1,101
Views
1
CrossRef citations to date
0
Altmetric
Invited Reviews

Current and emerging technologies for the timely screening and diagnosis of neonatal jaundice

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 332-352 | Received 15 Aug 2021, Accepted 01 Feb 2022, Published online: 21 Feb 2022

References

  • Maisels MJ. Managing the jaundiced newborn: a persistent challenge. CMAJ. 2015;187(5):335–343.
  • Burgos AE, Flaherman VJ, Newman TB. Screening and follow-up for neonatal hyperbilirubinemia: a review. Clin Pediatr. 2012;51(1):7–16.
  • Kaplan M, Bromiker R, Hammerman C. Severe neonatal hyperbilirubinemia and kernicterus: are these still problems in the third millennium? Neonatology. 2011;100(4):354–362.
  • Dennery PA, Seidman DS, Stevenson DK. Neonatal hyperbilirubinemia. N Engl J Med. 2001;344(8):581–590.
  • Chou D, Daelmans B, Jolivet RR, et al. Ending preventable maternal and newborn mortality and stillbirths. BMJ. 2015;351:h4255.
  • World Health Organization. Every newborn: an action plan to end preventable deaths. Geneva: World Health Organisation; 2014.
  • Olusanya BO, Teeple S, Kassebaum NJ. The contribution of neonatal jaundice to global child mortality: findings from the GBD 2016 study. Pediatrics. 2018;141(2):e20171471.
  • Wang H, Abajobir AA, Abate KH, et al. Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the global burden of disease study 2016. Lancet. 2017;390(10100):1084–1150.
  • Bhutani VK, Zipursky A, Blencowe H, et al. Neonatal hyperbilirubinemia and rhesus disease of the newborn: incidence and impairment estimates for 2010 at regional and global levels. Pediatr Res. 2013;74(S1):86–100.
  • Greco C, Arnolda G, Boo N-Y, et al. Neonatal jaundice in low- and middle-income countries: lessons and future directions from the 2015 Don Ostrow Trieste Yellow Retreat. Neonatology. 2016;110(3):172–180.
  • Bhutani VK. Bilirubin nomogram, a prediction tool or natural history profile? Indian Pediatr. 2013;50(4):365–366.
  • Bhutani VK, Stark AR, Lazzeroni LC, et al. Predischarge screening for severe neonatal hyperbilirubinemia identifies infants who need phototherapy. J Pediatr. 2013;162(3):477–482 e471.
  • Amos RC, Jacob H, Leith W. Jaundice in newborn babies under 28 days: NICE guideline 2016 (CG98)). Arch Dis Child Educ Pract Ed. 2017;102(4):207–209.
  • De Luca D, Jackson GL, Tridente A, et al. Transcutaneous bilirubin nomograms: a systematic review of population differences and analysis of bilirubin kinetics. Arch Pediatr Adolesc Med. 2009;163(11):1054–1059.
  • Slusher TM, Zamora TG, Appiah D, et al. Burden of severe neonatal jaundice: a systematic review and meta-analysis. BMJ Paediatr Open. 2017;1(1):e000105.
  • Slusher TM, Zipursky A, Bhutani VK. A global need for affordable neonatal jaundice technologies. Semin Perinatol. 2011;35(3):185–191.
  • Bolajoko OO, Tinuade AO, Tina MS. Why is kernicterus still a major cause of death and disability in low-income and middle-income countries? Arch Dis Child. 2014;99(12):1117–1121.
  • Alken J, Hakansson S, Ekeus C, et al. Rates of extreme neonatal hyperbilirubinemia and kernicterus in children and adherence to national guidelines for screening, diagnosis, and treatment in Sweden. JAMA Netw Open. 2019;2(3):e190858.
  • McGillivray A, Polverino J, Badawi N, et al. Prospective surveillance of extreme neonatal hyperbilirubinemia in Australia. J Pediatr. 2016;168:82–87 e83.
  • Bhutani VK, Stevenson DK. The need for technologies to prevent bilirubin-induced neurologic dysfunction syndrome. Semin Perinatol. 2011;35(3):97–100.
  • Greaves RF, Bernardini S, Ferrari M, et al. Key questions about the future of laboratory medicine in the next decade of the 21st century: a report from the IFCC-emerging technologies division. Clin Chim Acta. 2019;495:570–589.
  • Greco C, Iskander IF, El Houchi SZ, et al. Diagnostic performance analysis of the point-of-care bilistick system in identifying severe neonatal hyperbilirubinemia by a multi-country approach. EClinicalMedicine. 2018;1:14–20.
