1,448
Views
0
CrossRef citations to date
0
Altmetric
Review Article

KIF2C/MCAK a prognostic biomarker and its oncogenic potential in malignant progression, and prognosis of cancer patients: a systematic review and meta-analysis as biomarker

ORCID Icon, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Received 31 Oct 2023, Accepted 22 Jan 2024, Published online: 12 Feb 2024

References

  • Gudimchuk NB, McIntosh JR. Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol. 2021;22(12):777–795. doi:10.1038/s41580-021-00399-x.
  • Saunders WS. Mitotic spindle pole separation. Trends Cell Biol. 1993;3(12):432–437. doi:10.1016/0962-8924(93)90032-v.
  • Brouhard GJ, Rice LM. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat Rev Mol Cell Biol. 2018;19(7):451–463. doi:10.1038/s41580-018-0009-y.
  • Wu J, Akhmanova A. Microtubule-organizing centers. Annu Rev Cell Dev Biol. 2017;33(1):51–75. doi:10.1146/annurev-cellbio-100616-060615.
  • Vineethakumari C, Lüders J. Microtubule anchoring: attaching dynamic polymers to cellular structures [mini review]. Front Cell Dev Biol. 2022;10:867870. doi:10.3389/fcell.2022.867870.
  • Michaels TC, Feng S, Liang H, et al. Mechanics and kinetics of dynamic instability. Elife. 2020;9:e54077. doi:10.7554/eLife.54077.
  • Voter WA, Erickson HP. The kinetics of microtubule assembly. Evidence for a two-stage nucleation mechanism. J Biol Chem. 1984;259(16):10430–10438. doi:10.1016/S0021-9258(18)90982-8.
  • Cleary JM, Hancock WO. Molecular mechanisms underlying microtubule growth dynamics. Curr Biol. 2021;31(10):R560–R573. doi:10.1016/j.cub.2021.02.035.
  • Duellberg C, Cade NI, Holmes D, et al. The size of the EB cap determines instantaneous microtubule stability. Elife. 2016;5:e13470. doi:10.7554/eLife.13470.
  • Horio T, Murata T. The role of dynamic instability in microtubule organization. Front Plant Sci. 2014;5:511. doi:10.3389/fpls.2014.00511.
  • Gottschalk AC, Hefti MM. The evolution of microtubule associated proteins – a reference proteomic perspective. BMC Genomics. 2022;23(1):266. doi:10.1186/s12864-022-08502-y.
  • Ramkumar A, Jong BY, Ori-McKenney KM. ReMAPping the microtubule landscape: how phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn. 2018;247(1):138–155. doi:10.1002/dvdy.24599.
  • Barbier P, Zejneli O, Martinho M, et al. Role of Tau as a microtubule-associated protein: structural and functional aspects. Front Aging Neurosci. 2019;11:204. doi:10.3389/fnagi.2019.00204.
  • Lindeboom JJ, Nakamura M, Saltini M, et al. CLASP stabilization of plus ends created by severing promotes microtubule creation and reorientation. J Cell Biol. 2018;218(1):190–205. doi:10.1083/jcb.201805047.
  • Steinhäuser K, Klöble P, Kreis NN, et al. Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics. Oncogene. 2017;36(15):2146–2159. 2017/04/01 doi:10.1038/onc.2016.372.
  • Wang W, Cantos-Fernandes S, Lv Y, et al. Insight into microtubule disassembly by kinesin-13s from the structure of Kif2C bound to tubulin. Nat Commu. 2017;8(1):70.
  • Ritter A, Kreis NN, Louwen F, et al. Molecular insight into the regulation and function of MCAK. Crit Rev Biochem Mol Biol. 2015;51(4):228–245. doi:10.1080/10409238.2016.1178705.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097.
  • Lawrence CJ, Dawe RK, Christie KR, et al. A standardized kinesin nomenclature. J Cell Biol. 2004;167(1):19–22. doi:10.1083/jcb.200408113.
  • Ali I, Yang WC. The functions of kinesin and kinesin-related proteins in eukaryotes. Cell Adh Migr. 2020;14(1):139–152. doi:10.1080/19336918.2020.1810939.
  • Fan R, Lai K-O. Understanding how kinesin motor proteins regulate postsynaptic function in neuron. FEBS J. 2022;289(8):2128–2144. doi:10.1111/febs.16285.
  • Chen Y, Hancock WO. Kinesin-5 is a microtubule polymerase. Nat Commun. 2015;6(1):8160. doi:10.1038/ncomms9160.
  • Desai A, Verma S, Mitchison TJ, et al. Kin I kinesins are microtubule-destabilizing enzymes. Cell. 1999;96(1):69–78. doi:10.1016/s0092-8674(00)80960-5.
  • Ems-McClung SC, Walczak CE. Kinesin-13s in mitosis: key players in the spatial and temporal organization of spindle microtubules. Semin Cell Dev Biol. 2010;21(3):276–282. doi:10.1016/j.semcdb.2010.01.016.
  • Trofimova D, Paydar M, Zara A, et al. Ternary complex of Kif2A-bound tandem tubulin heterodimers represents a kinesin-13-mediated microtubule depolymerization reaction intermediate. Nature Commun. 2018;9(1):2628.
  • Cooper JR, Wagenbach M, Asbury CL, et al. Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK. Nat Struct Mol Biol. 2010;17(1):77–82. 2010/01/01 doi:10.1038/nsmb.1728.
  • Wordeman L, Mitchison TJ. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol. 1995;128(1–2):95–104. doi:10.1083/jcb.128.1.95.
  • Schmieder S, Nagai M, Orlando RA, et al. Podocalyxin activates RhoA and induces actin reorganization through NHERF1 and Ezrin in MDCK cells. J Am Soc Nephrol. 2004;15(9):2289–2298. doi:10.1097/01.ASN.0000135968.49899.E8.
  • Sanhaji M, Ritter A, Belsham HR, et al. Polo-like kinase 1 regulates the stability of the mitotic centromere-associated kinesin in mitosis. Oncotarget. 2014;5(10):3130–3144. doi:10.18632/oncotarget.1861.
