328
Views
0
CrossRef citations to date
0
Altmetric
Invited Reviews

Diagnostic value of soluble biomarkers for parapneumonic pleural effusion

, ORCID Icon & ORCID Icon
Pages 233-247 | Received 14 Sep 2022, Accepted 12 Dec 2022, Published online: 02 Jan 2023

References

  • Chalmers JD, Singanayagam A, Murray MP, et al. Risk factors for complicated parapneumonic effusion and empyema on presentation to hospital with community-acquired pneumonia. Thorax. 2009;64(7):592–597.
  • Falguera M, Carratala J, Bielsa S, et al. Predictive factors, microbiology and outcome of patients with parapneumonic effusion. Eur Respir J. 2011;38(5):1173–1179.
  • Reissig A, Copetti R, Mathis G, et al. Lung ultrasound in the diagnosis and follow-up of community-acquired pneumonia: a prospective, multicenter, diagnostic accuracy study. Chest. 2012;142(4):965–972.
  • Han X, Chen L, Li H, CAP-China Network, et al. Prognostic factors for cardiovascular events in elderly patients with community acquired pneumonia: results from the CAP-China network. Clin Interv Aging. 2022;17:603–614.
  • Dean NC, Griffith PP, Sorensen JS, et al. Pleural effusions at first ED encounter predict worse clinical outcomes in patients with pneumonia. Chest. 2016;149(6):1509–1515.
  • Mortensen EM, Kapoor WN, Chang CC, et al. Assessment of mortality after long-term follow-up of patients with community-acquired pneumonia. Clin Infect Dis. 2003;37(12):1617–1624.
  • Cilloniz C, Ewig S, Polverino E, et al. Pulmonary complications of pneumococcal community-acquired pneumonia: incidence, predictors, and outcomes. Clin Microbiol Infect. 2012;18(11):1134–1142.
  • Addala DN, Bedawi EO, Rahman NM. Parapneumonic effusion and empyema. Clin Chest Med. 2021;42(4):637–647.
  • Roy B, Shak HJ, Lee YCG. Pleural fluid investigations for pleural infections. J Lab Precis Med. 2021;6:12–12.
  • Sahn SA. Diagnosis and management of parapneumonic effusions and empyema. Clin Infect Dis. 2007;45(11):1480–1486.
  • Davies HE, Davies RJ, Davies CW, BTS Pleural Disease Guideline Group Management of pleural infection in adults: british thoracic society pleural disease guideline 2010. Thorax. 2010;65(Suppl 2):ii41–ii53.
  • Sundaralingam A, Banka R, Rahman NM. Management of pleural infection. Pulm Ther. 2021;7(1):59–74.
  • Porcel JM. Distinguishing complicated from uncomplicated parapneumonic effusions. Curr Opin Pulm Med. 2015;21(4):346–351.
  • Porcel JM. Pleural fluid tests to identify complicated parapneumonic effusions. Curr Opin Pulm Med. 2010;16(4):357–361.
  • Porcel JM, Esquerda A, Vives M, et al. Etiology of pleural effusions: analysis of more than 3,000 consecutive thoracenteses. Arch Bronconeumol. 2014;50(5):161–165.
  • Tian P, Qiu R, Wang M, et al. Prevalence, causes, and health care burden of pleural effusions among hospitalized adults in China. JAMA Netw Open. 2021;4(8):e2120306.
  • Maskell NA, Batt S, Hedley EL, et al. The bacteriology of pleural infection by genetic and standard methods and its mortality significance. Am J Respir Crit Care Med. 2006;174(7):817–823.
  • Marks DJ, Fisk MD, Koo CY, et al. Thoracic empyema: a 12-year study from a UK tertiary cardiothoracic referral Centre. PLOS One. 2012;7(1):e30074.
  • Wang XJ, Yang Y, Wang Z, et al. Efficacy and safety of diagnostic thoracoscopy in undiagnosed pleural effusions. Respiration. 2015;90(3):251–255.
  • Gordon CE, Feller-Kopman D, Balk EM, et al. Pneumothorax following thoracentesis: a systematic review and meta-analysis. Arch Intern Med. 2010;170(4):332–339.
