361
Views
2
CrossRef citations to date
0
Altmetric
Invited Reviews

Biomarkers of disease in human nails: a comprehensive review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 125-141 | Received 09 Jul 2021, Accepted 07 Oct 2021, Published online: 02 Nov 2021

References

  • FDA-NIH Biomarker Working Group (US). BEST (biomarkers, EndpointS, and other tools) resource. Silver spring (MD): food and drug administration (US). Co-published by National Institutes of Health (US), Bethesda (MD): 2016. DOI:https://doi.org/10.1093/neuonc/nox242
  • Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018;243(3):213–221.
  • European Commission, DG Research (Brussels). Stratification biomarkers in personalized medicine – summary report. “Biomarkers for patient stratification” workshop, 2010 06 10-11. European Commission Health Research Directorate (Brussels); 2010. Available from: www.eurosfaire.prd.fr/7pc/doc/1308832112_biomarkers_for_patient_stratification_en.pdf
  • Madej KA. Analysis of meconium, nails and tears for determination of medicines and drugs of abuse. Trends Anal. Chem. 2010;29(3):246–259.
  • Pichini S, Altieri I, Zuccaro P, et al. Drug monitoring in nonconventional biological fluids and matrices. Clin Pharmacokinet. 1996;30:222–228.
  • Dutkiewicz E, Urban PL. Quantitative mass spectrometry of unconventional human biological matrices. Phil Trans R Soc A. 2016;374(2079):20150380.
  • Fawcett R, Linford S, Stulberg DL. Nail abnormalities: clues to systemic disease. Am Fam Physician. 2004;69(6):1417–1424.
  • Rockett JC, Burczynski ME, Fornace AJ, et al. Surrogate tissue analysis: monitoring toxicant exposure and health status of inaccessible tissues through the analysis of accessible tissues and cells. Toxicol Appl Pharmacol. 2004;194(2):189–199.
  • Daniel CR, Piraccini BM, Tosti A. The nail and hair in forensic science. J Am Acad Dermatol. 2004;50(2):258–261.
  • Hopps HC. The biological bases for using hair and nail for analyses of trace elements. Sci Tot Environ. 1977;7(1):71–89.
  • Pallotti G, Bencivenga B, Simonetti T. Total mercury levels in whole blood, hair and fingernails for a population group from Rome and its surroundings. Sci Tot Environ. 1979;11(1):69–72.
  • Morris JS, Stampfer MJ, Willett WC. Dietary selenium in humans: toenails as an indicator. Biol Trace Elem Res. 1983;5(6):529–537.
  • He K. Trace elements in nails as biomarkers in clinical research. Eur J Clin Invest. 2011;41(1):98–102.
  • Fischer S, Schumacher S, Skoluda N, et al. Fingernail cortisol - state of research and future directions. Front Neuroendocrinol. 2020;58:100855.
  • Phillips R, Kraeuter AK, McDermott B, et al. Human nail cortisol as a retrospective biomarker of chronic stress: a systematic review. Psychoneuroendocrinology. 2021;123:104903.
  • Toyo’oka T. Diagnostic approach to disease using non-invasive samples based on derivatization and LC-ESI-MS/MS. Biol Pharmaceut Bull. 2016;39(9):1397–1411.
  • Coelho PCS, Teixeira JP. Biomarkers, human health. In: Wexler P, editor. Encyclopedia of toxicology. (3rd Edition). Cambridge (MA): Academic Press; 2014. p. 479–482.
  • Cappelle D. Hair and nail analysis for the long-term monitoring of alcohol and drug consumption: focus on bioanalytical and correlation aspects [PhD. Thesis]. Universiteit Antwerpen (Belgium); 2018.
  • De Berker DAR. Nail anatomy. Clin Dermatol. 2013;31(5):509–515.