  • Andrews PD, Ovechkina Y, Morrice N, et al. Aurora B regulates MCAK at the mitotic centromere. Dev Cell. 2004;6(2):253–268. doi:10.1016/s1534-5807(04)00025-5.
  • Honnappa S, Gouveia SM, Weisbrich A, et al. An EB1-binding motif acts as a microtubule tip localization signal. Cell. 2009;138(2):366–376. doi:10.1016/j.cell.2009.04.065.
  • Tanenbaum ME, Medema RH, Akhmanova A. Regulation of localization and activity of the microtubule depolymerase MCAK. Bioarchitecture. 2011;1(2):80–87. doi:10.4161/bioa.1.2.15807.
  • Moore AT, Rankin KE, von Dassow G, et al. MCAK associates with the tips of polymerizing microtubules. J Cell Biol. 2005;169(3):391–397. doi:10.1083/jcb.200411089.
  • Lee T, Langford KJ, Askham JM, et al. MCAK associates with EB1. Oncogene. 200827(17):2494–2500. doi:10.1038/sj.onc.1210867.
  • Braun A, Dang K, Buslig F, et al. Rac1 and Aurora a regulate MCAK to polarize microtubule growth in migrating endothelial cells. J Cell Biol. 2014;206(1):97–112. doi:10.1083/jcb.201401063.
  • Moon HH, Kreis NN, Friemel A, et al. Mitotic centromere-associated kinesin (MCAK/KIF2C) regulates cell migration and invasion by modulating microtubule dynamics and focal adhesion turnover. Cancers (Basel). 2021;13(22):5673. doi:10.3390/cancers13225673.
  • Ritter A, Sanhaji M, Friemel A, et al. Functional analysis of phosphorylation of the mitotic centromere-associated kinesin by Aurora B kinase in human tumor cells. Cell Cycle. 2015;14(23):3755–3767. doi:10.1080/15384101.2015.1068481.
  • Eichenlaub-Ritter U. Microtubule dynamics and tumor invasion involving MCAK. Cell Cycle. 2015;14(21):3353–3353. doi:10.1080/15384101.2015.1093813.
  • Schweiggert J, Habeck G, Hess S, et al. SCF(Fbxw5) targets kinesin-13 proteins to facilitate ciliogenesis. EMBO J. 2021;40(18):e107735. doi:10.15252/embj.2021107735.
  • Zhu S, Paydar M, Wang F, et al. Kinesin Kif2C in regulation of DNA double strand break dynamics and repair. Elife. 2020;9:e51636. doi:10.7554/eLife.53402.
  • Ganem NJ, Compton DA. The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK. J Cell Biol. 2004;166(4):473–478. doi:10.1083/jcb.200404012.
  • Rogers GC, Rogers SL, Schwimmer TA, et al. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature. 2004;427(6972):364–370. doi:10.1038/nature02256.
  • Ganem NJ, Upton K, Compton DA. Efficient mitosis in human cells lacking poleward microtubule flux. Curr Biol. 2005;15(20):1827–1832. doi:10.1016/j.cub.2005.08.065.
  • Yi ZY, Ma XS, Liang QX, et al. Kif2a regulates spindle organization and cell cycle progression in meiotic oocytes. Sci Rep. 2016;6(1):38574. doi:10.1038/srep38574.
  • Miyamoto T, Hosoba K, Ochiai H, et al. The microtubule-depolymerizing activity of a mitotic kinesin protein KIF2A drives primary cilia disassembly coupled with cell proliferation. Cell Rep. 2015;10(5):664–673. doi:10.1016/j.celrep.2015.01.003.
  • Akkaya C, Atak D, Kamacioglu A, et al. Roles of developmentally regulated KIF2A alternative isoforms in cortical neuron migration and differentiation. Development. 2021;148(4):dev192674. doi:10.1242/dev.192674.
  • Miki H, Setou M, Kaneshiro K, et al. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A. 2001;98(13):7004–7011. doi:10.1073/pnas.111145398.
  • Hood EA, Kettenbach AN, Gerber SA, et al. Plk1 regulates the kinesin-13 protein Kif2b to promote faithful chromosome segregation. Mol Biol Cell. 2012;23(12):2264–2274. doi:10.1091/mbc.E11-12-1013.
  • Wu C, Orozco C, Boyer J, et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 2009;10(11):R130. doi:10.1186/gb-2009-10-11-r130.
  • Su AI, Wiltshire T, Batalov S, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004;101(16):6062–6067. doi:10.1073/pnas.0400782101.
  • Wang G, Hu H-B, Chang Y, et al. Rab7 regulates primary cilia disassembly through cilia excision. J Cell Biol. 2019;218(12):4030–4041. doi:10.1083/jcb.201811136.
  • Mashima Y, Nohira H, Sugihara H, et al. KIF24 depletion induces clustering of supernumerary centrosomes in PDAC cells. Life Sci Alliance. 2022;5(11):e202201470. doi:10.26508/lsa.202201470.
  • Kobayashi T, Tsang WY, Li J, et al. Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell. 2011;145(6):914–925. doi:10.1016/j.cell.2011.04.028.
  • Delgehyr N, Rangone H, Fu J, et al. Klp10A, a microtubule-depolymerizing kinesin-13, cooperates with CP110 to control Drosophila centriole length. Curr Biol. 2012;22(6):502–509. doi:10.1016/j.cub.2012.01.046.
  • Burns KM, Wagenbach M, Wordeman L, et al. Nucleotide exchange in dimeric MCAK induces longitudinal and lateral stress at microtubule ends to support depolymerization. Structure. 2014;22(8):1173–1183. doi:10.1016/j.str.2014.06.010.
  • Burns KM, Sarpe V, Wagenbach M, et al. HX-MS2 for high performance conformational analysis of complex protein states. Protein Sci. 2015;24(8):1313–1324. doi:10.1002/pro.2707.
