3,306
Views
1
CrossRef citations to date
0
Altmetric
Invited Reviews

Advances in minimal residual disease monitoring in multiple myeloma

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 518-534 | Received 12 Jan 2023, Accepted 28 Apr 2023, Published online: 26 May 2023

References

  • van de Donk N, Pawlyn C, Yong KL. Multiple myeloma. Lancet. 2021;397(10272):410–427.
  • Dimopoulos M, Kyle R, Fermand JP, et al. Consensus recommendations for standard investigative workup: report of the international myeloma workshop consensus panel 3. Blood. 2011;117(18):4701–4705.
  • Kumar S, Paiva B, Anderson KC, et al. International myeloma working group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–e346.
  • Laubach JP, Kaufman JL, Sborov DW, et al. Daratumumab (DARA) plus lenalidomide, bortezomib, and dexamethasone (RVd) in patients (pts) with transplant-eligible newly diagnosed multiple myeloma (NDMM): updated analysis of griffin after 24 months of maintenance. Blood. 2021;138(Suppl 1):79–79.
  • Moreau P, Hulin C, Perrot A, et al. Maintenance with daratumumab or observation following treatment with bortezomib, thalidomide, and dexamethasone with or without daratumumab and autologous stem-cell transplant in patients with newly diagnosed multiple myeloma (CASSIOPEIA): an open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(10):1378–1390.
  • Rodriguez-Otero P, Paiva B, San-Miguel JF. Roadmap to cure multiple myeloma. Cancer Treat Rev. 2021;100:102284.
  • Ding H, Xu J, Lin Z, et al. Minimal residual disease in multiple myeloma: current status. Biomark Res. 2021;9(1):75.
  • Diamond BT, Rustad E, Maclachlan K, et al. Defining the undetectable: the current landscape of minimal residual disease assessment in multiple myeloma and goals for future clarity. Blood Rev. 2021;46:100732.
  • Cho H, Shin S, Chung H, et al. Real-world data on prognostic value of measurable residual disease assessment by fragment analysis or next-generation sequencing in multiple myeloma. Br J Haematol. 2022;198(3):503–514.
  • Munshi NC, Avet-Loiseau H, Rawstron AC, et al. Association of minimal residual disease with superior survival outcomes in patients with multiple myeloma: a meta-analysis. JAMA Oncol. 2017;3(1):28–35.
  • Martinez-Lopez J, Wong SW, Shah N, et al. Clinical value of measurable residual disease testing for assessing depth, duration, and direction of response in multiple myeloma. Blood Adv. 2020;4(14):3295–3301.
  • Perrot A, Lauwers-Cances V, Corre J, et al. Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood. 2018;132(23):2456–2464.
  • Mills JR, Barnidge DR, Dispenzieri A, et al. High sensitivity blood-based M-protein detection in sCR patients with multiple myeloma. Blood Cancer J. 2017;7(8):e590.
  • Munshi NC, Avet-Loiseau H, Anderson KC, et al. A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. Blood Adv. 2020;4(23):5988–5999.
  • Costa LJ, Chhabra S, Medvedova E, et al. Daratumumab, carfilzomib, lenalidomide, and dexamethasone with minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma. J Clin Oncol. 2022;40(25):2901–2912.
  • Puig N, Contreras Sanfeliciano T, Paiva B, et al. Assessment of treatment response by IFE, next generation flow cytometry and mass spectrometry coupled with liquid chromatography in the GEM2012MENOS65 clinical trial. Blood. 2021;138(Suppl 1):544–544.
  • Derman BA, Stefka AT, Jiang K, et al. Measurable residual disease assessed by mass spectrometry in peripheral blood in multiple myeloma in a phase II trial of carfilzomib, lenalidomide, dexamethasone and autologous stem cell transplantation. Blood Cancer J. 2021;11(2):19.
  • Langerhorst P, Noori S, Zajec M, et al. Multiple myeloma minimal residual disease detection: targeted mass spectrometry in blood vs next-generation sequencing in bone marrow. Clin Chem. 2021;67(12):1689–1698.
  • Jacobs JFM, Turner KA, Graziani MS, et al. An international multi-center serum protein electrophoresis accuracy and M-protein isotyping study. Part II: limit of detection and follow-up of patients with small M-proteins. Clin Chem Lab Med. 2020;58(4):547–559.