  • De Berker DAR, Baran R. Science of the nail apparatus. In: Baran R, de Berker DAR, Holzberg M, Thomas L, editors. Baran & dawber’s diseases of the nails and their management. 4th ed. Oxford (UK): Wiley-Blackwell; 2012. p. 1–47.
  • Palmeri A, Pichini S, Pacifici R, et al. Drugs in nails: physiology, pharmacokinetics and forensic toxicology. Clin Pharmacokinet. 2000;38(2):95–110.
  • Yu H-L, Chase RA, Strauch B. Atlas of hand anatomy & clinical implications. St. Louis (MO): Mosby; 2003.
  • Saeedi P, Petersohn I, Salpea P, IDF Diabetes Atlas Committee, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes res. Diabetes Res Clin Pract. 2019;157:107843.
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–820.
  • Oimomi M, Hatanaka H, Ishikawa K, et al. Increased fructose-lysine of nail protein in diabetic patients. Klin Wochenschr. 1984;62(10):477–478.
  • Sueki H, Nozaki S, Fujisawa R, et al. Glycosylated proteins of skin, nail and hair: application as an index for long-term control of diabetes mellitus. J Dermatol. 1989;16(2):103–110.
  • Kishabongo AS, Katchunga P, Van Aken EH, et al. Glycated nail proteins: a new approach for detecting diabetes in developing countries. Trop Med Int Health. 2014;19(1):58–64.
  • Katchunga PB, Mirindi PN, Kishabongo AS, et al. Glycated nail proteins as a new biomarker in management of the South Kivu Congolese diabetics. Biochem. Medica. 2015;25:469–473.
  • Kishabongo AS, Katchunga P, Van Aken EH, et al. Glycation of nail proteins: from basic biochemical findings to a representative marker for diabetic glycation-associated target organ damage. PLoS One. 2015;10(3):e0120112–13.
  • Coopman R, Van de Vyver T, Kishabongo AS, et al. Glycation in human fingernail clippings using ATR-FTIR spectrometry, a new marker for the diagnosis and monitoring of diabetes mellitus. Clin Biochem. 2017;50(1-2):62–67.
  • Monteyne T, Coopman R, Kishabongo AS, et al. Analysis of protein glycation in human fingernail clippings with near-infrared (NIR) spectroscopy as an alternative technique for the diagnosis of diabetes mellitus. Clin Chem Lab Med. 2018;56(9):1551–1558.
  • Min JZ, Yamamoto M, Yu H-F, et al. Rapid and sensitive determination of the intermediates of advanced glycation end products in the human nail by ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. Anal Biochem. 2012;424(2):187–194.
  • Min JZ, Hatanaka S, Yu H-F, et al. First detection of free D-amino acids in human nails by combination of derivatization and UPLC-ESI-TOF-MS. Anal Methods. 2010;2(9):1233–1235.
  • Min JZ, Hatanaka S, Yu H-F, et al. Determination of DL-amino acids, derivatized with R(-)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole, in nail of diabetic patients by UPLC-ESI-TOF-MS. J Chromatogr. B. 2011;879(29):3220–3228.
  • Dubey P, Thakur V, Chattopadhyay M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients. 2020;12(6):1864.
  • Ogawa-Wong AN, Berry MJ, Seale LA. Selenium and metabolic disorders: an emphasis on type 2 diabetes risk. Nutrients. 2016;8(2):80.
  • Kohler LN, Foote J, Kelley CP, et al. Selenium and type 2 diabetes: systematic review. Nutrients. 2018;10(12):1924.
  • Vinceti M, Filippini T, Rothman KJ. Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Epidemiol. 2018;33(9):789–810.
  • Hunter DJ, Morris JS, Chute CG, et al. Predictors of selenium concentration in human toenails. Am J Epidemiol. 1990;132(1):114–122.
  • Longnecker MP, Stram DO, Taylor PR, et al. Use of selenium concentration in whole blood, serum, toenails of urine as a surrogate measure of selenium intake. Epidemiology. 1996;7(4):384–390.