  • Zong H, Hazelbaker M, Moe C, et al. Spatial regulation of MCAK promotes cell polarization and focal adhesion turnover to drive robust cell migration. Mol Biol Cell. 2021;32(7):590–604. doi:10.1091/mbc.E20-05-0301.
  • Ogawa T, Nitta R, Okada Y, et al. A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell. 2004;116(4):591–602. doi:10.1016/s0092-8674(04)00129-1.
  • Wang W, Shen T, Guerois R, et al. New insights into the coupling between microtubule depolymerization and ATP hydrolysis by kinesin-13 protein Kif2C. J Biol Chem. 2015;290(30):18721–18731. doi:10.1074/jbc.M115.646919.
  • Talapatra SK, Harker B, Welburn JP. The C-terminal region of the motor protein MCAK controls its structure and activity through a conformational switch. Elife. 2015;4:e06421. doi:10.7554/eLife.06421.
  • Maney T, Wagenbach M, Wordeman L. Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin. J Biol Chem. 2001;276(37):34753–34758. doi:10.1074/jbc.M106626200.
  • Hertzer KM, Ems-McClung SC, Kline-Smith SL, et al. Full-length dimeric MCAK is a more efficient microtubule depolymerase than minimal domain monomeric MCAK. Mol Biol Cell. 2006;17(2):700–710. doi:10.1091/mbc.e05-08-0821.
  • Vale RD, Fletterick RJ. The design plan of kinesin motors. Annu Rev Cell Dev Biol. 1997;13(1):745–777. doi:10.1146/annurev.cellbio.13.1.745.
  • Ovechkina Y, Wagenbach M, Wordeman L. K-loop insertion restores microtubule depolymerizing activity of a "neckless" MCAK mutant. J Cell Biol. 2002;159(4):557–562. doi:10.1083/jcb.200205089.
  • Xia P, Zhou J, Song X, et al. Aurora a orchestrates entosis by regulating a dynamic MCAK–TIP150 interaction. J Mol Cell Biol. 2014;6(3):240–254. doi:10.1093/jmcb/mju016.
  • Pakala SB, Nair VS, Reddy SD, et al. Signaling-dependent phosphorylation of mitotic centromere-associated kinesin regulates microtubule depolymerization and its centrosomal localization. J Biol Chem. 2012;287(48):40560–40569. doi:10.1074/jbc.M112.399576.
  • Lan W, Zhang X, Kline-Smith SL, et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol. 2004;14(4):273–286. doi:10.1016/S0960-9822(04)00064-8.
  • Ohi R, Sapra T, Howard J, et al. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell. 2004;15(6):2895–2906. doi:10.1091/mbc.e04-02-0082.
  • Ems-McClung SC, Hainline SG, Devare J, et al. Aurora B inhibits MCAK activity through a phosphoconformational switch that reduces microtubule association. Curr Biol. 2013;23(24):2491–2499. doi:10.1016/j.cub.2013.10.054.
  • Zhang X, Ems-McClung SC, Walczak CE. Aurora a phosphorylates MCAK to control ran-dependent spindle bipolarity. Mol Biol Cell. 2008;19(7):2752–2765. doi:10.1091/mbc.e08-02-0198.
  • Zong H, Carnes SK, Moe C, et al. The far C-terminus of MCAK regulates its conformation and spindle pole focusing. Mol Biol Cell. 2016;27(9):1451–1464. doi:10.1091/mbc.E15-10-0699.
  • Ritter A, Sanhaji M, Steinhäuser K, et al. The activity regulation of the mitotic centromere-associated kinesin by Polo-like kinase 1. Oncotarget. 2015;6(9):6641–6655. doi:10.18632/oncotarget.2843.
  • Sanhaji M, Friel CT, Kreis NN, et al. Functional and spatial regulation of mitotic centromere-associated kinesin by cyclin-dependent kinase 1. Mol Cell Biol. 2010;30(11):2594–2607. doi:10.1128/MCB.00098-10.
  • Belsham HR, Friel CT. A Cdk1 phosphomimic mutant of MCAK impairs microtubule end recognition. PeerJ. 2017;5:e4034. doi:10.7717/peerj.4034.
  • Jiang K, Wang J, Liu J, et al. TIP150 interacts with and targets MCAK at the microtubule plus ends. EMBO Rep. 2009;10(8):857–865. doi:10.1038/embor.2009.94.
  • Li C, Zhang Y, Yang Q, et al. NuSAP modulates the dynamics of kinetochore microtubules by attenuating MCAK depolymerisation activity. Sci Rep. 2016;6(1):18773. doi:10.1038/srep18773.
  • Seetharaman S, Etienne-Manneville S. Cytoskeletal crosstalk in cell migration. Trends Cell Biol. 2020;30(9):720–735. doi:10.1016/j.tcb.2020.06.004.
  • Garcin C, Straube A. Microtubules in cell migration. Essays Biochem. 201963(5):509–520. doi:10.1042/EBC20190016.
  • Burridge K. Focal adhesions: a personal perspective on a half century of progress. FEBS J. 2017;284(20):3355–3361. doi:10.1111/febs.14195.
  • Seetharaman S, Etienne-Manneville S. Microtubules at focal adhesions - a double-edged sword. J Cell Sci. 2019;132(19):jcs232843.
  • D'Angelo L, Myer NM, Myers KA. MCAK-mediated regulation of endothelial cell microtubule dynamics is mechanosensitive to myosin-II contractility. Mol Biol Cell. 2017;28(9):1223–1237. doi:10.1091/mbc.E16-05-0306.
  • Zaganjor E, Osborne JK, Weil LM, et al. Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells. Oncogene. 2014;33(47):5457–5466. doi:10.1038/onc.2013.486.
  • Sanhaji M, Friel CT, Wordeman L, et al. Mitotic centromere-associated kinesin (MCAK): a potential cancer drug target. Oncotarget. 2011;2(12):935–947. doi:10.18632/oncotarget.416.
  • Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. doi:10.1158/2159-8290.CD-21-1059.
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. doi:10.1016/s0092-8674(00)81683-9.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi:10.1016/j.cell.2011.02.013.
