489
Views
12
CrossRef citations to date
0
Altmetric
Invited Review Articles

Inter-assay variability in automated serum free light chain assays and their use in the clinical laboratory

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 73-85 | Received 15 Mar 2019, Accepted 17 Sep 2019, Published online: 15 Oct 2019

References

  • Liu H, May K. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. MAbs. 2012;4(1):17–23.
  • Solomon A. Light chains of immunoglobulins: structural-genetic correlates. Blood. 1986;68(3):603–610.
  • Ghanem N, Dariavach P, Bensmana M, et al. Polymorphism of immunoglobulin lambda constant region genes in populations from France, Lebanon and Tunisia. Exp Clin Immunogenet. 1988;5(4):186–195.
  • Jefferis R, Lefranc M-P. Human immunoglobulin allotypes: possible implications for immunogenicity. MAbs. 2009;1(4):332–338.
  • Köhler G. Immunoglobulin chain loss in hybridoma lines. Proc Natl Acad Sci USA. 1980;77(4):2197–2199.
  • Solomon A. Light chains of human immunoglobulins. Meth Enzymol. 1985;116:101–121.
  • Leitzgen K, Knittler MR, Haas IG. Assembly of immunoglobulin light chains as a prerequisite for secretion. A model for oligomerization-dependent subunit folding. J Biol Chem. 1997;272(5):3117–3123.
  • Waldmann TA, Strober W, Mogielnicki RP. The renal handling of low molecular weight proteins. II. Disorders of serum protein catabolism in patients with tubular proteinuria, the nephrotic syndrome, or uremia. J Clin Invest. 1972;51(8):2162–2174.
  • Berggård I, Peterson PA. Polymeric forms of free normal kappa and lambda chains of human immunoglobulin. J Biol Chem. 1969;244(16):4299–4307.
  • Sölling K. Polymeric forms of free light chains in serum from normal individuals and from patients with renal diseases. Scand J Clin Lab Invest. 1976;36(5):447–452.
  • Sølling K. Light chain polymerism in normal individuals in patients with severe proteinuria and in normals with inhibited tubular protein reabsorption by lysine. Scand J Clin Lab Invest. 1980;40(2):129–134.
  • Abraham RS, Charlesworth MC, Owen BAL, et al. Trimolecular complexes of lambda light chain dimers in serum of a patient with multiple myeloma. Clin Chem. 2002;48(10):1805–1811.
  • Stevens FJ, Schiffer M. Structure and properties of human immunoglobulin light-chain dimers. Methods Mol Biol. 1995;51:51–81.
  • Kaplan B, Livneh A, Sela B-A. Immunoglobulin free light chain dimers in human diseases. ScientificWorldJ. 2011;11:726–735.
  • Rennella E, Morgan GJ, Kelly JW, et al. Role of domain interactions in the aggregation of full-length immunoglobulin light chains. Proc Natl Acad Sci USA. 2019;116(3):854–863.
  • Hutchison CA, Cockwell P, Reid S, et al. Efficient removal of immunoglobulin free light chains by hemodialysis for multiple myeloma: in vitro and in vivo studies. J Am Soc Nephrol. 2007;18(3):886–895.
  • Basnayake K, Stringer SJ, Hutchison CA, et al. The biology of immunoglobulin free light chains and kidney injury. Kidney Int. 2011;79(12):1289–1301.
  • Solomon A, Waldmann TA, Fahey JL, et al. Metabolism of Bence Jones proteins. J Clin Invest. 1964;43:103–117.
  • Maack T, Johnson V, Kau ST, et al. Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int. 1979;16(3):251–270.
  • Camargo MJ, Sumpio BE, Maack T. Kinetics of renal catabolism of absorbed proteins: influence of lysosomal pH. Contrib Nephrol. 1984;42:19–29.