  • Ault MJ, Rosen BT, Scher J, et al. Thoracentesis outcomes: a 12-year experience. Thorax. 2015;70(2):127–132.
  • Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240(4857):1285–1293.
  • Fischer JE, Bachmann LM, Jaeschke R. A readers’ guide to the interpretation of diagnostic test properties: clinical example of sepsis. Intensive Care Med. 2003;29(7):1043–1051.
  • Simundic AM. Measures of diagnostic accuracy: basic definitions. EJIFCC. 2009;19(4):203–211.
  • Linnet K, Bossuyt PM, Moons KG, et al. Quantifying the accuracy of a diagnostic test or marker. Clin Chem. 2012;58(9):1292–1301.
  • Schlattmann P. Statistics in diagnostic medicine. Clin Chem Lab Med. 2022;60(6):801–807.
  • Walter SD. Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data. Stat Med. 2002;21(9):1237–1256.
  • Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem. 2004;279(47):48487–48490.
  • Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754.
  • Allin KH, Nordestgaard BG. Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer. Crit Rev Clin Lab Sci. 2011;48(4):155–170.
  • Zimmermann O, Li K, Zaczkiewicz M, et al. C-reactive protein in human atherogenesis: facts and fiction. Mediators Inflamm. 2014;2014:561428.
  • Enocsson H, Karlsson J, Li HY, et al. The complex role of C-reactive protein in systemic lupus erythematosus. JCM. 2021;10(24):5837.
  • Ebell MH, Bentivegna M, Cai X, et al. Accuracy of biomarkers for the diagnosis of adult community-acquired pneumonia: a meta-analysis. Acad Emerg Med. 2020;27(3):195–206.
  • Kim JW, Yang IA, Oh EA, et al. C-reactive protein, sialic acid and adenosine deaminase levels in serum and pleural fluid from patients with pleural effusion. Korean J Intern Med. 1988;3(2):122–127.
  • Porcel JM, Vives M, Cao G, et al. Biomarkers of infection for the differential diagnosis of pleural effusions. Eur Respir J. 2009;34(6):1383–1389.
  • Porcel JM, Bielsa S, Esquerda A, et al. Pleural fluid C-reactive protein contributes to the diagnosis and assessment of severity of parapneumonic effusions. Eur J Intern Med. 2012;23(5):447–450.
  • San Jose ME, Valdes L, Vizcaino LH, et al. Procalcitonin, C-reactive protein, and cell counts in the diagnosis of parapneumonic pleural effusions. J Investig Med. 2010;58(8):971–976.
  • Zou MX, Zhou RR, Wu WJ, et al. The use of pleural fluid procalcitonin and C-reactive protein in the diagnosis of parapneumonic pleural effusions: a systemic review and meta-analysis. Am J Emerg Med. 2012;30(9):1907–1914.
  • Li D, Shen Y, Qin J, et al. Diagnostic performance of C-reactive protein for parapneumonic pleural effusion: a meta-analysis. Ann Transl Med. 2019;7(1):1.
  • Skouras V, Boultadakis E, Nikoulis D, et al. Prognostic value of C-reactive protein in parapneumonic effusions. Respirology. 2012;17(2):308–314.
  • Porcel JM, Galindo C, Esquerda A, et al. Pleural fluid interleukin-8 and C-reactive protein for discriminating complicated non-purulent from uncomplicated parapneumonic effusions. Respirology. 2008;13(1):58–62.
  • Bielsa S, Valencia H, Ruiz-Gonzalez A, et al. Serum C-reactive protein as an adjunct for identifying complicated parapneumonic effusions. Lung. 2014;192(4):577–581.
  • Kogan Y, Sabo E, Odeh M. Diagnostic value of C-reactive protein in discrimination between uncomplicated and complicated parapneumonic effusion. Diagnostics. 2020;10(10):829.
  • Hooper C, Lee YC, Maskell N, BTS Pleural Guideline Group Investigation of a unilateral pleural effusion in adults: British Thoracic Society pleural disease guideline 2010. Thorax. 2010;65(Suppl 2):ii4–17.