  • Park K, Rimm EB, Siscovick DS, et al. Toenail selenium and incidence of type 2 diabetes in U.S. Men and women. Diabetes Care. 2012;35(7):1544–1551.
  • Vinceti M, Grioni S, Alber D, et al. Toenail selenium and risk of type 2 diabetes: the ORDET cohort study. J Trace Elem Med Biol. 2015;29:145–150.
  • Su LQ, Jin YL, Unverzagt FW, et al. Nail selenium level and diabetes in older people in rural China. Biomed Environ Sci. 2016;29:818–824.
  • Gao S, Jin Y, Hall KS, et al. Selenium level and cognitive function in rural elderly Chinese. Am J Epidemiol. 2007;165(8):955–965.
  • Bahreini M, Ashrafkhani B, Tavassoli SH. Discrimination of patients with diabetes mellitus and healthy subjects based on laser-induced breakdown spectroscopy of their fingernails. J Biomed Opt. 2013;18(10):107006.
  • Barbagallo M, Dominguez LJ. Magnesium and type 2 diabetes. World J Diabetes. 2015;6(10):1152–1157.
  • Stone MS, Martyn L, Weaver CM. Potassium intake, bioavailability, hypertension and glucose control. Nutrients. 2016;8(7):444.
  • Carney EF. The impact of chronic kidney disease on global health. Nat Rev Nephrol. 2020;16(5):251.
  • Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382(9889):339–352.
  • Lousa I, Reis F, Beirão I, et al. New potential biomarkers for chronic kidney disease management – a review of the literature. IJMS. 2020;22(1):43.
  • Long J, Parada XV, Kalim S. Chapter two – protein carbamylation in chronic kidney disease. Adv Clin. Chem. 2018;87:37–67.
  • Kalim S, Berg AH, Karumanchi SA, et al. Protein carbamylation and chronic kidney disease progression in the chronic renal insufficiency cohort study. Nephrol Dial Transplant. 2020;2:gfaa347.
  • De Bruyne S, Himpe J, Delanghe SE, et al. Carbamoylated nail proteins as assessed by near-infrared analysis are associated with load of uremic toxins and mortality in hemodialysis patients. Toxins (Basel). 2020;12(2):83–13.
  • Richette P, Bardin T. Gout. Lancet. 2010;375(9711):318–328.
  • Chen LX, Schumacher HR. Gout: an evidence-based review. J Clin Rheumatol. 2008;14(5 Suppl):S55–S62.
  • Li XL, Shi Q, Jin W, et al. Uric acid quantification in fingernail of gout patients and healthy volunteers using HPLC-UV. Biomed Chromatogr. 2016;30(8):1338–1342.
  • Li X-L, Li G, Jiang Y-Z, et al. Human nails metabolite analysis: a rapid and simple method for quantification of uric acid in human fingernail by high-performance liquid chromatography with UV-detection. J Chromatogr. B. 2015;1002:394–398.
  • Chen H, Zhao L, Liu F, et al. Urate in fingernails represents the deposition of urate burden in gout patients. Sci Rep. 2020;10(1):15575.
  • World Health Organization. Global Cancer Observatory, World Factsheet. 2020. Available from: https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf
  • Kaushik AK, DeBerardinis RJ. Applications of metabolomics to study cancer metabolism. Biochim Biophys Acta Rev Cancer. 2018;1870(1):2–14.
  • Min JZ, Matsumoto A, Li G, et al. A quantitative analysis of the polyamine in lung cancer patient fingernails by LC-ESI-MS/MS. Biomed Chromatogr. 2014;28(4):492–499.
  • Wallace HM, Fraser AV, Hughes A. A perspective of polyamine metabolism. Biochem J. 2003;376(Pt 1):1–14.
  • Nowotarski SL, Woster PM, Casero RA. Jr., Polyamines and cancer: implications for chemoprevention and chemotherapy. Expert Rev Mol Med. 2013;15:e3.