  • Katzmann JA, Clark RJ, Abraham RS, et al. Serum reference intervals and diagnostic ranges for free kappa and free lambda immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains. Clin Chem. 2002;48(9):1437–1444.
  • Te Velthuis H, Knop I, Stam P, et al. N Latex FLC – new monoclonal high-performance assays for the determination of free light chain kappa and lambda. Clin Chem Lab Med. 2011;49(8):1323–1332.
  • Cotten SW, Shajani-Yi Z, Cervinski MA, et al. Reference intervals and diagnostic ranges for serum free κ and free λ immunoglobulin light chains vary by instrument platform: implications for classification of patient results in a multi-center study. Clin Biochem. 2018;58:100–107.
  • Lutteri L, Jacobs J. Reference ranges of the Sebia free light chain ratio in patients with chronic kidney disease. Clin Chem Lab Med. 2018;56(9):e232–e234.
  • Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–548.
  • International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol. 2003;121:749–757.
  • Dejoie T, Attal M, Moreau P, et al. Comparison of serum free light chain and urine electrophoresis for the detection of the light chain component of monoclonal immunoglobulins in light chain and intact immunoglobulin multiple myeloma. Haematologica. 2016;101(3):356–362.
  • Katzmann JA. Screening panels for monoclonal gammopathies: time to change. Clin Biochem Rev. 2009;30(3):105–111.
  • Dispenzieri A, Kyle R, Merlini G, et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia. 2009;23(2):215–224.
  • Palladini G, Russo P, Bosoni T, et al. Identification of amyloidogenic light chains requires the combination of serum-free light chain assay with immunofixation of serum and urine. Clin Chem. 2009;55(3):499–504.
  • Dispenzieri A, Katzmann JA, Kyle RA, et al. Prevalence and risk of progression of light-chain monoclonal gammopathy of undetermined significance: a retrospective population-based cohort study. Lancet. 2010;375(9727):1721–1728.
  • Kyle RA, Durie BGM, Rajkumar SV, et al. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia. 2010;24(6):1121–1127.
  • Larsen JT, Kumar SK, Dispenzieri A, et al. Serum free light chain ratio as a biomarker for high-risk smoldering multiple myeloma. Leukemia. 2013;27(4):941–946.
  • Dispenzieri A, Kyle RA, Katzmann JA, et al. Immunoglobulin free light chain ratio is an independent risk factor for progression of smoldering (asymptomatic) multiple myeloma. Blood. 2008;111(2):785–789.
  • Lakshman A, Rajkumar SV, Buadi FK, et al. Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J. 2018;8(6):59.
  • Wu V, Moshier E, Leng S, et al. Risk stratification of smoldering multiple myeloma: predictive value of free light chains and group-based trajectory modeling. Blood Adv. 2018;2(12):1470–1479.
  • Rajkumar SV, Harousseau J-L, Durie B, et al. Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood. 2011;117(18):4691–4695.
  • Durie BGM, Harousseau J-L, Miguel JS, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–1473.
  • Kyle RA, Rajkumar SV. Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia. 2009;23(1):3–9.
  • Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–e346.
  • Hutchison CA, Plant T, Drayson M, et al. Serum free light chain measurement aids the diagnosis of myeloma in patients with severe renal failure. BMC Nephrol. 2008;9(1):11.
  • Merlini G, Dispenzieri A, Sanchorawala V, et al. Systemic immunoglobulin light chain amyloidosis. Nat Rev Dis Primers. 2018;4(1):38.
  • Brenner DA, Jain M, Pimentel DR, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res. 2004;94(8):1008–1010.
  • Liao R, Jain M, Teller P, et al. Infusion of light chains from patients with cardiac amyloidosis causes diastolic dysfunction in isolated mouse hearts. Circulation. 2001;104(14):1594–1597.
  • McWilliams-Koeppen HP, Foster JS, Hackenbrack N, et al. Light chain amyloid fibrils cause metabolic dysfunction in human cardiomyocytes. PLoS One. 2015;10(9):e0137716.