  • Colice GL, Curtis A, Deslauriers J, et al. Medical and surgical treatment of parapneumonic effusions: an evidence-based guideline. Chest. 2000;118(4):1158–1171.
  • Heffner JE, Brown LK, Barbieri C, et al. Pleural fluid chemical analysis in parapneumonic effusions. A meta-analysis. Am J Respir Crit Care Med. 1995;151(6):1700–1708.
  • Lapworth R, Tarn AC, BritishThoracic S, Clinical Scince Reviews Committee of the Association for Clinical Biochemistry, et al. Commentary on the British Thoracic Society guidelines for the investigation of unilateral pleural effusion in adults. Ann Clin Biochem. 2006;43(Pt 1):17–22.
  • Putnam B, Elahi A, Bowling MR. Do we measure pleural fluid pH correctly? Curr Opin Pulm Med. 2013;19(4):357–361.
  • Porcel JM, Valencia H, Bielsa S. Factors influencing pleural drainage in parapneumonic effusions. Rev Clin Esp. 2016;216(7):361–366.
  • Chen SC, Chen W, Hsu WH, et al. Role of pleural fluid C-reactive protein concentration in discriminating uncomplicated parapneumonic pleural effusions from complicated parapneumonic effusion and empyema. Lung. 2006;184(3):141–145.
  • Aloisio E, Dolci A, Panteghini M. Procalcitonin: between evidence and critical issues. Clin Chim Acta. 2019;496:7–12.
  • Davies J. Procalcitonin. J Clin Pathol. 2015;68(9):675–679.
  • Samsudin I, Vasikaran SD. Clinical utility and measurement of procalcitonin. Clin Biochem Rev. 2017;38(2):59–68.
  • Schuetz P, Albrich W, Mueller B. Procalcitonin for diagnosis of infection and guide to antibiotic decisions: past, present and future. BMC Med. 2011;9:107.
  • Wei TT, Hu ZD, Qin BD, et al. Diagnostic accuracy of procalcitonin in bacterial meningitis versus nonbacterial meningitis: a systematic review and meta-analysis. Medicine. 2016;95(11):e3079.
  • Kamat IS, Ramachandran V, Eswaran H, et al. Procalcitonin to distinguish viral from bacterial pneumonia: a systematic review and meta-analysis. Clin Infect Dis. 2020;70(3):538–542.
  • Lin MC, Chen YC, Wu JT, et al. Diagnostic and prognostic values of pleural fluid procalcitonin in parapneumonic pleural effusions. Chest. 2009;136(1):205–211.
  • Dixon G, Lama-Lopez A, Bintcliffe OJ, et al. The role of serum procalcitonin in establishing the diagnosis and prognosis of pleural infection. Respir Res. 2017;18(1):30.
  • He C, Wang B, Li D, et al. Performance of procalcitonin in diagnosing parapneumonic pleural effusions: a clinical study and meta-analysis. Medicine (Baltimore). 2017;96(33):e7829.
  • Watanabe N, Ishii T, Kita N, et al. The usefulness of pleural fluid presepsin, C-reactive protein, and procalcitonin in distinguishing different causes of pleural effusions. BMC Pulm Med. 2018;18(1):176.
  • Sharma A, Agrawal A, Sindhwani G, et al. Efficacy of procalcitonin and pentraxin-3 as early biomarkers for differential diagnosis of pleural effusions. Pleura Peritoneum. 2021;6(2):83–90.
  • Qu SY, Zhang Y, Wu S, et al. Combined analysis of C-reactive protein in pleural fluid and serum is effective in the differential diagnosis of exudative pleural effusions. Ann Transl Med. 2021;9(14):1183.
  • Wang CY, Hsiao YC, Jerng JS, et al. Diagnostic value of procalcitonin in pleural effusions. Eur J Clin Microbiol Infect Dis. 2011;30(3):313–318.
  • McCann FJ, Chapman SJ, Yu WC, et al. Ability of procalcitonin to discriminate infection from non-infective inflammation using two pleural disease settings. PLOS One. 2012;7(12):e49894.