  • Turner KA, Frinack JL, Ettore MW, et al. An international multi-center serum protein electrophoresis accuracy and M-protein isotyping study. Part I: factors impacting limit of quantitation of serum protein electrophoresis. Clin Chem Lab Med. 2020;58(4):533–546.
  • Willrich MA, Katzmann JA. Laboratory testing requirements for diagnosis and follow-up of multiple myeloma and related plasma cell dyscrasias. Clin Chem Lab Med. 2016;54(6):907–919.
  • Dispenzieri A, Kyle R, Merlini G, et al. International myeloma working group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia. 2009;23(2):215–224.
  • Udd KA, Spektor TM, Berenson JR. Monitoring multiple myeloma. Clin Adv Hematol Oncol. 2017;15(12):951–961.
  • David FK, Lee S. Challenges of measuring monoclonal proteins in serum. Clin Chem Lab Med. 2016;54(6):947–961.
  • Rajkumar SV, Harousseau J-L, Durie B, et al. Consensus recommendations for the uniform reporting of clinical trials: report of the international myeloma workshop consensus panel 1. Blood. 2011;117(18):4691–4695.
  • Suzuki K, Nishiwaki K, Yano S. Treatment strategy for multiple myeloma to improve immunological environment and maintain MRD negativity. Cancers. 2021;13(19):4867–4891.
  • Barlogie B, Anaissie E, Haessler J, et al. Complete remission sustained 3 years from treatment initiation is a powerful surrogate for extended survival in multiple myeloma. Cancer. 2008;113(2):355–359.
  • Lancman G, Sastow DL, Cho HJ, et al. Bispecific antibodies in multiple myeloma: present and future. Blood Cancer Discov. 2021;2(5):423–433.
  • Paiva B, van Dongen JJ, Orfao A. New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood. 2015;125(20):3059–3068.
  • Flores-Montero J, Sanoja-Flores L, Paiva B, et al. Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31(10):2094–2103.
  • Takamatsu H. Clinical value of measurable residual disease testing for multiple myeloma and implementation in Japan. Int J Hematol. 2020;111(4):519–529.
  • Bertamini L, Oliva S, Rota-Scalabrini D, et al. High levels of circulating tumor plasma cells as a key hallmark of aggressive disease in transplant-eligible patients with newly diagnosed multiple myeloma. J Clin Oncol. 2022;40(27):3120–3131.
  • Garces JJ, Cedena MT, Puig N, et al. Circulating tumor cells for the staging of patients with newly diagnosed transplant-eligible multiple myeloma. J Clin Oncol. 2022;40(27):3151–3161.
  • Shanmugam V, Parnes A, Kalyanaraman R, et al. Clinical utility of targeted next-generation sequencing–based screening of peripheral blood in the evaluation of cytopenias. Blood. 2019;134(24):2222–2225.
  • Notarfranchi L, Zherniakova A, Lasa M, et al. Ultra-sensitive assessment of measurable residual disease (MRD) in peripheral blood (PB) of multiple myeloma (MM) patients using bloodflow. Blood. 2022;140(Suppl 1):2095–2097.
  • Bertamini L, D'Agostino M, Gay F. MRD assessment in multiple myeloma: progress and challenges. Curr Hematol Malig Rep. 2021;16(2):162–171.
  • Hillengass J, Landgren O. Challenges and opportunities of novel imaging techniques in monoclonal plasma cell disorders: imaging “early myeloma”. Leuk Lymphoma. 2013;54(7):1355–1363.
  • Zamagni E, Tacchetti P, Barbato S, et al. Role of imaging in the evaluation of minimal residual disease in multiple myeloma patients. JCM. 2020;9(11):3519–3528.
  • Hillengass J, Usmani S, Rajkumar SV, et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol. 2019;20(6):e302–e312.
  • Cavo M, Terpos E, Nanni C, et al. Role of (18)F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the international myeloma working group. Lancet Oncol. 2017;18(4):e206–e217.
  • Jamet B, Zamagni E, Nanni C, et al. Functional imaging for therapeutic assessment and minimal residual disease detection in multiple myeloma. IJMS. 2020;21(15):5406.
  • Moreau P, Attal M, Caillot D, et al. Prospective evaluation of magnetic resonance imaging and [(18)fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 trial: results of the IMAJEM study. J Clin Oncol. 2017;35(25):2911–2918.