  • Stevenson DK, Vreman HJ, Wong RJ. Bilirubin production and the risk of bilirubin neurotoxicity. Semin Perinatol. 2011;35(3):121–126.
  • Watchko JF. Neonatal indirect hyperbilirubinemia and kernicterus. In: Avery's diseases of the newborn. Philadelphia: Elsevier; 2018. p. 1198–1218.e1195.
  • Hulzebos CV, Dijk PH. Bilirubin-albumin binding, bilirubin/albumin ratios, and free bilirubin levels: where do we stand? Semin Perinatol. 2014;38(7):412–421.
  • Sticova E, Jirsa M. New insights in bilirubin metabolism and their clinical implications. World J Gastroenterol. 2013;19(38):6398–6407.
  • Bhutani VK, Johnson LH, Maisels MJ, et al. Kernicterus: epidemiological strategies for its prevention through systems-based approaches. J Perinatol. 2004;24(10):650–662.
  • Adeli K, Higgins V, Trajcevski K, et al. The Canadian laboratory initiative on pediatric reference intervals: a CALIPER white paper. Crit Rev Clin Lab Sci. 2017;54(6):358–413.
  • Hansen TWR. The epidemiology of neonatal jaundice. Pediatr Med. 2021;5:18–18.
  • Maisels MJ. What's in a name? Physiologic and pathologic jaundice: the conundrum of defining normal bilirubin levels in the newborn. Pediatrics. 2006;118(2):805–807.
  • Schito M, Peter TF, Cavanaugh S, et al. Opportunities and challenges for cost-efficient implementation of new point-of-care diagnostics for HIV and tuberculosis. J Infect Dis. 2012;205(suppl 2):S169–S180.
  • American Academy of Pediatrics. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2004;114(1):297.
  • Bhutani VK, Johnson-Hamerman L. The clinical syndrome of bilirubin-induced neurologic dysfunction. Semin Fetal Neonatal Med. 2015;20(1):6–13.
  • Usman F, Diala UM, Shapiro SM, et al. Acute bilirubin encephalopathy and its progression to kernicterus: current perspectives. RRN. 2018;8:33–34.
  • Brites D, Fernandes A. Bilirubin-induced neural impairment: a special focus on myelination, age-related windows of susceptibility and associated co-morbidities. Semin Fetal Neonatal Med. 2015;20(1):14–19.
  • Hansen TW. Prevention of neurodevelopmental sequelae of jaundice in the newborn. Dev Med Child Neurol. 2011;53:24–28.
  • Le Pichon JB, Riordan SM, Watchko J, et al. The neurological sequelae of neonatal hyperbilirubinemia: definitions, diagnosis and treatment of the kernicterus spectrum disorders (KSDs). Curr Pediatr Rev. 2017;13(3):199–209.
  • World Health Organization. WHO recommendations on postnatal care of the mother and newborn. Geneva: World Health Organization; 2014.
  • Bratlid D, Nakstad B, Hansen TW. National guidelines for treatment of jaundice in the newborn. Acta Paediatr. 2011;100(4):499–505.
  • Coban A, Turkmen MK, Gursoy T. Turkish neonatal society guideline to the approach, follow-up, and treatment of neonatal jaundice. Turk Pediatri Ars. 2019;53(sup1):172–S179.
  • Romagnoli C, Barone G, Pratesi S, et al. Italian guidelines for management and treatment of hyperbilirubinaemia of newborn infants≥ 35 weeks’ gestational age. Ital J Pediatr. 2014;40(1):11–18.
  • Sánchez-Gabriel M-R, Castellanos JLL, Fernández IB, et al. Guidelines for prevention, detection and management of hyperbilirubinaemia in newborns of 35 or more weeks of gestation. Anales de Pediatría. 2017;87(5):294.e291–294.e298.
  • Canadian Paediatric Society. Guidelines for detection, management and prevention of hyperbilirubinemia in term and late preterm newborn infants. Paediatr Child Health. 2007;12(suppl_B):1B–12B.
  • St John A, Price CP. Existing and emerging technologies for point-of-Care testing. Clin Biochem Rev. 2014;35(3):155–167.
  • Moyer VA, Ahn C, Sneed S. Accuracy of clinical judgment in neonatal jaundice. Arch Pediatr Adolesc Med. 2000;154(4):391–394.
  • Keren R, Tremont K, Luan X, et al. Visual assessment of jaundice in term and late preterm infants. Arch Dis Child Fetal Neonatal Ed. 2009;94(5):F317–F322.
  • Riskin A, Tamir A, Kugelman A, et al. Is visual assessment of jaundice reliable as a screening tool to detect significant neonatal hyperbilirubinemia? J Pediatr. 2008;152(6):782–787. e782.