  • Determann RM, Achouiti AA, El Solh AA, et al. Infectious pleural effusions can be identified by sTREM-1 levels. Respir Med. 2010;104(2):310–315.
  • Lee SH, Lee EJ, Min KH, et al. Procalcitonin as a diagnostic marker in differentiating parapneumonic effusion from tuberculous pleurisy or malignant effusion. Clin Biochem. 2013;46(15):1484–1488.
  • Yeo CD, Kim JW, Cho MR, et al. Pleural fluid pentraxin-3 for the differential diagnosis of pleural effusions. Tuberc Respir Dis (Seoul). 2013;75(6):244–249.
  • Bouchon A, Dietrich J, Colonna M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol. 2000;164(10):4991–4995.
  • Summah H, Tao LL, Zhu YG, et al. Pleural fluid soluble triggering receptor expressed on myeloid cells-1 as a marker of bacterial infection: a meta-analysis. BMC Infect Dis. 2011;11:280.
  • Gibot S, Cravoisy A, Levy B, et al. Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med. 2004;350(5):451–458.
  • Cao C, Gu J, Zhang J. Soluble triggering receptor expressed on myeloid cell-1 (sTREM-1): a potential biomarker for the diagnosis of infectious diseases. Front Med. 2017;11(2):169–177.
  • Liu CL, Hsieh WY, Wu CL, et al. Triggering receptor expressed on myeloid cells-1 in pleural effusions: a marker of inflammatory disease. Respir Med. 2007;101(5):903–909.
  • Chan MC, Chang KM, Chao WC, et al. Evaluation of a new inflammatory molecule (triggering receptor expressed on myeloid cells-1) in the diagnosis of pleural effusion. Respirology. 2007;12(3):333–338.
  • Bishara J, Goldberg E, Ashkenazi S, et al. Soluble triggering receptor expressed on myeloid cells-1 for diagnosing empyema. Ann Thorac Surg. 2009;87(1):251–254.
  • Schumann RR, Zweigner J. A novel acute-phase marker: lipopolysaccharide binding protein (LBP). Clin Chem Lab Med. 1999;37(3):271–274.
  • Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 2014;5:316.
  • Zhang J, Hu ZD, Song J, et al. Diagnostic value of presepsin for sepsis: a systematic review and meta-analysis. Medicine (Baltimore). 2015;94(47):e2158.
  • Qi ZJ, Yu H, Zhang J, et al. Presepsin as a novel diagnostic biomarker for differentiating active pulmonary tuberculosis from bacterial community acquired pneumonia. Clin Chim Acta. 2018;478:152–156.
  • Chen KF, Chaou CH, Jiang JY, et al. Diagnostic accuracy of lipopolysaccharide-binding protein as biomarker for sepsis in adult patients: a systematic review and meta-analysis. PLOS One. 2016;11(4):e0153188.
  • Idell S. The pathogenesis of pleural space loculation and fibrosis. Curr Opin Pulm Med. 2008;14(4):310–315.
  • Komissarov AA, Rahman N, Lee YCG, et al. Fibrin turnover and pleural organization: bench to bedside. Am J Physiol Lung Cell Mol Physiol. 2018;314(5):L757–L768.
  • Higazi A, Cohen RL, Henkin J, et al. Enhancement of the enzymatic activity of single-chain urokinase plasminogen activator by soluble urokinase receptor. J Biol Chem. 1995;270(29):17375–17380.
  • Bakker OG, Hemmes SN, Backes Y, et al. SuPAR in pleural fluid may function as a biological marker for infection in critically ill patients with pleural effusions. J Infect. 2014;68(6):607–609.
  • Matzkies LM, Raggam RB, Flick H, et al. Prognostic and diagnostic potential of suPAR levels in pleural effusion. J Infect. 2017;75(5):465–467.
  • Ozsu S, Oztuna F, Mentese A, et al. Diagnostic value of suPAR in differentiating noncardiac pleural effusions from cardiac pleural effusions. Clin Respir J. 2016;10(1):61–66.