  • Mishra S, Guan J, Plovie E, et al. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish. Am J Physiol Heart Circ Physiol. 2013;305(1):H95–H103.
  • Shi J, Guan J, Jiang B, et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. Proc Natl Acad Sci USA. 2010;107(9):4188–4193.
  • Palladini G, Merlini G. What is new in diagnosis and management of light chain amyloidosis? Blood. 2016;128(2):159–168.
  • Chang IC, Dispenzieri A, Scott CG, et al. Utility of the serum free light chain assay in the diagnosis of light chain amyloidosis in patients with heart failure. Mayo Clin Proc. 2019;94(3):447–454.
  • Palladini G, Dispenzieri A, Gertz MA, et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol. 2012;30(36):4541–4549.
  • Palladini G, Hegenbart U, Milani P, et al. A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis. Blood. 2014;124(15):2325–2332.
  • Dispenzieri A, Lacy MQ, Katzmann JA, et al. Absolute values of immunoglobulin free light chains are prognostic in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation. Blood. 2006;107(8):3378–3383.
  • Lachmann HJ, Gallimore R, Gillmore JD, et al. Outcome in systemic AL amyloidosis in relation to changes in concentration of circulating free immunoglobulin light chains following chemotherapy. Br J Haematol. 2003;122(1):78–84.
  • Kumar S, Dispenzieri A, Katzmann JA, et al. Serum immunoglobulin free light-chain measurement in primary amyloidosis: prognostic value and correlations with clinical features. Blood. 2010;116(24):5126–5129.
  • Kumar S, Dispenzieri A, Lacy MQ, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol. 2012;30(9):989–995.
  • Sidana S, Tandon N, Gertz MA, et al. Clinical features, laboratory characteristics and outcomes of patients with renal versus cardiac light chain amyloidosis. Br J Haematol. 2019;185(4):701–707.
  • Li T, Huang X, Wang Q, et al. A risk stratification for systemic immunoglobulin light-chain amyloidosis with renal involvement. Br J Haematol. 2019. DOI:https://doi.org/10.1111/bjh.16112
  • Gavriatopoulou M, Musto P, Caers J, et al. European myeloma network recommendations on diagnosis and management of patients with rare plasma cell dyscrasias. Leukemia. 2018;32(9):1883–1898.
  • Gertz MA, Landau H, Comenzo RL, et al. First-in-human phase I/II study of NEOD001 in patients with light chain amyloidosis and persistent organ dysfunction. J Clin Oncol. 2016;34(10):1097–1103.
  • Wechalekar AD, Whelan C. Encouraging impact of doxycycline on early mortality in cardiac light chain (AL) amyloidosis. Blood Cancer J. 2017;7(3):e546.
  • Bradwell AR, Carr-Smith HD, Mead GP, et al. Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin Chem. 2001;47(4):673–680.
  • Jacobs JFM, de Kat Angelino CM, Brouwers H, et al. Evaluation of a new free light chain ELISA assay: bringing coherence with electrophoretic methods. Clin Chem Lab Med. 2018;56(2):312–322.
  • Jacobs JFM, Hoedemakers RMJ, Teunissen E, et al. Effect of sample dilution on two free light chain nephelometric assays. Clin Chim Acta. 2012;413(19-20):1708–1709.
  • Jenner E, Levoguer A, Evans J, et al. Serum free light chain immunoassays: a guide to antigen excess detection. Clin Chim Acta. 2012;413(9-10):949.
  • Vercammen MJ, Broodtaerts L, Meirlaen P, et al. Overestimation of free light chain antigen excess rate. Clin Chim Acta. 2015;444:297–302.
  • Lutteri L, Aldenhoff M-C, Cavalier E. Evaluation of the new Sebia free light chain assay using the AP22 ELITE instrument. Clin Chim Acta. 2018;487:161–167.