  • Starowicz O, Edwards P, Schmidt P, et al. Evaluation of the kejian KJ-8000 bilirubinometer in an Australian setting. J Paediatr Child Health. 2020;56(2):283–288.
  • Bosschaart N, Kok JH, Newsum AM, et al. Limitations and opportunities of transcutaneous bilirubin measurements. Pediatrics. 2012;129(4):689–694.
  • Maisels MJ. Noninvasive measurements of bilirubin. Pediatrics. 2012;129(4):779–781.
  • De Luca D, Zecca E, Zuppa AA, et al. The joint use of human and electronic eye: visual assessment of jaundice and transcutaneous bilirubinometry. Turk J Pediatr. 2008;50(5):456.
  • Szabo P, Wolf M, Bucher HU, et al. Detection of hyperbilirubinaemia in jaundiced full-term neonates by eye or by bilirubinometer? Eur J Pediatr. 2004;163(12):722–727.
  • Engle WD, Jackson GL, Engle NG. Transcutaneous bilirubinometry. Semin Perinatol. 2014;38(7):438–451.
  • Okwundu C, Bhutani V, Smith J, et al. Predischarge transcutaneous bilirubin screening reduces readmission rate for hyperbilirubinaemia in diverse South African newborns: a randomised controlled trial. S Afr Med J. 2020;110(3):249–254.
  • Maisels MJ. Transcutaneous bilirubin measurement: does it work in the real world. Pediatrics. 2015;135(2):364–366.
  • Johnson SM, Vasu V, Marseille C, et al. Validation of transcutaneous bilirubinometry during phototherapy for detection and monitoring of neonatal jaundice in a low-income setting. Paediatr Int Child Health. 2020;40(1):25–29.
  • Wainer S, Rabi Y, Parmar SM, et al. Impact of skin tone on the performance of a transcutaneous jaundice meter. Acta Paediatr. 2009;98(12):1909–1915.
  • Kirk JM. Neonatal jaundice: a critical review of the role and practice of bilirubin analysis. Ann Clin Biochem. 2008;45(5):452–462.
  • Bhutani VK, Gourley GR, Adler S, et al. Noninvasive measurement of total serum bilirubin in a multiracial predischarge newborn population to assess the risk of severe hyperbilirubinemia. Pediatrics. 2000;106(2):e17.
  • McCudden CR, Fleming K, Warr M. Robustness of the reichert unistat bilirubinometer for analysis of hemolyzed samples from neonates. Clin Biochem. 2017;50(4–5):238–240.
  • Barko HA, Jackson GL, Engle WD. Evaluation of a point-of-care direct spectrophotometric method for measurement of total serum bilirubin in term and near-term neonates. J Perinatol. 2006;26(2):100–105.
  • Huang Y, Dean R, Dubbelman Y, et al. Neonatal hemoglobin affects the accuracy of whole blood bilirubin measurement on GEM premier 4000 blood gas analyzers. Pract Lab Med. 2021;25:e00231.
  • Peake M, Mazzachi B, Fudge A, et al. Bilirubin measured on a blood gas analyser: a suitable alternative for near-patient assessment of neonatal jaundice? Ann Clin Biochem. 2001;38(5):533–540.
  • Hulzebos CV, Vitek L, Zabetta CDC, et al. Diagnostic methods for neonatal hyperbilirubinemia: benefits, limitations, requirements, and novel developments. Pediatr Res. 2021;90(2):277–277.
  • Thomas N, McNeil A, Collins CL. Blood gas bilirubin measurements in neonates must be adjusted for HbF to avoid misleading results. Arch Dis Child Fetal Neonat Ed. 2021. DOI:https://doi.org/10.1136/archdischild-2021-322071
  • Vreman HJ, Stevenson DK, Oh W, et al. Semiportable electrochemical instrument for determining carbon monoxide in breath. Clin Chem. 1994;40(10):1927–1933.
  • Bartoletti AL, Stevenson DK, Ostrander CR, et al. Pulmonary excretion of carbon monoxide in the human infant as an index of bilirubin production. I. Effects of gestational and postnatal age and some common neonatal abnormalities. J Pediatr. 1979;94(6):952–955.
  • Stevenson DK, Ostrander CR, Cohen RS, et al. Pulmonary excretion of carbon monoxide in the human infant as an index of bilirubin production. IIb. Evidence for the possible effect of maternal prenatal glucose metabolism on postnatal bilirubin production in a mixed population of infants. Eur J Pediatr. 1981;137(3):255–259.
  • Stevenson DK, Vreman HJ, Oh W, et al. Bilirubin production in healthy term infants as measured by carbon monoxide in breath. Clin Chem. 1994;40(10):1934–1939.