  • Arnold DT, Hamilton FW, Elvers KT, et al. Pleural fluid suPAR levels predict the need for invasive management in parapneumonic effusions. Am J Respir Crit Care Med. 2020;201(12):1545–1553.
  • Idell S, Lee YCG. suPAR surprises as a biomarker of invasive outcomes in pleural infection. Am J Respir Crit Care Med. 2020;201(12):1470–1472.
  • He X, Han B, Liu M. Long pentraxin 3 in pulmonary infection and acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2007;292(5):L1039–1049.
  • Liu S, Qu X, Liu F, et al. Pentraxin 3 as a prognostic biomarker in patients with systemic inflammation or infection. Mediators Inflamm. 2014;2014:421429.
  • Bottazzi B, Bastone A, Doni A, et al. The long pentraxin PTX3 as a link among innate immunity, inflammation, and female fertility. J Leukoc Biol. 2006;79(5):909–912.
  • Staubli SM, Schäfer J, Rosenthal R, et al. The role of CRP and pentraxin 3 in the prediction of systemic inflammatory response syndrome and death in acute pancreatitis. Sci Rep. 2019;9(1):18340.
  • Kunes P, Holubcova Z, Kolackova M, et al. Pentraxin 3(PTX 3): an endogenous modulator of the inflammatory response. Mediators Inflamm. 2012;2012:920517.
  • Ozsu S, Abul Y, Mentese A, et al. Pentraxin-3: a novel biomarker for discriminating parapneumonic from other exudative effusions. Respirology. 2013;18(4):657–662.
  • Çiftci F, Bilgin G, Özcan AN, et al. The diagnostic role of pentraxin-3 in the differential diagnosis of pleural effusions. Turk J Med Sci. 2018;48(6):1167–1174.
  • Dongel I, Gokmen AA, Camas HE, et al. Diagnostic significance of biochemical markers and pentraxin-3 in the differential diagnosis of malign, benign pleural effusion and empyema. J Pak Med Assoc. 2020;70(5):860–864.
  • Remick DG. Interleukin-8. Crit Care Med. 2005;33(12 Suppl):S466–S467.
  • Harada A, Sekido N, Akahoshi T, et al. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol. 1994;56(5):559–564.
  • Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992;307(1):97–101.
  • Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14(21):6735–6741.
  • Broaddus VC, Hebert CA, Vitangcol RV, et al. Interleukin-8 is a major neutrophil chemotactic factor in pleural liquid of patients with empyema. Am Rev Respir Dis. 1992;146(4):825–830.
  • Ashitani J, Mukae H, Nakazato M, et al. Elevated pleural fluid levels of defensins in patients with empyema. Chest. 1998;113(3):788–794.
  • Yokoyama A, Kohno N, Ito M, et al. Eotaxin levels in pleural effusions: comparison with monocyte chemoattractant protein-1 and IL-8. Intern Med. 2000;39(7):547–552.
  • Ceyhan BB, Ozgun S, Celikel T, et al. IL-8 in pleural effusion. Respir Med. 1996;90(4):215–221.
  • Yamada Y, Nakamura A, Hosoda M, et al. Cytokines in pleural liquid for diagnosis of tuberculous pleurisy. Respir Med. 2001;95(7):577–581.
  • Dlugovitzky D, Rateni L, Torres-Morales A, et al. Levels of interleukin-8 in tuberculous pleurisy and the profile of immunocompetent cells in pleural and peripheral compartments. Immunol Lett. 1997;55(1):35–39.
  • San Jose ME, Ferreiro L, Soneira ME, et al. Utility of measurement of interleukin-1ss and interleukin-8 in the diagnosis of complicated parapneumonic pleural effusions. Am J Clin Pathol. 2014;142(4):467–473.
  • Chung CL, Hsiao SH, Hsiao G, et al. Clinical importance of angiogenic cytokines, fibrinolytic activity and effusion size in parapneumonic effusions. PLOS One. 2013;8(1):e53169.
  • Saraya T, Ohkuma K, Watanabe T, et al. Diagnostic value of vascular endothelial growth factor, transforming growth factor-β, interleukin-8, and the ratio of lactate dehydrogenase to adenosine deaminase in pleural effusion. Lung. 2018;196(2):249–254.
