huntington's disease (complex mechanism of neuronal death). Curr Alzheimer Res. 2006;3:403–408.
  • Li X, Bao X, Wang R. Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review). Mol Med Rep. 2016;14:1043–1053.
  • Ganai SA, Banday S, Farooq Z, et al. Modulating epigenetic HAT activity for reinstating acetylation homeostasis: a promising therapeutic strategy for neurological disorders. Pharmacol Ther. 2016;166:106–122.
  • Borovecki F, Lovrecic L, Zhou J, et al. Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease. Proc Natl Acad Sci USA. 2005;102:11023–11028.
  • Hu Y, Chopra V, Chopra R, et al. Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse. Proc Natl Acad Sci USA. 2011;108:17141–17146.
  • Belzil VV, Bauer PO, Prudencio M, et al. Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol. 2013;126:895–905.
  • Hampel H, O’Bryant SE, Molinuevo JL, et al. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol. 2018;14:639–652.
  • U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Biomarker Qualification: Evidentiary Framework Guidance for Industry and FDA Staff (Draft). 2018.
  • Sapkota S, Huan T, Tran T, et al. Alzheimer's biomarkers from multiple modalities selectively discriminate clinical status: relative importance of salivary metabolomics panels, genetic, lifestyle, cognitive, functional health and demographic risk markers. Front Aging Neurosci. 2018;10:296.
  • Sehgal V, Seviour EG, Moss TJ, et al. Robust selection algorithm (RSA) for multi-omic biomarker discovery; integration with functional network analysis to identify miRNA regulated pathways in multiple cancers. PLoS One. 2015;10:e0140072.
  • Abeel T, Helleputte T, Van de Peer Y, et al. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics. 2010;26:392–398.
  • Eldridge RC, Flanders WD, Bostick RM, et al. Using multiple biomarkers and determinants to obtain a better measurement of oxidative stress: a latent variable structural equation model approach. Biomarkers. 2017;22:517–524.
  • Wu HZ, Ong KL, Seeher K, et al. Circulating microRNAs as biomarkers of Alzheimer's disease: a systematic review. J Alzheimers Dis. 2016;49:755–766.
  • Lezak MD. Neuropsychological assessment. New York (NY): Oxford University Press; 1995.
  • Wechsler D. WMS-IIIUK administration and scoring manual. London, UK: Psychological Corporation; 1998.
  • Wechsler D. Wechsler memory scale - revised. New York (NY): Psychological Corporation; 1987.
  • Wechsler D. WAIS-IIIUK administration and scoring manual. London, UK: Psychological Corporation; 1998.
  • Lezak M. Neuropsychological testing. Oxford, UK: Oxford University Press; 2004.
  • Kaplan E, Goodglass H, Weintraub S. Boston naming test. Philadelphia, (PA): Lea & Febiger; 1983.
  • Nelson HE, Willison JR. National adult reading test (NART) test manual (Part II). Windsor, UK: NFER-Nelson; 1991.
  • van der Elst W, van Boxtel MP, van Breukelen GJ, et al. The Letter Digit Substitution Test: normative data for 1,858 healthy participants aged 24-81 from the Maastricht Aging Study (MAAS): influence of age, education, and sex. J Clin Exp Neuropsychol. 2006;28:998–1009.
  • Ibrahim-Verbaas CA, Bressler J, Debette S, et al. GWAS for executive function and processing speed suggests involvement of the CADM2 gene. Mol Psychiatry. 2016;21:189–197.
  • Bowie CR, Harvey PD. Administration and interpretation of the Trail Making Test. Nat Protoc. 2006;1:2277–2281.
  • Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–198.
  • Smith A. Symbol digit modalities test manual - revised. Los Angeles, CA, USA: Western Psychological Services; 1992.
  • Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:270–279.
  • McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:263–269.
  • Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006–1014.
  • de Carvalho M, Dengler R, Eisen A, et al. Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol. 2008;119:497–503.
  • McKeith IG, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65:1863–1872.
  • Hughes AJ, Daniel SE, Kilford L, et al. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–184.
  • McGue M, Christensen K. The heritability of level and rate-of-change in cognitive functioning in Danish twins aged 70 years and older. Exp Aging Res. 2002;28:435–451.
  • Petersen RC, Roberts RO, Knopman DS, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66:1447–1455.
  • Brooks BR, Miller RG, Swash M, et al. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–299.
  • Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;34:2456–2477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.