  • Berska J, Bugajska J, Sztefko K. Newborns bilirubin concentration determined by different methods in relation to hematocrit and albumin level. J Med Biochem. 2020;39(2):171–177.
  • Raimondi F, Ferrara T, Borrelli AC, et al. Neonatal hyperbilirubinemia: a critical appraisal of current guidelines and evidence. J Pediatr Neonat Individ Med. 2012;1(1):25–32.
  • Weber AP, Schalm L. Quantitative separation and determination of bilirubin and conjugated bilirubin in human serum. Clin Chim Acta. 1962;7(6):805–810.
  • Winsten S, Cehelyk B. A rapid micro diazo technique for measuring total bilirubin. Clin Chim Acta. 1969;25(3):441–446.
  • Low JM, Loh TP, Amin Z. SMOFlipid causing spuriously high serum total bilirubin in an extremely premature neonate. Pathology. 2021;53(5):685–687.
  • Nakayama K. Differences between enzymatic and diazo methods for measuring direct bilirubin. Clin Chem Lab Med. 1995;33(1):513.
  • Lo SF, Doumas BT. The status of bilirubin measurements in US laboratories: why is accuracy elusive? Semin Perinatol. 2011;35:141–147.
  • Doumas BT, Kwok-Cheung PP, Perry BW, et al. Candidate reference method for determination of total bilirubin in serum: development and validation. Clin Chem. 1985;31(11):1779–1789.
  • Westwood A. The analysis of bilirubin in serum. Ann Clin Biochem. 1991;28(2):119–130.
  • Plebani M, Chiozza ML, Sciacovelli L. Towards harmonization of quality indicators in laboratory medicine. Clin Chem Lab Med. 2013;51(1):187–195.
  • Wu TW, Dappen GM, Spayd RW, et al. The Ektachem clinical chemistry slide for simultaneous determination of unconjugated and sugar-conjugated bilirubin. Clin Chem. 1984;30(8):1304–1309.
  • Greene DN, Liang J, Holmes DT, et al. Neonatal total bilirubin measurements: still room for harmonization. Clin Biochem. 2014;47(12):1112–1115.
  • Berska J, Bugajska J, Sztefko K. Newborns bilirubin concentration determined by different methods in relation to hematocrit and albumin level. J Med Biochem. 2020;39(2):171–177.
  • Padmanabhan P, Hotkar K, Nagarkar V, et al. Estimation of various fractions of bilirubin in cases of neonatal jaundice. Int J Clin Bio Res. 2016;3(2):194–200.
  • Blanckaert N, Kabra PM, Farina FA, et al. Measurement of bilirubin and its monoconjugates and diconjugates in human serum by alkaline methanolysis and high-performance liquid chromatography. J Lab Clin Med. 1980;96(2):198–212.
  • Tothill IE, Turner APF. Biosensors. In: Caballero B, editor. Encyclopedia of food sciences and nutrition. Oxford: Academic Press; 2003. p. 489–499.
  • Hooda V, Gahlaut A, Gothwal A, et al. Bilirubin enzyme biosensor: potentiality and recent advances towards clinical bioanalysis. Biotechnol Lett. 2017;39(10):1453–1462.
  • Ngashangva L, Bachu V, Goswami P. Development of new methods for determination of bilirubin. J Pharm Biomed Anal. 2019;162:272–285.
  • Rawal R, Kharangarh PR, Dawra S, et al. A comprehensive review of bilirubin determination methods with special emphasis on biosensors. Process Biochem. 2020;89:165–174.
  • Rawal R, Chauhan N, Tomar M, et al. A contrivance based on electrochemical integration of graphene oxide nanoparticles/nickel nanoparticles for bilirubin biosensing. Biochem Eng J. 2017;125:238–245.
  • Chauhan N, Rawal R, Hooda V, et al. Electrochemical biosensor with graphene oxide nanoparticles and polypyrrole interface for the detection of bilirubin. RSC Adv. 2016;6(68):63624–63633.
  • Dehghani H, Khoramnejadian S, Mahboubi M, et al. Bilirubin biosensing by using of catalase and ZnS nanoparticles as modifier. Int J Electrochem Sci. 2016;11:2029–2045.
  • Narang J, Chauhan N, Mathur A, et al. A third generation bilirubin sensor development by using gold nanomaterial as an immobilization matrix for signal amplification. Adv Mater Lett. 2015;6(11):1012–1017.
  • Feng Q, Du Y, Zhang C, et al. Synthesis of the multi-walled carbon nanotubes-COOH/graphene/gold nanoparticles nanocomposite for simple determination of bilirubin in human blood serum. Sens Actuators B. 2013;185:337–344.