  • Iglesias D, Alegre J, Aleman C, et al. Metalloproteinases and tissue inhibitors of metalloproteinases in exudative pleural effusions. Eur Respir J. 2005;25(1):104–109.
  • Utine GE, Ozcelik U, Yalcin E, et al. Childhood parapneumonic effusions: biochemical and inflammatory markers. Chest. 2005;128(3):1436–1441.
  • Petrusevska Marinkovic S, Kondova Topuzovska I, Milenkovic Z, et al. Role of interleukin-8 in differentiation of uncomplicated from complicated parapneumonic effusion. Prilozi. 2011;32(1):101–111.
  • Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340(6):448–454.
  • Zhang Y, Zhang J, Sheng H, et al. Acute phase reactant serum amyloid a in inflammation and other diseases. Adv Clin Chem. 2019;90:25–80.
  • Okino AM, Burger C, Cardoso JR, et al. The acute-phase proteins serum amyloid A and C reactive protein in transudates and exudates. Mediators Inflamm. 2006;2006(1):47297.
  • Boultadakis V, Skouras V, Makris D, et al. Serum amyloid alpha in parapneumonic effusions. Mediators Inflamm. 2011;2011:237638.
  • Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30(1):16–34.
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.
  • Yokoyama A, Maruyama M, Ito M, et al. Interleukin 6 activity in pleural effusion. Its diagnostic value and thrombopoietic activity. Chest. 1992;102(4):1055–1059.
  • Xirouchaki N, Tzanakis N, Bouros D, et al. Diagnostic value of interleukin-1alpha, interleukin-6, and tumor necrosis factor in pleural effusions. Chest. 2002;121(3):815–820.
  • San Jose ME, Valdes L, Gonzalez-Barcala FJ, et al. Diagnostic value of proinflammatory interleukins in parapneumonic effusions. Am J Clin Pathol. 2010;133(6):884–891.
  • Daniil ZD, Zintzaras E, Kiropoulos T, et al. Discrimination of exudative pleural effusions based on multiple biological parameters. Eur Respir J. 2007;30(5):957–964.
  • Kiropoulos TS, Kostikas K, Oikonomidi S, et al. Acute phase markers for the differentiation of infectious and malignant pleural effusions. Respir Med. 2007;101(5):910–918.
  • Ilonidis G, Parapanisiou E, Anogeianaki A, et al. Interleukin -1beta (IL-1 beta), interleukin 6 (IL-6) and tumor necrosis factor (TNF) in plasma and pleural fluid of pneumonia, lung cancer and tuberculous pleuritis. J Biol Regul Homeost Agents. 2006;20(1-2):41–46.
  • Ferreiro L, Lado-Baleato O, Suarez-Antelo J, et al. Diagnosis of infectious pleural effusion using predictive models based on pleural fluid biomarkers. Ann Thorac Med. 2019;14(4):254–263.
  • Lin FC, Chen YC, Chen FJ, et al. Cytokines and fibrinolytic enzymes in tuberculous and parapneumonic effusions. Clin Immunol. 2005;116(2):166–173.
  • Akarsu S, Kurt AN, Dogan Y, et al. The differential diagnostic values of cytokine levels in pleural effusions. Mediators Inflamm. 2005;2005(1):2–8.
  • Momi H, Matsuyama W, Inoue K, et al. Vascular endothelial growth factor and proinflammatory cytokines in pleural effusions. Respir Med. 2002;96(10):817–822.
  • Klimiuk J, Krenke R, Safianowska A, et al. Diagnostic performance of different pleural fluid biomarkers in tuberculous pleurisy. Adv Exp Med Biol. 2015;852:21–30.
  • Zhang M, Li D, Hu ZD, et al. The diagnostic utility of pleural markers for tuberculosis pleural effusion. Ann Transl Med. 2020;8(9):607.
  • Aggarwal AN, Agarwal R, Dhooria S, et al. Pleural fluid tumor necrosis factor for diagnosis of pleural tuberculosis: a systematic review and meta-analysis. Cytokine. 2021;141:155467.