  • Smith A, Wu A. Analytical and clinical concordance of free light chain assay. Pract Lab Med. 2019;13:e00112.
  • Campbell JP, Cobbold M, Wang Y, et al. Development of a highly-sensitive multi-plex assay using monoclonal antibodies for the simultaneous measurement of kappa and lambda immunoglobulin free light chains in serum and urine. J Immunol Methods. 2013;391(1-2):1–13.
  • Campbell JP, Heaney JLJ, Shemar M, et al. Development of a rapid and quantitative lateral flow assay for the simultaneous measurement of serum κ and λ immunoglobulin free light chains (FLC): inception of a new near-patient FLC screening tool. Clin Chem Lab Med. 2017;55(3):424–434.
  • Tate J, Bazeley S, Sykes S, et al. Quantitative serum free light chain assay–analytical issues. Clin Biochem Rev. 2009;30(3):131–140.
  • Carr-Smith HD, Jenner EL, Evans JAR, et al. Analytical issues of serum free light chain assays and the relative performance of polyclonal and monoclonal based reagents. Clin Chem Lab Med. 2016;54(6):997–1003.
  • Briand P-Y, Decaux O, Caillon H, et al. Analytical performance of the serum free light chain assay. Clin Chem Lab Med. 2010;48(1):73–79.
  • Tate JR, Mollee P, Dimeski G, et al. Analytical performance of serum free light-chain assay during monitoring of patients with monoclonal light-chain diseases. Clin Chim Acta. 2007;376(1-2):30–36.
  • Vercammen M, Meirlaen P, Broodtaerts L, et al. Effect of sample dilution on serum free light chain concentration by immunonephelometric assay. Clin Chim Acta. 2011;412(19-20):1798–1804.
  • Bosmann M, Kössler J, Stolz H, et al. Detection of serum free light chains: the problem with antigen excess. Clin Chem Lab Med. 2010;48(10):1419–1422.
  • Altinier S, Seguso M, Zaninotto M, et al. Serum free light chain reference values: a critical approach. Clin Biochem. 2013;46(7-8):691–693.
  • Caponi L, Koni E, Romiti N, et al. Different immunoreactivity of monomers and dimers makes automated free light chains assays not equivalent. Clin Chem Lab Med. 2018;57(2):221–229.
  • Lock RJ, Saleem R, Roberts EG, et al. A multicentre study comparing two methods for serum free light chain analysis. Ann Clin Biochem. 2013;50(3):255–261.
  • Graziani MS. Measurement of free light chains – pros and cons of current methods. Clin Chem Lab Med. 2016;54(6):1015–1020.
  • Te Velthuis H, Drayson M, Campbell JP. Measurement of free light chains with assays based on monoclonal antibodies. Clin Chem Lab Med. 2016;54(6):1005–1014.
  • Hoedemakers RMJ, Pruijt JFM, Hol S, et al. Clinical comparison of new monoclonal antibody-based nephelometric assays for free light chain kappa and lambda to polyclonal antibody-based assays and immunofixation electrophoresis. Clin Chem Lab Med. 2011;50(3):489–495.
  • Kim H-S, Kim HS, Shin K-S, et al. Clinical comparisons of two free light chain assays to immunofixation electrophoresis for detecting monoclonal gammopathy. Biomed Res Int. 2014;2014:742762.
  • Palladini G, Jaccard A, Milani P, et al. Circulating free light chain measurement in the diagnosis, prognostic assessment and evaluation of response of AL amyloidosis: comparison of Freelite and N latex FLC assays. Clin Chem Lab Med. 2017;55(11):1734–1743.
  • Mahmood S, Wassef NL, Salter SJ, et al. Comparison of free light chain assays: freelite and N latex in diagnosis, monitoring, and predicting survival in light chain amyloidosis. Am J Clin Pathol. 2016;146(1):78–85.