  • Batra B, Lata S, Sunny , et al. Construction of an amperometric bilirubin biosensor based on covalent immobilization of bilirubin oxidase onto zirconia coated silica nanoparticles/chitosan hybrid film. Biosens Bioelectron. 2013;44:64–69.
  • Kannan P, Chen H, Lee VT, et al. Highly sensitive amperometric detection of bilirubin using enzyme and gold nanoparticles on sol-gel film modified electrode. Talanta. 2011;86(1):400–407.
  • Lu Z-J, Cheng Y, Zhang Y, et al. Non-enzymatic free bilirubin electrochemical sensor based on ceria nanocube. Sens Actuators B. 2021;329:129224.
  • Kamel HA, Amr A-GE, Galal HR, et al. Screen-printed sensor based on potentiometric transduction for free bilirubin detection as a biomarker for hyperbilirubinemia diagnosis. Chemosensors. 2020;8(3):86–86.
  • Akhoundian M, Alizadeh T, Pan G. Fabrication of the enzyme‐less voltammetric bilirubin sensor based on sol‐gel imprinted polymer. Electroanalysis. 2020;32(3):479–488.
  • Zheng Z, Feng Q, Zhu M, et al. Electrochemical sensor for the discrimination of bilirubin in real human blood based on Au nanoparticles/tetrathiafulvalene-carboxylate functionalized reduced graphene oxide 0D-2D heterojunction. Anal Chim Acta. 2019;1072:46–53.
  • Snizhko D, Zholudov Y, Bilash O. Sensor based on diamond-like film modified electrodes for bilirubin detection. In: 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO). IEEE; 2019. p. 471–474.
  • Rahman MM, Ahmed J, Asiri AM. Selective bilirubin sensor fabrication based on doped IAO nanorods for environmental remediation. New J Chem. 2019;43(48):19298–19307.
  • Bell JG, Mousavi MPS, Abd El-Rahman MK, et al. Paper-based potentiometric sensing of free bilirubin in blood serum. Biosens Bioelectron. 2019;126:115–121.
  • Thangamuthu M, Gabriel WE, Santschi C, et al. Electrochemical sensor for bilirubin detection using screen printed electrodes functionalized with carbon nanotubes and graphene. Sensors. 2018;18(3):800.
  • Rahman MM, Musarraf Hussain M, Asiri AM. Bilirubin sensor based on CuO–CdO composites deposited in a nafion/glassy carbon electrode matrixes. Prog Nat Sci. 2017;27(5):566–573.
  • Yola ML, Göde C, Atar N. Molecular imprinting polymer with polyoxometalate/carbon nitride nanotubes for electrochemical recognition of bilirubin. Electrochim Acta. 2017;246:135–140.
  • Santhosh M, Chinnadayyala SR, Singh NK, et al. Human serum albumin-stabilized gold nanoclusters act as an electron transfer bridge supporting specific electrocatalysis of bilirubin useful for biosensing applications. Bioelectrochemistry. 2016;111:7–14.
  • Zhang C, Bai W, Yang Z. A novel photoelectrochemical sensor for bilirubin based on porous transparent TiO2 and molecularly imprinted polypyrrole. Electrochim Acta. 2016;187:451–456.
  • Balamurugan T, Berchmans S. Non-enzymatic detection of bilirubin based on a graphene–polystyrene sulfonate composite. RSC Adv. 2015;5(62):50470–50477.
  • Avan A, Aydar S, Filik H. Voltammetric sensing of bilirubin based on nafion/electrochemically reduced graphene oxide composite modified glassy carbon electrode. CAC. 2015;11(2):96–103.
  • Filik H, Avan A, Aydar S. Nafion/multi-wall carbon nanotubes composite modified glassy carbon electrode for sensitive determination of bilirubin. CNANO. 2015;11(6):784–791.
  • Taurino I, Van Hoof V, Magrez A, et al. Efficient voltammetric discrimination of free bilirubin from uric acid and ascorbic acid by a CVD nanographite-based microelectrode. Talanta. 2014;130:423–426.
  • Noh H-B, Won M-S, Shim Y-B. Selective nonenzymatic bilirubin detection in blood samples using a Nafion/Mn–Cu sensor. Biosens Bioelectron. 2014;61:554–561.
  • Yang Z, Shang X, Zhang C, et al. Photoelectrochemical bilirubin biosensor based on Fe3O4/hydroxyapatite/molecularly imprinted polypyrrole nanoparticles. Sens Actuators B. 2014;201:167–172.
  • Taurino I, Van Hoof V, De Micheli G, et al. Superior sensing performance of multi-walled carbon nanotube-based electrodes to detect unconjugated bilirubin. Thin Solid Films. 2013;548:546–550.