  • Mitruka M, Gore CR, Kumar A, et al. Undetectable free aromatic amino acids in nails of breast carcinoma: biomarker discovery by a novel purification VTGE system. Frontiers Oncol. 2020;10:908.
  • Lai H-S, Lee J-C, Lee P-H, et al. Plasma free amino acid profile in cancer patients. Semin Cancer Biol. 2005;15(4):267–276.
  • Mitruka M, Gore CR, Kumar A, et al. Novel approach reveals lipid metabolite reduction in nails of breast cancer patients as potential biomarker. MedRxiv preprint 2020.
  • Fernandez LP, Gomez de Cedron M, Ramirez de Molina A. Alterations of lipid metabolism in cancer – implications in prognosis and treatment. Frontiers Oncol. 2020;10:577420.
  • Jacobs MM, Griffin AC. Effects of selenium on chemical carcinogenesis. Biol Trace Elem Res. 1979;1(1):1–13.
  • Vinceti M, Filippini T, Del Giovane C, et al. Selenium for preventing cancer. Cochrane Database Syst Rev. 2018;(1):CD005195.
  • Kadkol S, Diamond AM. The interaction between dietary selenium intake and genetics in determining cancer risk and outcome. Nutrients. 2020;12(8):2424.
  • Rayman MP. Food-chain selenium and human health: emphasis on intake. Br J Nutr. 2008;100(2):254–268.
  • Rayman MP. Selenium and human health. Lancet. 2012;379(9822):1256–1268.
  • Waters DJ, Chiang EC. Five threads: how U-shaped thinking weaves together dogs, men, selenium, and prostate cancer risk. Free Radic Biol Med. 2018;127:36–45.
  • Bornhorst J, Kipp AP, Haase H, et al. The crux of inept biomarkers for risks and benefits of trace elements. Trends Anal Chem. 2018;104:183–190.
  • Babaknejad N, Sayehmiri F, Sayehmiri K, et al. The relationship between selenium levels and breast cancer: a systematic review and meta-analysis. Biol Trace Elem Res. 2014;159(1-3):1–7.
  • Fritz H, Kennedy D, Fergusson D, et al. Selenium and lung cancer: a systematic review and meta-analysis. PLoS ONE. 2011;6(11):e26259.
  • Hurst R, Hooper L, Norat T, et al. Selenium and prostate cancer: systematic review and meta-analysis. Am J Clin Nutr. 2012;96(1):111–122.
  • Geybels MS, Verhage BAJ, Van Schooten FJ, et al. Advanced prostate cancer risk in relation to toenail selenium levels. J Natl Cancer Inst. 2013;105(18):1394–1401.
  • Allen NE, Travis RC, Appleby PN, et al. Selenium and prostate cancer: analysis of individual participant data from fifteen prospective studies. JNCI J Natl Cancer Inst. 2016;108(11):djw153.
  • Outzen M, Tjønneland A, Hughes DJ, et al. Toenail selenium, plasma selenoprotein P and risk of advanced prostate cancer: a nested case-control study. Int J Cancer. 2021;148(4):876–883.
  • Amaral AFS, Cantor KP, Silverman DT, et al. Selenium and bladder cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2010;19(9):2407–2415.
  • Maasland DHE, Schouten LJ, Kremer B, et al. Toenail selenium status and risk of subtypes of head-neck cancer: the Netherlands cohort study. Eur J Cancer. 2016;60:83–92.
  • Matthews NH, Koh M, Li W-Q, et al. A prospective study of toenail trace element levels and risk of skin cancer. Cancer Epidemiol Biomarkers Prev. 2019;28(9):1534–1543.
  • Garland M, Morris JS, Rosner BA, et al. Toenail trace element levels as biomarkers: reproducibility over a 6-year period. Cancer Epidemiol. Biomarkers Prev. 1993;2:493–497.