  • Maiato H, Silva S. Double-checking chromosome segregation. J Cell Biol. 2023;222(5):e202301106. doi:10.1083/jcb.202301106.
  • Schubert M, Hong C, Jilderda LJ, et al. Cancer tolerance to chromosomal instability is driven by Stat1 inactivation in vivo. bioRxiv. 2021. doi:10.1101/2021.12.03.471107.
  • Smith JC, Husted S, Pilrose J, et al. MCAK inhibitors induce aneuploidy in triple-negative breast cancer models. Cancers (Basel). 2023;15(13):3309. doi:10.3390/cancers15133309.
  • Wagenbach M, Vicente JJ, Ovechkina Y, et al. Functional characterization of MCAK/Kif2C cancer mutations using high-throughput microscopic analysis. Mol Biol Cell. 2020;31(7):580–588. doi:10.1091/mbc.E19-09-0503.
  • Kim JM. Molecular link between DNA damage response and microtubule dynamics. Int J Mol Sci. 2022;23(13):6986. doi:10.3390/ijms23136986.
  • Jiang CF, Xie YX, Qian YC, et al. TBX15/miR-152/KIF2C pathway regulates breast cancer doxorubicin resistance via promoting PKM2 ubiquitination. Cancer Cell Int. 2021;21(1):542. doi:10.1186/s12935-021-02235-w.
  • Froidevaux-Klipfel L, Targa B, Cantaloube I, et al. Septin cooperation with tubulin polyglutamylation contributes to cancer cell adaptation to taxanes. Oncotarget. 2015;6(34):36063–36080. doi:10.18632/oncotarget.5373.
  • Targa B, Klipfel L, Cantaloube I, et al. Septin filament coalignment with microtubules depends on SEPT9_i1 and tubulin polyglutamylation, and is an early feature of acquired cell resistance to paclitaxel. Cell Death Dis. 2019;10(2):54. doi:10.1038/s41419-019-1318-6.
  • Zhang B, Liu P, Li Y, et al. Multi-omics analysis of kinesin family member 2C in human tumors: novel prognostic biomarker and tumor microenvironment regulator. Am J Cancer Res. 2022;12(11):4954–4976.
  • Kumar A, Rajendran V, Sethumadhavan R, et al. Evidence of colorectal cancer-associated mutation in MCAK: a computational report. Cell Biochem Biophys. 2013 ;67(3):837–851. 2013/12/01 doi:10.1007/s12013-013-9572-1.
  • Dogterom M, Koenderink GH. Actin–microtubule crosstalk in cell biology. Nat Rev Mol Cell Biol. 2019;20(1):38–54. doi:10.1038/s41580-018-0067-1.
  • Mo S, Fang D, Zhao S, et al. Down regulated oncogene KIF2C inhibits growth, invasion, and metastasis of hepatocellular carcinoma through the Ras/MAPK signaling pathway and epithelial-to-mesenchymal transition. Ann Transl Med. 2022;10(3):151–151. doi:10.21037/atm-21-6240.
  • Huang X, Zhao F, Wu Q, et al. KIF2C facilitates tumor growth and metastasis in pancreatic ductal adenocarcinoma. Cancers (Basel). 2023;15(5):1502. doi:10.3390/cancers15051502.
  • Nolte MA, Nolte-‘t Hoen ENM, Margadant C. Integrins control vesicular trafficking; new tricks for old dogs. Trends Biochem Sci. 2021;46(2):124–137. doi:10.1016/j.tibs.2020.09.001.
  • Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35 Suppl:S185–S198. Dec doi:10.1016/j.semcancer.2015.03.004.
  • Li R, Cui X, Sun W, et al. ASF1B, as an independent prognostic biomarker, correlates with immune infiltrates in hepatocellular carcinoma. Comb Chem High Throughput Screen. 2023;26(7):1311–1323. doi:10.2174/1386207325666220820112111.
  • Tu B, Xiang H, Li M, et al. In silico analysis of the correlation of KIF2C with prognosis and immune infiltration in glioma. Comput Math Methods Med. 2022;2022:6320828–6320822. doi:10.1155/2022/6320828.
  • Chen S. Glioma subtypes based on the activity changes of immunologic and hallmark gene sets in cancer. Front Endocrinol (Lausanne). 2022;13:879233. doi:10.3389/fendo.2022.879233.
  • Zhang X, Li Y, Hu P, et al. KIF2C is a biomarker correlated with prognosis and immunosuppressive microenvironment in human tumors. Front Genet. 2022;13:891408. doi:10.3389/fgene.2022.891408.
  • Picon-Galindo E, Latz E, Wachten D. Primary cilia and their effects on immune cell functions and metabolism: a model. Trends Immunol. 2022;43(5):366–378. 2022/05/01/doi:10.1016/j.it.2022.03.001.
  • Anvarian Z, Mykytyn K, Mukhopadhyay S, et al. Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol. 2019;15(4):199–219. 2019/04/01 doi:10.1038/s41581-019-0116-9.
  • Carballo GB, Honorato JR, de Lopes GPF, et al. A highlight on Sonic hedgehog pathway. Cell Commun Signal. 2018;16(1):11. doi:10.1186/s12964-018-0220-7.
  • Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 2021;9:645593. doi:10.3389/fcell.2021.645593.
  • Schmitt CA, Wang B, Demaria M. Senescence and cancer—role and therapeutic opportunities. Nat Rev Clin Oncol. 2022;19(10):619–636. 2022/10/01 doi:10.1038/s41571-022-00668-4.
  • Gwon M-R, Cho JH, Kim J-R. Mitotic centromere-associated kinase (MCAK/Kif2C) regulates cellular senescence in human primary cells through a p53-dependent pathway. FEBS Lett. 2012;586(23):4148–4156. doi:10.1016/j.febslet.2012.10.012.
  • Yang C, Han Z, Zhan W, et al. Predictive investigation of idiopathic pulmonary fibrosis subtypes based on cellular senescence-related genes for disease treatment and management. Front Genet. 2023;14:1157258. doi:10.3389/fgene.2023.1157258.