  • Yan D, Domes C, Domes R, et al. Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia. Analyst. 2016;141(21):6104–6115.
  • Ponhong K, Teshima N, Grudpan K, et al. Successive determination of urinary bilirubin and creatinine employing simultaneous injection effective mixing flow analysis. Talanta. 2015;133:71–76.
  • Vichapong J, Burakham R, Teshima N, et al. Alternative spectrophotometric method for determination of bilirubin and urobilinogen in urine samples using simultaneous injection effective mixing flow analysis. Anal Methods. 2013;5(9):2419–2426.
  • Yang W, Xia J, Zhou G, et al. Sensitive detection of free bilirubin in blood serum using β-diketone modified europium-doped yttrium oxide nanosheets as a luminescent sensor. RSC Adv. 2018;8(32):17854–17859.
  • Basu S, Sahoo AK, Paul A, et al. Thumb imprint based detection of hyperbilirubinemia using luminescent gold nanoclusters. Sci Rep. 2016;6(1):39005–39007.
  • Abstracts of the 17th International Symposium on Bioluminescence and Chemiluminescence, May 28th–June 2nd, 2012, Guelph, Ontario, Canada (ISBC 2012). Luminescence. 2012;27(2):95–178.
  • Roshni V, Gujar V, Muntjeeb S, et al. Novel and reliable chemosensor based on C. dots from sunflower seeds for the distinct detection of picric acid and bilirubin. Spectrochim Acta A Mol Biomol Spectrosc. 2021;250:119354.
  • Zhao W, Zong C, Lei T, et al. Ultrasensitive free bilirubin detection in whole blood via counting quantum dots aggregates at single nanoparticle level. Sens Actuators B. 2018;275:95–100.
  • Jayasree M, Aparna R, Anjana R, et al. Fluorescence turn on detection of bilirubin using Fe (III) modulated BSA stabilized copper nanocluster; a mechanistic perception. Anal Chim Acta. 2018;1031:152–160.
  • Ellairaja S, Shenbagavalli K, Ponmariappan S, et al. A green and facile approach for synthesizing imine to develop optical biosensor for wide range detection of bilirubin in human biofluids. Biosens Bioelectron. 2017;91:82–88.
  • Iwatani S, Nakamura H, Kurokawa D, et al. Fluorescent protein-based detection of unconjugated bilirubin in newborn serum. Sci Rep. 2016;6(1):28489–28488.
  • Timin AS, Solomonov AV, Kumagai A, et al. Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection. Mater Chem Phys. 2016;183:422–429.
  • Bian WW. Spectrofluorimetric determination of bilirubin using enoxacine-terbium probe. 2014 international conference on mechatronics engineering and computing technology, ICMECT 2014. Shanghai: Trans Tech Publications; 2014. p. 421–424.
  • Santhosh M, Chinnadayyala SR, Kakoti A, et al. Selective and sensitive detection of free bilirubin in blood serum using human serum albumin stabilized gold nanoclusters as fluorometric and colorimetric probe. Biosens Bioelectron. 2014;59:370–376.
  • Kamruzzaman M, Alam A-M, Hak Lee S, et al. Spectrofluorimetric quantification of bilirubin using yttrium–norfloxacin complex as a fluorescence probe in serum samples. J Lumin. 2012;132(11):3053–3057.
  • Kleinfeld AM, Hegyi T, Kampf JP, et al. Fluorescence sensor for the quantification of unbound bilirubin concentrations. Clin Chem. 2012;58(5):869–876.
  • Bian W, Zhang N, Jiang C. Spectrofluorimetric determination of bilirubin in serum samples. Luminescence. 2011;26(1):54–58.
  • Bian W, Zhang N, Wang L. Spectrofluorometric determination of total bilirubin in human serum samples using tetracycline-Eu3+. Anal Sci. 2010;26(7):785–789.
  • Xia M, Sui Y, Guo Y, et al. Aggregation-induced emission enhancement of gold nanoclusters in metal-organic frameworks for highly sensitive fluorescent detection of bilirubin. Analyst. 2021;146(3):904–910.
  • Xia C, Xu Y, Cao MM, et al. A selective and sensitive fluorescent probe for bilirubin in human serum based on europium(III) post-functionalized Zr(IV)-based MOFs. Talanta. 2020;212:120795.
  • Nandi S, Biswas S. A recyclable post-synthetically modified Al(iii) based metal-organic framework for fast and selective fluorogenic recognition of bilirubin in human biofluids. Dalton Trans. 2019;48(25):9266–9275.