  • Rasche L, Angtuaco E, McDonald JE, et al. Low expression of hexokinase-2 is associated with false-negative FDG-positron emission tomography in multiple myeloma. Blood. 2017;130(1):30–34.
  • Daniele P, Mamolo C, Cappelleri JC, et al. Response rates and minimal residual disease outcomes as potential surrogates for progression-free survival in newly diagnosed multiple myeloma. PLOS One. 2022;17(5):e0267979.
  • Delgado JA, Guillen-Grima F, Moreno C, et al. A simple flow-cytometry method to evaluate peripheral blood contamination of bone marrow aspirates. J Immunol Methods. 2017;442:54–58.
  • Foureau DM, Paul BA, Guo F, et al. Standardizing clinical workflow for assessing minimal residual disease by flow cytometry in multiple myeloma. Clin Lymphoma Myeloma Leuk. 2023;23(1):e41–e50.
  • Cloos J, Harris JR, Janssen J, et al. Comprehensive protocol to sample and process bone marrow for measuring measurable residual disease and leukemic stem cells in acute myeloid leukemia. J Vis Exp. 2018;133:e56386.
  • Rawstron AC, Orfao A, Beksac M, et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica. 2008;93(3):431–438.
  • Murray DL, Dasari S. Clinical mass spectrometry approaches to myeloma and amyloidosis. Clin Lab Med. 2021;41(2):203–219.
  • Murray DL. Bringing mass spectrometry into the care of patients with multiple myeloma. Int J Hematol. 2022;115(6):790–798.
  • Barnidge DR, Dasari S, Botz CM, et al. Using mass spectrometry to monitor monoclonal immunoglobulins in patients with a monoclonal gammopathy. J Proteome Res. 2014;13(3):1419–1427.
  • Barnidge DR, Tschumper RC, Theis JD, et al. Monitoring M-proteins in patients with multiple myeloma using heavy-chain variable region clonotypic peptides and LC-MS/MS. J Proteome Res. 2014;13(4):1905–1910.
  • Mills JR, Barnidge DR, Murray DL. Detecting monoclonal immunoglobulins in human serum using mass spectrometry. Methods. 2015;81:56–65.
  • Campbell L, Simpson D, Ramasamy K, et al. Using quantitative immunoprecipitation mass spectrometry (QIP-MS) to identify low level monoclonal proteins. Clin Biochem. 2021;95:81–83.
  • Mills JR, Kohlhagen MC, Dasari S, et al. Comprehensive assessment of M-proteins using nanobody enrichment coupled to MALDI-TOF mass spectrometry. Clin Chem. 2016;62(10):1334–1344.
  • Puig N, Contreras MT, Agullo C, et al. Mass spectrometry vs immunofixation for treatment monitoring in multiple myeloma. Blood Adv. 2022;6(11):3234–3239.
  • Singhal N, Kumar M, Kanaujia PK, et al. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015;6:1–16.
  • Mellors PW, Dasari S, Kohlhagen MC, et al. MASS-FIX for the detection of monoclonal proteins and light chain N-glycosylation in routine clinical practice: a cross-sectional study of 6315 patients. Blood Cancer J. 2021;11(3):50–58.
  • Dasari S, Kohlhagen MC, Dispenzieri A, et al. Detection of plasma cell disorders by mass spectrometry: a comprehensive review of 19,523 cases. Mayo Clin Proc. 2022;97(2):294–307.
  • Zhang Z, Westhrin M, Bondt A, et al. Serum protein N-glycosylation changes in multiple myeloma. Biochim Biophys Acta Gen Subj. 2019;1863(5):960–970.
  • Dispenzieri A, Larson DR, Rajkumar SV, et al. N-glycosylation of monoclonal light chains on routine MASS-FIX testing is a risk factor for MGUS progression. Leukemia. 2020;34(10):2749–2753.
  • Sidana S, Murray DL, Dasari S, et al. Glycosylation of immunoglobulin light chains is highly prevalent in cold agglutinin disease. Am j of Hematol. 2020;95(9):e222–e225.
  • Juskewitch JE, Murray JD, Norgan AP, et al. In from the cold: M-protein light chain glycosylation is positively associated with cold agglutinin titer levels. Transfusion. 2021;61(4):1302–1311.