  • Nakamura Y, Tanaka F, Haraguchi N, et al. Clinicopathological and biological significance of mitotic centromere-associated kinesin overexpression in human gastric cancer. Br J Cancer. 2007;97(4):543–549. Aug 20 doi:10.1038/sj.bjc.6603905.
  • Ishikawa K, Kamohara Y, Tanaka F, et al. Mitotic centromere-associated kinesin is a novel marker for prognosis and lymph node metastasis in colorectal cancer. Br J Cancer. 2008;98(11):1824–1829. Jun 3 doi:10.1038/sj.bjc.6604379.
  • Gnjatic S, Cao Y, Reichelt U, et al. NY-CO-58/KIF2C is overexpressed in a variety of solid tumors and induces frequent T cell responses in patients with colorectal cancer. Int J Cancer. 2010;127(2):381–393. Jul 15 doi:10.1002/ijc.25058.
  • Wang J, Yan Y, Zhang Z, et al. Role of miR-10b-5p in the prognosis of breast cancer. PeerJ. 2019;7:e7728. doi:10.7717/peerj.7728.
  • Lu H, Wang C, Xue L, et al. Human mitotic centromere-associated kinesin is targeted by MicroRNA 485-5p/181c and prognosticates poor survivability of breast cancer. J Oncol. 2019;2019:2316237–2316213. doi:10.1155/2019/2316237.
  • Qitong X, Yiming G, Feng X, et al. A Pan-Cancer Analysis of the KIF Family Gene and their Association with Prognosis, Tumor Microenvironment, and Therapeutic Targets [PREPRINT (Version 1)]. Research Square. 2021.
  • Nishidate T, Katagiri T, Lin M-L, et al. Genome-wide gene-expression profiles of breast-cancer cells purified with laser microbeam microdissection: identification of genes associated with progression and metastasis. Int J Oncol. 2004;25(4):797–819.
  • Shimo A, Nishidate T, Ohta T, et al. Elevated expression of protein regulator of cytokinesis 1, involved in the growth of breast cancer cells. Cancer Sci. 2007;98(2):174–181. doi:10.1111/j.1349-7006.2006.00381.x.
  • Shimo A, Tanikawa C, Nishidate T, et al. Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis. Cancer Sci. 2008;99(1):62–70. doi:10.1111/j.1349-7006.2007.00635.x.
  • Sadi AM, Wang DY, Youngson BJ, et al. Clinical relevance of DNA microarray analyses using archival formalin-fixed paraffin-embedded breast cancer specimens. BMC Cancer. 2011;11(1):253:1–13. doi:10.1186/1471-2407-11-253.
  • Kamalakaran S, Varadan V, Giercksky Russnes HE, et al. DNA methylation patterns in luminal breast cancers differ from non-luminal subtypes and can identify relapse risk independent of other clinical variables. Mol Oncol. 2011;5(1):77–92. doi:10.1016/j.molonc.2010.11.002.
  • Wu M, Liu L, Hijazi H, et al. A multi-layer inference approach to reconstruct condition-specific genes and their regulation. Bioinformatics. 2013;29(12):1541–1552. doi:10.1093/bioinformatics/btt186.
  • Xie D, Pei Q, Li J, et al. Emerging role of E2F family in cancer stem cells. Front Oncol. 2021;11:723137. doi:10.3389/fonc.2021.723137.
  • Dai X, Hua T, Hong T. Integrated diagnostic network construction reveals a 4-gene panel and 5 cancer hallmarks driving breast cancer heterogeneity. Sci Rep. 2017;7(1):6827. doi:10.1038/s41598-017-07189-6.
  • Li C, Luo L, Wei S, et al. Identification of the potential crucial genes in invasive ductal carcinoma using bioinformatics analysis. Oncotarget. 2018;9(6):6800–6813. doi:10.18632/oncotarget.23239.
  • Yang K, Gao J, Luo M. Identification of key pathways and hub genes in basal-like breast cancer using bioinformatics analysis. Onco Targets Ther. 2019;12:1319–1331. doi:10.2147/OTT.S158619.
  • Song X, Zhang T, Wang X, et al. Distinct diagnostic and prognostic values of Kinesin family member genes expression in patients with breast cancer. Med Sci Monit. 2018;24:9442–9464. doi:10.12659/MSM.913401.
  • Liu S, Ye Z, Xue VW, et al. KIF2C is a prognostic biomarker associated with immune cell infiltration in breast cancer. BMC Cancer. 2023;23(1):307. doi:10.1186/s12885-023-10788-4.
  • Cao W, Jiang Y, Ji X, et al. Identification of novel prognostic genes of triple-negative breast cancer using meta-analysis and weighted gene co-expressed network analysis. Ann Transl Med. 2021;9(3):205–205. doi:10.21037/atm-20-5989.
  • Suo HD, Tao Z, Zhang L, et al. Coexpression network analysis of genes related to the characteristics of tumor stemness in triple-negative breast cancer. Biomed Res Int. 2020;2020:7575862–7575814. doi:10.1155/2020/7575862.
  • Cai Y, Mei J, Xiao Z, et al. Identification of five hub genes as monitoring biomarkers for breast cancer metastasis in silico. Hereditas. 2019;156(1):20. doi:10.1186/s41065-019-0096-6.
  • Chen G, Yu M, Cao J, et al. Identification of candidate biomarkers correlated with poor prognosis of breast cancer based on bioinformatics analysis. Bioengineered. 2021;12(1):5149–5161. doi:10.1080/21655979.2021.1960775.
  • Li TF, Zeng HJ, Shan Z, et al. Overexpression of kinesin superfamily members as prognostic biomarkers of breast cancer. Cancer Cell Int. 2020;20(1):123. doi:10.1186/s12935-020-01191-1.
  • Paizula X, Mutailipu D, Xu W, et al. Identification of biomarkers related to tumorigenesis and prognosis in breast cancer. Gland Surg. 2022;11(9):1472–1488. doi:10.21037/gs-22-449.
  • Smith JC, Husted S, Pilrose J, et al. MCAK inhibitors induce aneuploidy in triple negative breast cancer models. Cancers. 2023;15:3309. doi:10.1101/2023.05.31.543118.