  • Xu P, Yang H-W, Shi J-L, et al. Efficient detection of a biomarker for infant jaundice by a europium(iii)-organic framework luminescence sensor. RSC Adv. 2019;9(64):37584–37593.
  • Du Y, Li X, Lv X, et al. Highly sensitive and selective sensing of free bilirubin using metal-organic frameworks-based energy transfer process. ACS Appl Mater Interfaces. 2017;9(36):30925–30932.
  • Zhang C, Bai W, Qin T, et al. Fabrication of red mud/molecularly imprinted polypyrrole-modified electrode for the piezoelectric sensing of bilirubin. IEEE Sensors J. 2019;19(4):1280–1284.
  • Çiçek Ç, Yılmaz F, Özgür E, et al. Molecularly imprinted quartz crystal microbalance sensor (QCM) for bilirubin detection. Chemosensors. 2016; 4(4):21.
  • Yang Z, Yan J, Zhang C. Piezoelectric detection of bilirubin based on bilirubin-imprinted titania film electrode. Anal Biochem. 2012;421(1):37–42.
  • Yang Z, Zhang C. Molecularly imprinted hydroxyapatite thin film for bilirubin recognition. Biosens Bioelectron. 2011;29(1):167–171.
  • Thompson BL, Wyckoff SL, Haverstick DM, et al. Simple, reagentless quantification of total bilirubin in blood via microfluidic phototreatment and image analysis. Anal Chem. 2017;89(5):3228–3234.
  • De Greef L, Goel M, Seo MJ, et al., editors. Bilicam: using mobile phones to monitor newborn jaundice. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing; 2014.
  • Taylor JA, Stout JW, de Greef L, et al. Use of a smartphone app to assess neonatal jaundice. Pediatrics. 2017;140(3):1–8.
  • Yang B, Huang D, Gao X, et al. Neonatal and early infantile jaundice: assessment by the use of the smartphone. Chinese J Neonatol. 2018;33(4):277–282.
  • Swarna S, Pasupathy S, Chinnasami B, et al. The smart phone study: assessing the reliability and accuracy of neonatal jaundice measurement using smart phone application. Int J Contemp Pediatr. 2018;5(2):285–289.
  • Lingaldinna S, Konda KC, Bapanpally N, et al. Validity of bilirubin measured by biliscan (smartphone application) in neonatal jaundice–an observational study. J Nepal Paedtr Soc. 2021;41(1):93–98.
  • Xiaoyue D, Xiaofan S, Zhangbin Y, et al. Image-based neonatal hyperbilirubinemia screening after hospital discharge. Iran J Public Health. 2020;49(6):1079–1086.
  • Outlaw F, Nixon M, Brako NO, et al., editors. Smartphone colorimetry using ambient subtraction. Application to neonatal jaundice screening in Ghana. Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers; 2019.
  • Outlaw F, Nixon M, Odeyemi O, et al. Smartphone screening for neonatal jaundice via ambient-subtracted sclera chromaticity. PLOS One. 2020;15(3):e0216970.
  • Leung TS, Kapur K, Guilliam A, et al. Screening neonatal jaundice based on the sclera color of the eye using digital photography. Biomed Opt Express. 2015;6(11):4529–4538.
  • Munkholm SB, Krøgholt T, Ebbesen F, et al. The smartphone camera as a potential method for transcutaneous bilirubin measurement. PLOS One. 2018;13(6):e0197938.
  • Rizvi MR, Alaskar FM, Albaradie RS, et al. A novel non-invasive technique of measuring bilirubin levels using BiliCapture. Oman Med J. 2019;34(1):26–33.
  • Halder A, Adhikari A, Ghosh R, et al. Large scale validation of a new non-invasive and non-contact bilirubinometer in neonates with risk factors. Sci Rep. 2020;10(1):1–14.
  • Halder A, Banerjee M, Singh S, et al. A novel whole spectrum-based non-invasive screening device for neonatal hyperbilirubinemia. IEEE J Biomed Health Inform. 2019;23(6):2347–2353.
  • Zabetta CDC, Iskander IF, Greco C, et al. Bilistick: a low-cost point-of-care system to measure total plasma bilirubin. Neonatology. 2013;103(3):177–181.
  • Rohsiswatmo R, Oswari H, Amandito R, et al. Agreement test of transcutaneous bilirubin and bilistick with serum bilirubin in preterm infants receiving phototherapy. BMC Pediatr. 2018;18(1):315.
  • Kamineni B, Tanniru A, Vardhelli V, et al. Accuracy of bilistick (a point-of-care device) to detect neonatal hyperbilirubinemia. J Trop Pediatr. 2020;66(6):630–636.