  • Odeh M, Makhoul B, Sabo E, et al. The role of pleural fluid-serum gradient of tumor necrosis factor-alpha concentration in discrimination between complicated and uncomplicated parapneumonic effusion. Lung. 2005;183(1):13–27.
  • Porcel JM, Vives M, Esquerda A. Tumor necrosis factor-alpha in pleural fluid: a marker of complicated parapneumonic effusions. Chest. 2004;125(1):160–164.
  • Odeh M, Sabo E, Srugo I, et al. Correlation between polymorphonuclear leukocyte counts and levels of tumor necrosis factor-a in pleural fluid of patients with parapneumonic effusion. Lung. 2002;180(5):265–271.
  • Odeh M, Sabo E, Oliven A, et al. Role of tumor necrosis factor-alpha in the differential diagnosis of parapneumonic effusion. Int J Infect Dis. 2000;4(1):38–41.
  • Chiu CY, Wong KS, Huang JL, et al. Proinflammatory cytokines, fibrinolytic system enzymes, and biochemical indices in children with infectious para-pneumonic effusions. Pediatr Infect Dis J. 2008;27(8):699–703.
  • Ciledag A, Kaya A, Erol S, et al. The comparison of pleural fluid TNF-alpha and IL-10 levels with ADA in tuberculous pleural effusion. Curr Med Chem. 2010;17(19):2096–2100.
  • Zaga T, Makris D, Tsilioni I, et al. Hyaluronic acid levels are increased in complicated parapneumonic pleural effusions. Monaldi Arch Chest Dis. 2011;75(3):167–171.
  • Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14(17):2123–2133.
  • Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73.
  • Jantz MA, Antony VB. Pathophysiology of the pleura. Respiration. 2008;75(2):121–133.
  • Zhang M, Yan L, Lippi G, et al. Pleural biomarkers in diagnostics of malignant pleural effusion: a narrative review. Transl Lung Cancer Res. 2021;10(3):1557–1570.
  • Kremer R, Best LA, Savulescu D, et al. Pleural fluid analysis of lung cancer vs benign inflammatory disease patients. Br J Cancer. 2010;102(7):1180–1184.
  • Sundararajan S, Babu S, Das SD. Comparison of localized versus systemic levels of matrix metalloproteinases (MMPs), its tissue inhibitors (TIMPs) and cytokines in tuberculous and non-tuberculous pleuritis patients. Hum Immunol. 2012;73(10):985–991.
  • Oikonomidi S, Kostikas K, Kalomenidis I, et al. Matrix metalloproteinase levels in the differentiation of parapneumonic pleural effusions. Respiration. 2010;80(4):285–291.
  • Fiorelli A, Morgillo F, Fasano M, et al. The value of matrix metalloproteinase-9 and vascular endothelial growth factor receptor 1 pathway in diagnosing indeterminate pleural effusion. Interact Cardiovasc Thorac Surg. 2013;16(3):263–269.
  • Teixeira LR, Dias MB, Sales RK, et al. Profile of metalloproteinases and their association with inflammatory markers in pleural effusions. Lung. 2016;194(6):1021–1027.
  • Vatansever S, Gelisgen R, Uzun H, et al. Potential role of matrix metalloproteinase-2,-9 and tissue inhibitors of metalloproteinase-1,-2 in exudative pleural effusions. Clin Invest Med. 2009;32(4):E293–300.
  • Sheen P, O'Kane CM, Chaudhary K, et al. High MMP-9 activity characterises pleural tuberculosis correlating with granuloma formation. Eur Respir J. 2009;33(1):134–141.
  • Stewart CM, Kothari PD, Mouliere F, et al. The value of cell-free DNA for molecular pathology. J Pathol. 2018;244(5):616–627.
  • Chan MH, Chow KM, Chan AT, et al. Quantitative analysis of pleural fluid cell-free DNA as a tool for the classification of pleural effusions. Clin Chem. 2003;49(5):740–745.
  • Santotoribio JD, Cabrera-Alarcon JL, Batalha-Caetano P, et al. Pleural fluid cell-free DNA in parapneumonic pleural effusion. Clin Biochem. 2015;48(15):1003–1005.