  • Sepiashvili L, Kohlhagen MC, Snyder MR, et al. Direct detection of monoclonal free light chains in serum by use of immunoenrichment-coupled MALDI-TOF mass spectrometry. Clin Chem. 2019;65(8):1015–1022.
  • Giles HV, Wechalekar A, Pratt G. The potential role of mass spectrometry for the identification and monitoring of patients with plasma cell disorders: where are we now and which questions remain unanswered? Br J Haematol. 2022;198(4):641–653.
  • Langerhorst P, Brinkman AB, VanDuijn MM, et al. Clonotypic features of rearranged immunoglobulin genes yield personalized biomarkers for minimal residual disease monitoring in multiple myeloma. Clin Chem. 2021;67(6):867–875.
  • Noori S, Zajec M, Russcher H, et al. Retrospective longitudinal monitoring of multiple myeloma patients by mass spectrometry using archived serum protein electrophoresis gels and de novo sequence analysis. Hemasphere. 2022;6(8):e758–e762.
  • Bergen HRIII, Dasari S, Dispenzieri A, et al. Clonotypic light chain peptides identified for monitoring minimal residual disease in multiple myeloma without bone marrow aspiration. Clin Chem. 2016;62(1):243–251.
  • Dupre M, Duchateau M, Sternke-Hoffmann R, et al. De novo sequencing of antibody light chain proteoforms from patients with multiple myeloma. Anal Chem. 2021;93(30):10627–10634.
  • Liyasova M, McDonald Z, Taylor P, et al. A personalized mass spectrometry-based assay to monitor M-protein in patients with multiple myeloma (EasyM). Clin Cancer Res. 2021;27(18):5028–5037.
  • McDonald Z, Taylor P, Liyasova M, et al. Mass spectrometry provides a highly sensitive noninvasive means of sequencing and tracking M-protein in the blood of multiple myeloma patients. J Proteome Res. 2021;20(8):4176–4185.
  • Zajec M, Jacobs JFM, Groenen P, et al. Development of a targeted mass spectrometry serum assay to quantify M-protein in the presence of therapeutic monoclonal antibodies. J Proteome Res. 2018;17(3):1326–1333.
  • Martins CO, Huet S, Yi SS, et al. Mass spectrometry-based method targeting Ig variable regions for assessment of minimal residual disease in multiple myeloma. J Mol Diagn. 2020;22(7):901–911.
  • Dau T, Bartolomucci G, Rappsilber J. Proteomics using protease alternatives to trypsin benefits from sequential digestion with trypsin. Anal Chem. 2020;92(14):9523–9527.
  • Borras E, Sabido E. What is targeted proteomics? A concise revision of targeted acquisition and targeted data analysis in mass spectrometry. Proteomics. 2017;17(17–18):1700180.
  • Stefani NT. Mass spectrometry. In: Clarke W, Marzinke M, editors. Contemporary practice in clinical chemistry. 4th ed. Washington (DC): Academic press; 2019. p. 171–185.
  • Beck O, Rylski A, Stephanson NN. Application of liquid chromatography combined with high resolution mass spectrometry for urine drug testing. In: Dasgupta A, editor. Critical issues in alcohol and drugs of abuse testing. 2nd ed. Cambridge (MA): Academic press; 2019. p. 321–332.
  • Krasny L, Huang PH. Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Mol Omics. 2021;17(1):29–42.
  • Remily-Wood ER, Benson K, Baz RC, et al. Quantification of peptides from immunoglobulin constant and variable regions by LC-MRM MS for assessment of multiple myeloma patients. Proteomics Clin Appl. 2014;8(9–10):783–795.
  • Li J, Smith LS, Zhu HJ. Data-independent acquisition (DIA): an emerging proteomics technology for analysis of drug-metabolizing enzymes and transporters. Drug Discov Today Technol. 2021;39:49–56.
  • He L, Anderson LC, Barnidge DR, et al. Classification of plasma cell disorders by 21 tesla fourier transform ion cyclotron resonance top-down and middle-down MS/MS analysis of monoclonal immunoglobulin light chains in human serum. Anal Chem. 2019;91(5):3263–3269.
  • Santockyte R, Puig O, Zheng N, et al. High-throughput therapeutic antibody interference-free high-resolution mass spectrometry assay for monitoring M-proteins in multiple myeloma. Anal Chem. 2021;93(2):834–842.