  • Zhu Q, Zhang L, Sadiq FM, et al. Integrative bioinformatics and RNA sequencing based methodology results in the exploration of breast invasive carcinoma biomarkers. Am J Transl Res. 2023;15(5):3067–3091.
  • Xu A, Xu X-N, Luo Z, et al. Identification of prognostic cancer-associated fibroblast markers in luminal breast cancer using weighted gene co-expression network analysis [original research]. Front Oncol. 2023;13:1191660. doi:10.3389/fonc.2023.1191660.
  • Fang L, Liu Q, Cui H, et al. Bioinformatics analysis highlight differentially expressed CCNB1 and PLK1 genes as potential anti-breast cancer drug targets and prognostic markers. Genes (Basel). 2022;13(4):654. doi:10.3390/genes13040654.
  • Gao Z, Jia H, Yu F, et al. KIF2C promotes the proliferation of hepatocellular carcinoma cells in vitro and in vivo. Exp Ther Med. 2021;22(4):1094–1094. doi:10.3892/etm.2021.10528.
  • Chen J, Li S, Zhou S, et al. Kinesin superfamily protein expression and its association with progression and prognosis in hepatocellular carcinoma. J Cancer Res Ther. 2017;13(4):651–659. doi:10.4103/jcrt.JCRT_491_17.
  • Zhao Z, Mu H, Feng S, et al. Identification of biomarkers associated with hepatocellular carcinoma stem cell characteristics based on co-expression network analysis of transcriptome data and stemness index. Crit Rev Eukaryot Gene Expr. 2022;32(2):47–60. doi:10.1615/CritRevEukaryotGeneExpr.2021039692.
  • Wei S, Dai M, Zhang C, et al. KIF2C: a novel link between Wnt/beta-catenin and mTORC1 signaling in the pathogenesis of hepatocellular carcinoma. Protein Cell. 12(10):788–809. doi:10.1007/s13238-020-00766-y.
  • Ding Q, Jiang C, Zhou Y, et al. Kinesin family member 2C promotes hepatocellular carcinoma growth and metastasis via activating MEK/ERK pathway. Biosci Biotechnol Biochem. 2021;85(11):2241–2249. doi:10.1093/bbb/zbab154.
  • Ferrín G, Guerrero M, Amado V, et al. Activation of mTOR signaling pathway in hepatocellular carcinoma. Int J Mol Sci. 2020;21(4):1266.
  • Zheng H, Cheng ZJ, Liang B, et al. N(6)-methyladenosine modification of ANLN enhances hepatocellular carcinoma bone metastasis. Int J Biol Sci. 2023;19(4):1009–1023. doi:10.7150/ijbs.73570.
  • Sun EJ, Wankell M, Palamuthusingam P, et al. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicines. 2021;9(11):1639. doi:10.3390/biomedicines9111639.
  • Gao Z, Chen J, Zhou Y, et al. A novel metabolism-related gene signature for predicting the prognosis of HBV-infected hepatocellular carcinoma. J Oncol. 2022;2022:2391265. doi:10.1155/2022/2391265.
  • Ji Y, Yin Y, Zhang W. Integrated bioinformatic analysis identifies networks and promising biomarkers for hepatitis B Virus-Related hepatocellular carcinoma. Int J Genomics. 2020;2020:2061024–2061018. doi:10.1155/2020/2061024.
  • Chen Y, Qian H, He X, et al. Screening of the key genes for the progression of liver cirrhosis to hepatocellular carcinoma based on bioinformatics. J Oncol. 2022;2022:2515513–2515517. doi:10.1155/2022/2515513.
  • Huang R, Liu J, Li H, et al. Identification of hub genes and their correlation with immune infiltration cells in hepatocellular carcinoma based on GEO and TCGA databases. Front Genet. 2021;12:647353. doi:10.3389/fgene.2021.647353.
  • Li X, Huang W, Huang W, et al. Kinesin family members KIF2C/4A/10/11/14/18B/20A/23 predict poor prognosis and promote cell proliferation in hepatocellular carcinoma. Am J Transl Res. 2020;12(5):1614–1639.
  • Wang D, Liu J, Liu S, et al. Identification of crucial genes associated with immune cell infiltration in hepatocellular carcinoma by weighted gene Co-expression network analysis. Front Genet. 2020;11:342. doi:10.3389/fgene.2020.00342.
  • Guo C, Tang Y, Yang Z, et al. Hallmark-guided subtypes of hepatocellular carcinoma for the identification of immune-related gene classifiers in the prediction of prognosis, treatment efficacy, and drug candidates. Front Immunol. 2022;13:958161. doi:10.3389/fimmu.2022.958161.
  • Liu ZY, Li YH, Li BW, et al. Development and validation of a vesicle-mediated transport-associated gene signature for predicting prognosis and immune therapy response in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2023;149(14):13211–13230. Jul 22. doi:10.1007/s00432-023-05079-1.
  • Liu Z, Qi Y, Wang H, et al. Risk model of hepatocellular carcinoma based on cuproptosis-related genes. Front Genet. 2022;13:1000652. doi:10.3389/fgene.2022.1000652.
  • Zhang J, Lou W. A key mRNA-miRNA-lncRNA competing endogenous RNA triple Sub-network linked to diagnosis and prognosis of hepatocellular carcinoma. Front Oncol. 2020;10:340. doi:10.3389/fonc.2020.00340.
  • Ding F, Li J, Zhang Y, et al. Identifying a novel endoplasmic reticulum-related prognostic model for hepatocellular carcinomas. Oxid Med Cell Longev. 2022;2022:8248355–8248324. doi:10.1155/2022/8248355.
  • Mishra D, Mishra A, Rai SN, et al. Identification of prognostic biomarkers for suppressing tumorigenesis and metastasis of hepatocellular carcinoma through transcriptome analysis. Diagnostics. 2023;13(5):965. doi:10.3390/diagnostics13050965.