  • Su CM, Kung CT, Hsiao SY, et al. Diagnosis of parapneumonia pleural effusion with serum and pleural fluid cell-free DNA. Biomed Res Int. 2019;2019:5028512.
  • Zhao W, Cao XS, Han YL, et al. Diagnostic utility of pleural cell-free nucleic acids in undiagnosed pleural effusions. Clin Chem Lab Med. 2022;60(10):1518–1524.
  • Wu KA, Wu CC, Chen CD, et al. Proteome profiling reveals novel biomarkers to identify complicated parapneumonic effusions. Sci Rep. 2017;7(1):4026.
  • Wu KA, Wu CC, Liu YC, et al. Combined serum biomarkers in the noninvasive diagnosis of complicated parapneumonic effusions and empyema. BMC Pulm Med. 2019;19(1):108.
  • Gümüs A, Ozkaya S, Ozyurt S, et al. A novel biomarker in the diagnosis of parapneumonic effusion: neutrophil gelatinase-associated lipocalin. Multidiscip Respir Med. 2014;9(1):49.
  • Sanchez-Otero N, Blanco-Prieto S, Paez de la Cadena M, et al. Calprotectin: a novel biomarker for the diagnosis of pleural effusion. Br J Cancer. 2012;107(11):1876–1882.
  • Botana-Rial M, Vazquez-Iglesias L, Casado-Rey P, et al. Validation of calprotectin as a novel biomarker for the diagnosis of pleural effusion: a multicentre trial. Sci Rep. 2020;10(1):5679.
  • Casado-Rey P, Vazquez-Iglesias L, Botana-Rial M, et al. A rapid calprotectin test for the diagnosis of pleural effusion. PLOS One. 2021;16(6):e0252714.
  • Saberi-Karimian M, Khorasanchi Z, Ghazizadeh H, et al. Potential value and impact of data mining and machine learning in clinical diagnostics. Crit Rev Clin Lab Sci. 2021;58:275–296.
  • Ren Z, Hu Y, Xu L. Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms. Respir Res. 2019;20(1):220.
  • Garcia-Zamalloa A, Vicente D, Arnay R, with the Gipuzkoa Pleura Group Consortium, et al. Diagnostic accuracy of adenosine deaminase for pleural tuberculosis in a low prevalence setting: a machine learning approach within a 7-year prospective multi-center study. PLOS One. 2021;16(11):e0259203.
  • Hayashi Y, Shimada T, Hattori N, et al. A prehospital diagnostic algorithm for strokes using machine learning: a prospective observational study. Sci Rep. 2021;11(1):20519.
  • Yang C, Zhou S, Zhu J, et al. Plasma lipid-based machine learning models provides a potential diagnostic tool for colorectal cancer patients. Clin Chim Acta. 2022;536:191–199.
  • Wang S, Wang Q, Fan B, et al. Machine learning-based screening of the diagnostic genes and their relationship with immune-cell infiltration in patients with lung adenocarcinoma. J Thorac Dis. 2022;14(3):699–711.
  • Ren M, Li L, Chu M, et al. Detection of Klebsiella pneumoniae cfDNA in pleural fluid and its clinical value. Ann Palliat Med. 2020;9(5):3379–3384.
  • Franchetti L, Schumann DM, Tamm M, et al. Multiplex bacterial polymerase chain reaction in a cohort of patients with pleural effusion. BMC Infect Dis. 2020;20(1):99.
  • Pernica JM, Moldovan I, Chan F, et al. Real-time polymerase chain reaction for microbiological diagnosis of parapneumonic effusions in Canadian children. Can J Infect Dis Med Microbiol. 2014;25(3):151–154.
  • Lampejo T, Ciesielczuk H, Lambourne J. Clinical utility of 16S rRNA PCR in pleural infection. J Med Microbiol. 2021;70(5):001366.
  • Shiraishi Y, Kryukov K, Tomomatsu K, et al. Diagnosis of pleural empyema/parapneumonic effusion by next-generation sequencing. Infect Dis. 2021 Jun;53(6):450–459.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.