  • Zajec M, Jacobs JFM, de Kat Angelino CM, et al. Integrating serum protein electrophoresis with mass spectrometry, a new workflow for M-protein detection and quantification. J Proteome Res. 2020;19(7):2845–2853.
  • Kohlhagen M, Dasari S, Willrich M, et al. Automation and validation of a MALDI-TOF MS (Mass-Fix) replacement of immunofixation electrophoresis in the clinical lab. Clin Chem Lab Med. 2020;59(1):155–163.
  • Seger C, Salzmann L. After another decade: LC-MS/MS became routine in clinical diagnostics. Clin Biochem. 2020;82:2–11.
  • Schokker S, Fusetti F, Bonardi F, et al. Development and validation of an LC-MS/MS method for simultaneous quantification of co-administered trastuzumab and pertuzumab. MAbs. 2020;12(1):e17954921–e17954927.
  • Santockyte R, Jin C, Pratt J, et al. Sensitive multiple myeloma disease monitoring by mass spectrometry. Blood Cancer J. 2021;11(4):78.
  • US Food and Drug Administration (FDA). Guidance for industry: hematologic malignancies: regulatory considerations for use of minimal residual disease in development of drug and biological products for treatment. Silver Spring, MD; 2020. Standard No. FDA-2018-D-3090.
  • Miller WG, Greenberg N. Harmonization and standardization: where are we now? J Appl Lab Med. 2021;6(2):510–521.
  • Ceriotti F, Cobbaert C. Harmonization of external quality assessment schemes and their role clinical chemistry and beyond. Clin Chem Lab Med. 2018;56(10):1587–1590.
  • ISO. In vitro diagnostic medical devices—Requirements for international harmonisation protocols establishing metrological traceability of values assigned to calibrators and human samples. ISO 21151:2020. Geneva, Switzerland: International Organization for Standardization; 2020. Available from: https://www.iso.org/standard/69985.html
  • Kendrick F, Evans ND, Arnulf B, et al. Analysis of a compartmental model of endogenous immunoglobulin G metabolism with application to multiple myeloma. Front Physiol. 2017;8:1–18.
  • van Tetering G, Evers M, Chan C, et al. Fc engineering strategies to advance IgA antibodies as therapeutic agents. Antibodies. 2020;9(4):70.
  • Hutchison CA, Harding S, Hewins P, et al. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2008;3(6):1684–1690.
  • Jacobs JFM, Mould DR. The role of FcRn in the pharmacokinetics of biologics in patients with multiple myeloma. Clin Pharmacol Ther. 2017;102(6):903–904.
  • Noori S, Wijnands C, Langerhorst P, et al. Dynamic monitoring of myeloma minimal residual disease with targeted mass spectrometry. Blood Cancer J. 2023;13(1):1–3.
  • Liu L, Wertz WJ, Kondisko A, et al. Incidence and management of therapeutic monoclonal antibody interference in monoclonal gammopathy monitoring. J Appl Lab Med. 2020;5(1):29–40.
  • Noori S, Verkleij CPM, Zajec M, et al. Monitoring the M-protein of multiple myeloma patients treated with a combination of monoclonal antibodies: the laboratory solution to eliminate interference. Clin Chem Lab Med. 2021;59(12):1963–1971.
  • Blade J, Beksac M, Caers J, et al. Extramedullary disease in multiple myeloma: a systematic literature review. Blood Cancer J. 2022;12(3):1–10.
  • Bartel TB, Haessler J, Brown TL, et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood. 2009;114(10):2068–2076.
  • Usmani SZ, Mitchell A, Waheed S, et al. Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy 3. Blood. 2013;121(10):1819–1823.
  • Chen CI, Masih-Khan E, Jiang H, et al. Central nervous system involvement with multiple myeloma: long term survival can be achieved with radiation, intrathecal chemotherapy, and immunomodulatory agents. Br J Haematol. 2013;162(4):483–488.
  • Jurczyszyn A, Grzasko N, Gozzetti A, et al. Central nervous system involvement by multiple myeloma: a multi-institutional retrospective study of 172 patients in daily clinical practice. Am J Hematol. 2016;91(6):575–580.
  • Zajec M, Frerichs KA, van Duijn MM, et al. Cerebrospinal fluid penetrance of daratumumab in leptomeningeal multiple myeloma. Hemasphere. 2020;4(4):e413.