  • Song YJ, Tan J, Gao XH, et al. Integrated analysis reveals key genes with prognostic value in lung adenocarcinoma. Cancer Manag Res. 2018;10:6097–6108. doi:10.2147/CMAR.S168636.
  • Bai Y, Xiong L, Zhu M, et al. Co-expression network analysis identified KIF2C in association with progression and prognosis in lung adenocarcinoma. Cancer Biomark. 2019;24(3):371–382. doi:10.3233/CBM-181512.
  • Gan H, Lin L, Hu N, et al. KIF2C exerts an oncogenic role in nonsmall cell lung cancer and is negatively regulated by miR-325-3p. Cell Biochem Funct. 2019;37(6):424–431. Aug doi:10.1002/cbf.3420.
  • Abdel-Maksoud MA, Hassan F, Mubarik U, et al. An in-silico approach leads to explore six genes as a molecular signatures of lung adenocarcinoma. Am J Cancer Res. 2023;13(3):727–757.
  • Guo J, Zhang W, Sun L, et al. KIF2C accelerates the development of non-small cell lung cancer and is suppressed by miR-186-3p via the AKT-GSK3β-β-catenin pathway. Sci Rep. 2023;13(1):7288. doi:10.1038/s41598-023-30073-5.
  • Yao S, Zhao T, Jin H. Expression of MicroRNA-325-3p and its potential functions by targeting HMGB1 in non-small cell lung cancer. Biomed Pharmacother. 2015;70:72–79. doi:10.1016/j.biopha.2015.01.013.
  • Meng F, Zhang L, Ren Y, et al. Transcriptome analysis reveals key signature genes involved in the oncogenesis of lung cancer. Cancer Biomark. 2020;29(4):475–482. doi:10.3233/CBM-200110.
  • Zhao D, Mu HJ, Shi HB, et al. Identification of therapeutic targets and mechanisms of tumorigenesis in non-small cell lung cancer using multiple-microarray analysis. Medicine (Baltimore). 2020;99(44):e22815. doi:10.1097/MD.0000000000022815.
  • Chen B, Xie X, Lan F, et al. Identification of prognostic markers by weighted gene co-expression network analysis in non-small cell lung cancer. Bioengineered. 2021;12(1):4924–4935. doi:10.1080/21655979.2021.1960764.
  • Mushtaq A, Singh P, Tabassum G, et al. Unravelling hub genes as potential therapeutic targets in lung cancer using integrated transcriptomic meta-analysis and in silico approach. J Biomol Struct Dynam. 2022; 1:1–14.
  • Duda P, Akula SM, Abrams SL, et al. Targeting GSK3 and associated signaling pathways involved in cancer. Cells. 2020;9(5):1110. doi:10.3390/cells9051110.
  • Bie L, Zhao G, Wang YP, et al. Kinesin family member 2C (KIF2C/MCAK) is a novel marker for prognosis in human gliomas. Clin Neurol Neurosurg. 2012;114(4):356–360. May doi:10.1016/j.clineuro.2011.11.005.
  • Zhou J, Guo H, Liu L, et al. Construction of co-expression modules related to survival by WGCNA and identification of potential prognostic biomarkers in glioblastoma. J Cell Mol Med. 2021;25(3):1633–1644. doi:10.1111/jcmm.16264.
  • Qi C, Lei L, Hu J, et al. Serine incorporator 2 (SERINC2) expression predicts an unfavorable prognosis of Low-Grade Glioma (LGG): evidence from bioinformatics analysis. J Mol Neurosci. 2020;70(10):1521–1532. doi:10.1007/s12031-020-01620-w.
  • Zhao L, Zhang J, Liu Z, et al. Identification of biomarkers for the transition from low-grade glioma to secondary glioblastoma by an integrated bioinformatic analysis. Am J Transl Res. 2020;12(4):1222–1238.
  • Duan H, Zhang X, Wang FX, et al. KIF-2C expression is correlated with poor prognosis of operable esophageal squamous cell carcinoma male patients. Oncotarget. 2016;7(49):80493–80507. doi:10.18632/oncotarget.11492.
  • Li S, Ma Y, Wu C, et al. Knockdown of kinesin family member 2C restricts cell proliferation and induces cell cycle arrest in gastric cancer. Histol Histopathol. 2022;30:18556.
  • Kawamoto M, Tanaka F, Mimori K, et al. Identification of HLA-A*0201/-a*2402-restricted CTL epitope-peptides derived from a novel cancer/testis antigen, MCAK, and induction of a specific antitumor immune response. Oncol Rep. 2011;25(2):469–476. doi:10.3892/or.2010.1101.
  • Yang Y, Gao L, Weng NN, et al. Identification of novel molecular therapeutic targets and their potential prognostic biomarkers among kinesin superfamily of proteins in pancreatic ductal adenocarcinoma. Front Oncol. 2021;11:708900. doi:10.3389/fonc.2021.708900.
  • Xiong J, Wu R, He A, et al. Comprehensive analysis of the effects of KIF2C on prognosis, biological functions and immune infiltration in PAAD. Tissue Cell. 2022;78:101900. doi:10.1016/j.tice.2022.101900.
  • Zhang P, Gao H, Ye C, et al. Large-scale transcriptome data analysis identifies KIF2C as a potential therapeutic target associated with immune infiltration in prostate cancer. Front Immunol. 2022 ;13:905259. doi:10.3389/fimmu.2022.905259.
  • Gu Y, Lu L, Wu L, et al. Identification of prognostic genes in kidney renal clear cell carcinoma by RNA‑seq data analysis. Mol Med Rep. 2017;15(4):1661–1667. doi:10.3892/mmr.2017.6194.
  • Wu G, Xia P, Yan S, et al. Identification of unique long non-coding RNAs as putative biomarkers for chromophobe renal cell carcinoma. Per Med. 2021;18(1):9–19. doi:10.2217/pme-2020-0020.
  • Yang J, Wu Z, Yang L, et al. Characterization of kinesin family member 2C as a proto-oncogene in cervical cancer. Front Pharmacol. 2021;12:785981. doi:10.3389/fphar.2021.785981.