  • Messiaen A-S, De Sloovere MMW, Claus P-E, et al. Performance evaluation of serum free light chain analysis: nephelometry vs turbidimetry, monoclonal vs polyclonal reagents. Am J Clin Pathol. 2017;147(6):611–622.
  • White-Al Habeeb NMA, Earle T, Spencer M, et al. Evaluation of the N-latex serum free light chain assay on the Siemens BNII analyzer and agreement with The Binding Site FreeLite assay on the SPAPlus. Clin Biochem. 2018;51:90–96.
  • Heaney JLJ, Campbell JP, Griffin AE, et al. Diagnosis and monitoring for light chain only and oligosecretory myeloma using serum free light chain tests. Br J Haematol. 2017;178(2):220–230.
  • Caillon H, Avet-Loiseau H, Attal M, et al. Comparison of sebia free light chain assay with freelite assay for the clinical management of diagnosis, response, and relapse assessment in multiple myeloma. Clin Lymph Myel Leuk. 2019;19(5):e228–e237.
  • Schneider N, Wynckel A, Kolb B, et al. Comparative analysis of immunoglobulin free light chains quantification by FreeliteTM (The Binding Site) and N Latex FLC (Siemens) methods. Ann Biol Clin (Paris). 2013;71:13–19.
  • Mollee P, Tate J, Pretorius CJ. Evaluation of the N latex free light chain assay in the diagnosis and monitoring of AL amyloidosis. Clin Chem Lab Med. 2013;51(12):2303–2310.
  • Bossuyt X, Delforge M, Reynders M, et al. Diagnostic thresholds for free light chains in multiple myeloma depend on the assay used. Leukemia. 2018;32(8):1815–1818.
  • Hutchison CA, Harding S, Hewins P, et al. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2008;3(6):1684–1690.
  • Jacobs JFM, Hoedemakers RMJ, Teunissen E, et al. N latex FLC serum free light-chain assays in patients with renal impairment. Clin Chem Lab Med. 2014;52(6):853–859.
  • Kennard A, Hawley C, Tate J, et al. Comparison of Freelite™ and N latex serum free light chain assays in subjects with end stage kidney disease on haemodialysis. Clin Chem Lab Med. 2016;54(6):1045–1052.
  • Tate JR, Hawley C, Mollee P. Response to article by Caponi et al. about serum free light chains. Clin Chem Lab Med. 2018;57(2):e1–e2.
  • Heaney JLJ, Campbell JP, Yadav P, et al. Multiple myeloma can be accurately diagnosed in acute kidney injury patients using a rapid serum free light chain test. BMC Nephrol. 2017;18(1):247.
  • Singh G. Serum free light chain assay and κ/λ Ratio: performance in patients with monoclonal gammopathy-high false negative rate for κ/λ ratio. J Clin Med Res. 2017;9(1):46–57.
  • Jacobs JFM, Tate JR, Merlini G. Is accuracy of serum free light chain measurement achievable? Clin Chem Lab Med. 2016;54(6):1021–1030.
  • Schiffer M. Molecular anatomy and the pathological expression of antibody light chains. Am J Pathol. 1996;148(5):1339–1344.
  • Kaplan B, Golderman S, Aizenbud B, et al. Immunoglobulin-free light chain monomer-dimer patterns help to distinguish malignant from premalignant monoclonal gammopathies: a pilot study. Am J Hematol. 2014;89(9):882–888.
  • Gatt ME, Kaplan B, Yogev D, et al. The use of serum free light chain dimerization patterns assist in the diagnosis of AL amyloidosis. Br J Haematol. 2018;182(1):86–92.
  • 510(k) FDA Premarket Notification (K150658): Optilite FreeLite Kappa Free Kit, Optilite Freelite Lambda Free Kit. 2015 [cited 2019 Sept 4]. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K150658
  • 510(k) FDA Premarket notification (K153394): Diazyme Laboratories kappa and lambda FLC. 2016 [cited 2019 Sept 4]. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K153394

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.