  • O’Brien KM, White AJ, Sandler DP, et al. Do post-breast cancer diagnosis toenail trace element concentrations reflect pre-diagnostic concentrations? Epidemiology. 2019;30(1):112–119.
  • Amaral AFS, Porta M, Silverman DT, et al. Pancreatic cancer risk and levels of trace elements. Gut. 2012;61(11):1583–1588.
  • Gomez-Tomas A, Pumarega J, Alguacil J, et al. Concentrations of trace elements and KRAS mutations in pancreatic ductal adenocarcinoma. Environ Mol Mutagen. 2019;60(8):693–703.
  • Jones RP, Sutton PA, Evans JP, et al. Specific mutations in KRAS codon 12 are associated with worse overall survival in patients with advanced and recurrent colorectal cancer. Br J Cancer. 2017;116(7):923–929.
  • Ben Khelil M, Tegethoff M, Meinlschmidt G, et al. Simultaneous measurement of endogenous cortisol, cortisone, dehydroepiandrosterone, and dehydroepiandrosterone sulfate in nails by use of UPLC-MS-MS. Anal Bioanal Chem. 2011;401(4):1153–1162.
  • Higashi T, Yamagata K, Kato Y, et al. Methods for determination of fingernail steroids by LC/MS/MS and differences in their contents between right and left hands. Steroids. 2016;109:60–65.
  • Binz TM, Gaehler F, Voegel CD, et al. Systematic investigations of endogenous cortisol and cortisone in nails by LC-MS/MS and correlation to hair. Anal Bioanal Chem. 2018;410(20):4895–4903.
  • Voegel CD, La Marca-Ghaemmaghami P, Ehlert U, et al. Steroid profiling in nails using liquid chromatography-tandem mass spectrometry. Steroids. 2018;140:144–150.
  • Tegethoff M, Raul J-S, Jamey C, et al. Dehydroepiandrosterone in nails of infants : a potential biomarker of intrauterine responses to maternal stress. Biol Psychol. 2011;87(3):414–420.
  • Peña-Bautista C, Escrig R, Lara I, et al. Non-invasive monitoring of stress biomarkers in the newborn period. Semin Fetal Neonatal Med. 2019;24(4):101002.
  • Mikoteit T, Kurath J, Meinlschmidt G, et al. Steroid hormone analysis of retrospective maternal hair and newborn nail samples indicate effects of prenatal stress on postpartum well-being of mother and offspring. Biol Psychiatry. 2018;83(9):S403–S404.
  • Meyer JS, Novak MA. Assessment of prenatal stress-related cortisol exposure: focus on cortisol accumulation in hair and nails. Dev Psychobiol. 2021;63(3):409–428.
  • Liu CH, Doan SN. Innovations in biological assessments of chronic stress through hair and nail cortisol: conceptual, developmental, and methodological issues. Dev Psychobiol. 2019;61(3):465–476.
  • Izawa S, Miki K, Tsuchiya M, et al. Cortisol level measurements in fingernails as a retrospective index of hormone production. Psychoneuroendocrinology. 2015;54:24–30.
  • Frugé AD, Cases MG, Howell CR, et al. Fingernail and toenail clippings as a non-invasive measure of chronic cortisol levels in adult cancer survivors. Cancer Causes Control. 2018;29(1):185–191.
  • Davison B, Singh GR, Oguoma VM, et al. Fingernail cortisol as a marker of chronic stress exposure in indigenous and non-Indigenous young adults. Stress. 2020;23(3):298–307.
  • Herane-Vives A, Fischer S, De Angel V, et al. Elevated fingernail cortisol levels in major depressive episodes. Psychoneuroendocrinology. 2018;88:17–23.
  • Hartmann S, Kist TBL. A review of biomarkers of Alzheimer’s disease in noninvasive samples. Biomark Med. 2018;12(6):677–690.