  • Wan B, Yang Y, Zhang Z. Identification of differentially methylated genes associated with clear cell renal cell carcinoma and their prognostic values. J Environ Public Health. 2023;2023:8405945–8405910. doi:10.1155/2023/8405945.
  • Wang J, Zhang W, Hou W, et al. Molecular characterization, tumor microenvironment association, and drug susceptibility of DNA methylation-driven genes in renal cell carcinoma. Front Cell Dev Biol. 2022;10:837919. doi:10.3389/fcell.2022.837919.
  • Wei R, Quan J, Li S, et al. Integrative analysis of biomarkers through machine learning identifies stemness features in colorectal cancer. Front Cell Dev Biol. 2021;9:724860. doi:10.3389/fcell.2021.724860.
  • Wang X, Hu S, Ji W, et al. Identification of genes associated with clinicopathological features of colorectal cancer. J Int Med Res. 2020;48(4):300060520912139. Apr doi:10.1177/0300060520912139.
  • Zhang W, Gao L, Wang C, et al. Combining bioinformatics and experiments to identify and verify key genes with prognostic values in endometrial carcinoma. J Cancer. 2020;11(3):716–732. doi:10.7150/jca.35854.
  • Fu X, Cheng S, Wang W, et al. TCGA dataset screening for genes implicated in endometrial cancer using RNA-seq profiling. Cancer Genet. 2021;254-255:40–47. Jun doi:10.1016/j.cancergen.2021.01.011.
  • Yuan Y, Chen Z, Cai X, et al. Identification of hub genes correlated with poor prognosis for patients with uterine corpus endometrial carcinoma by integrated bioinformatics analysis and experimental validation. Front Oncol. 2021;11:766947. doi:10.3389/fonc.2021.766947.
  • An L, Zhang J, Feng D, et al. KIF2C is a novel prognostic biomarker and correlated with immune infiltration in endometrial cancer. Stem Cells Int. 2021;2021:1434856–1434813. doi:10.1155/2021/1434856.
  • Li W, Liu Z, Liang B, et al. Identification of core genes in ovarian cancer by an integrative meta-analysis. J Ovarian Res. 2018;11(1):94. doi:10.1186/s13048-018-0467-z.
  • Wang W, Zhang W, Hu Y. Identification of keygenes, miRNAs and miRNA-mRNA regulatory pathways for chemotherapy resistance in ovarian cancer. PeerJ. 2021;9:e12353. doi:10.7717/peerj.12353.
  • Zhao F, Siu MK, Jiang L, et al. Overexpression of forkhead box protein M1 (FOXM1) in ovarian cancer correlates with poor patient survival and contributes to paclitaxel resistance. PLoS One. 2014;9(11):e113478. doi:10.1371/journal.pone.0113478.
  • Ni L, Chen Y, Yang J, et al. Bioinformatic analysis of key pathways and genes shared between endometriosis and ovarian cancer. Arch Gynecol Obstet. 2022;305(5):1329–1342. May doi:10.1007/s00404-021-06285-3.
  • Dong C, Tian X, He F, et al. Integrative analysis of key candidate genes and signaling pathways in ovarian cancer by bioinformatics. J Ovarian Res. 2021;14(1):92. doi:10.1186/s13048-021-00837-6.
  • Oh CK, Kang JW, Lee Y, et al. Role of kif2c, a gene related to ALL relapse, in embryonic hematopoiesis in zebrafish. Int J Mol Sci. 2020;21(9):3127.
  • Tanenbaum ME, Macurek L, van der Vaart B, et al. A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases. Curr Biol. 2011;21(16):1356–1365. doi:10.1016/j.cub.2011.07.017.
  • Zuo X, Meng P, Bao Y, et al. Cell cycle dysregulation with overexpression of KIF2C/MCAK is a critical event in nasopharyngeal carcinoma. Genes Dis. 2021;10(1):212–227. doi:10.1016/j.gendis.2021.05.003.
  • Mo BY, Li GS, Huang SN, et al. The underlying molecular mechanism and identification of transcription factor markers for laryngeal squamous cell carcinoma. Bioengineered. 2021;12(1):208–224. doi:10.1080/21655979.2020.1862527.
  • Chen W, Liao L, Lai H, et al. Identification of core biomarkers associated with pathogenesis and prognostic outcomes of laryngeal squamous-cell cancer using bioinformatics analysis. Eur Arch Otorhinolaryngol. 2020;277(5):1397–1408. doi:10.1007/s00405-020-05856-5.
  • Zheng W, Zhao Y, Wang T, et al. Identification of hub genes associated with bladder cancer using bioinformatic analyses. Transl Cancer Res. 2022;11(5):1330–1343. doi:10.21037/tcr-22-1004.
  • Yang C, Li Q, Chen X, et al. Circular RNA circRGNEF promotes bladder cancer progression via miR-548/KIF2C axis regulation. Aging (Albany NY). 2020;12(8):6865–6879. doi:10.18632/aging.103047.
  • Wang J, Chen C, Wang L, et al. Patient-derived tumor organoids: new progress and opportunities to facilitate precision cancer immunotherapy. Front Oncol. 2022;12:872531. doi:10.3389/fonc.2022.872531.
  • Wang S-W, Gao C, Zheng Y-M, et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer. 2022;21(1):57. doi:10.1186/s12943-022-01518-8.
  • Zheng R, Du Y, Wang X, et al. KIF2C regulates synaptic plasticity and cognition in mice through dynamic microtubule depolymerization. Elife. 2022;11:e72483. doi:10.7554/eLife.72483.
  • Jovic D, Liang X, Zeng H, et al. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med. 2022;12(3):e694. doi:10.1002/ctm2.694.
  • Jayanthi V, Das AB et al: Grade-specific diagnostic and prognostic biomarkers in breast cancer. Genomics 2020, 112(1):388–396.
  • Zheng L, Li L et al: Six Novel Biomarkers for Diagnosis and Prognosis of Esophageal squamous cell carcinoma: validated by scRNA-seq and qPCR. Journal of Cancer 2021, 12(3):899–911.