  • Greco C, Iskander I, Akmal D, et al. Comparison between bilistick system and transcutaneous bilirubin in assessing total bilirubin serum concentration in jaundiced newborns. J Perinatol. 2017;37(9):1028–1031.
  • Boo N-Y, Chang Y-F, Leong Y-X, et al. The point-of-care bilistick method has very short turn-around-time and high accuracy at lower cutoff levels to predict laboratory-measured TSB. Pediatr Res. 2019;86(2):216–220.
  • Thielemans L, Hashmi A, Priscilla DD, et al. Laboratory validation and field usability assessment of a point-of-care test for serum bilirubin levels in neonates in a tropical setting. Wellcome Open Res. 2018;3:110.
  • Keahey PA, Simeral ML, Schroder KJ, et al. Point-of-care device to diagnose and monitor neonatal jaundice in low-resource settings. Proc Natl Acad Sci USA. 2017;114(51):E10965–E10971.
  • Tabatabaee RS, Golmohammadi H, Ahmadi SH. Easy diagnosis of jaundice: a smartphone-based nanosensor bioplatform using photoluminescent bacterial nanopaper for point-of-care diagnosis of hyperbilirubinemia. ACS Sens. 2019;4(4):1063–1071.
  • Tan W, Zhang L, Doery JCG, et al. Study of paper-based assaying system for diagnosis of total serum bilirubin by colorimetric diazotization method. Sens Actuators B. 2020;305:127448.
  • Tan W, Zhang L, Doery JCG, et al. Three-dimensional microfluidic tape-paper-based sensing device for blood total bilirubin measurement in jaundiced neonates. Lab Chip. 2020;20(2):394–404.
  • Xu H, Xia A, Luo J, et al. A sample-to-answer quantitative platform for point-of-care testing of biochemical markers in whole blood. Sens Actuators B. 2020;308:127750.
  • Aune A, Vartdal G, Bergseng H, et al. Bilirubin estimates from smartphone images of newborn infants' skin correlated highly to serum bilirubin levels. Acta Paediatr. 2020;109(12):2532–2538.
  • Outlaw F, Nixon M, Odeyemi O, et al. Smartphone screening for neonatal jaundice via ambient-subtracted sclera chromaticity: neoSCB app pilot study. bioRxiv. 2019:627034.
  • Tóth J, Oláh AV, Petercsák T, et al. Detection of haemolysis, a frequent preanalytical problem in the serum of newborns and adults. EJIFCC. 2020;31(1):6–14.
  • Nichols JH. Reducing medical errors at the point of care. Lab Med. 2005;36(5):275–277.
  • Braga F, Panteghini M. Verification of in vitro medical diagnostics (IVD) metrological traceability: responsibilities and strategies. Clin Chim Acta. 2014;432:55–61.
  • Holt H, Freedman DB. Internal quality control in point-of-care testing: where's the evidence? Ann Clin Biochem. 2016;53(Pt 2):233–239.
  • Kinns H, Pitkin S, Housley D, et al. Internal quality control: best practice. J Clin Pathol. 2013;66(12):1027–1032.
  • Mabey DC, Sollis KA, Kelly HA, et al. Point-of-care tests to strengthen health systems and save newborn lives: the case of syphilis. PLOS Med. 2012;9(6):e1001233.
  • Brunori P, Masi P, Faggiani L, et al. Evaluation of bilirubin concentration in hemolysed samples, is it really impossible? The altitude-curve cartography approach to interfered assays. Clin Chim Acta. 2011;412(9–10):774–777.
  • Xu X, Akay A, Wei H, et al. Advances in smartphone-based point-of-care diagnostics. Proc IEEE. 2015;103(2):236–247.
  • Wang P, Kricka LJ. Current and emerging trends in point-of-care technology and strategies for clinical validation and implementation. Clin Chem. 2018;64(10):1439–1452.
  • Lingervelder D, Koffijberg H, Kusters R, et al. Health economic evidence of point-of-care testing: a systematic review. Pharmacoecon Open. 2021;5(2):157–173.
  • Bromiker R, Bin-Nun A, Schimmel MS, et al. Neonatal hyperbilirubinemia in the low-intermediate-risk category on the bilirubin nomogram. Pediatrics. 2012;130(3):e470–e475.
  • Thomas M, Hardikar W, Greaves RF, et al. Mechanism of bilirubin elimination in urine: insights and prospects for neonatal jaundice. Clin Chem Lab Med. 2021;59(6):1025–1033.
  • Dizgah M-HM, Dizgah M-RM, Mirzaii-Dizgah I, et al. Bilirubin in saliva: a potential biomarker for detecting neonatal jaundice. Avicenna J Dent Res. 2019;11(3):79–82.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.