  • Kuyumcu ME, Yesil Y, Ozturk ZA, et al. An alternative way for the evaluation of zinc status in the elderly; nail zinc levels and relationship with Alzheimer’s disease. Eur Rev Med Pharmacol Sci. 2013;17(11):1467–1471.
  • Koseoglu E, Kutuk B, Nalbantoglu OU, et al. Arsenic and selenium measurements in nail and hair show important relationships to Alzheimer's disease in the elderly. J Trace Elem Med Biol. 2021;64:126684.
  • Rolle-McFarland D, Liu Y, Mostafaei F, et al. The association of bone, fingernail and blood manganese with cognitive and olfactory function in Chinese workers. Sci Tot Environ. 2019;666:1003–1010.
  • Doherty BT, Romano ME, Gui J, et al. Periconceptional and prenatal exposure to metal mixtures in relation to behavioral development at 3 years of age. Environ Epidemiol. 2020;4(4):e0106.
  • Laue HE, Moroishi Y, Jackson BP, et al. Nutrient-toxic element mixtures and the early postnatal gut microbiome and in a United States longitudinal birth cohort. Environ Int. 2020;138:105613.
  • Madison A, Kiecolt-Glaser JK. Stress, depression, diet, and the gut microbiota: human– bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr Opin Behav Sci. 2019;28:105–110.
  • Järbrink-Sehgal E, Andreasson A. The gut microbiota and mental health in adults. Curr Opin Neurobiol. 2020;62:102–114.
  • World Health Organization. Epilepsy Fact Sheet. 2020. Available from: https://www.who.int/en/news-room/fact-sheets/detail/epilepsy
  • Ilhan A, Ozerol E, Güleç M, et al. The comparison of nail and serum trace elements in patients with epilepsy and healthy subjects. Prog. Neuro-Psychopharmaco Biol Psychiatry. 2004;28(1):99–104.
  • Gutiérrez-González E, García-Escquinas E, Fernández de Larrea-Baz N, et al. Toenails as biomarkers of exposure to essential trace metals: a review. Environ Res. 2019;179(Pt A):108787.
  • Salcedo-Bellido I, Gutiérrez-González E, García-Escquinas E, et al. Toxic metals in toenails as biomarkers of exposure: a review. Environ Res. 2021;197:111028.
  • Solimini R, Minutillo A, Kyriakou C, et al. Nails in forensic toxicology: an update. Curr Pharm Des. 2017;23(36):5468–5479.
  • Cappelle D, Neels H, De Keukeleire S, et al. Ethyl glucuronide in keratinous matrices as biomarker of alcohol use: a correlation study between hair and nails. Forensic Sci Int. 2017;279:187–191.
  • Guallar E, Jiménez FJ, van 't Veer P, EURAMIC-Heavy Metals and Myocardial Infraction Study Group, et al. Low toenail chromium concentration and increased risk of nonfatal myocardial infarction. Am J Epidemiol. 2005;162(2):157–164.
  • Gómez-Aracena J, Riemersma RA, Gutiérrez-Bedmar M, et al. Toenail cerium levels and risk of a first acute myocardial infarction: the EURAMIC and heavy metals study. Chemosphere. 2006;64(1):112–120.
  • Karita K, Takano T, Nakamura S, et al. A search for calcium, magnesium and zinc levels in fingernails of 135 patients with osteogenesis imperfecta. J Trace Elem Med Biol. 2001;15(1):36–39.
  • Forlino A, Cabral WA, Barnes AM, et al. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011;7(9):540–557.
  • Sanchez TR, Hu X, Zhao J, et al. An atlas of metallome and metabolome interactions and associations with incident diabetes in the strong heart family study. Environ Int. 2021;157:106810.
  • Hu Y, Wang Z, Liu L, et al. Mass spectrometry-based chemical mapping and profiling toward molecular understanding of diseases in precision medicine. Chem Sci. 2021;12(23):7993–8009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.