260
Views
0
CrossRef citations to date
0
Altmetric
Invited Review

The role of bile acid metabolism in bone and muscle: from analytics to mechanisms

, , , , , & show all
Received 06 Dec 2023, Accepted 21 Feb 2024, Published online: 15 Mar 2024

References

  • Kanis JA, Johnell O, Oden A, et al. Long-term risk of osteoporotic fracture in malmö. Osteoporos Int. 2000;11(8):669–674. doi: 10.1007/s001980070064.
  • Melton LJ, Chrischilles EA, Cooper C, et al. How many women have osteoporosis? J Bone Miner Res. 1992;7(9):1005–1010. doi: 10.1002/jbmr.5650070902.
  • Curtis EM, van der Velde R, Moon RJ, et al. Epidemiology of fractures in the United Kingdom 1988–2012: variation with age, sex, geography, ethnicity and socioeconomic status. Bone. 2016;87:19–26. doi: 10.1016/j.bone.2016.03.006.
  • Odén A, McCloskey EV, Kanis JA, et al. Burden of high fracture probability worldwide: secular increases 2010–2040. Osteoporos Int. 2015;26(9):2243–2248. doi: 10.1007/s00198-015-3154-6.
  • Cummings SR, Melton LJI. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359(9319):1761–1767. doi: 10.1016/S0140-6736(02)08657-9.
  • Autier P, Haentjens P, Bentin J, et al. Costs induced by hip fractures: a prospective controlled study in Belgium. Osteoporos Int. 2000;11(5):373–380. doi: 10.1007/s001980070102.
  • Cree M, Soskolne CL, Belseck E, et al. Mortality and institutionalization following hip fracture. J Am Geriatr Soc. 2000;48(3):283–288. doi: 10.1111/j.1532-5415.2000.tb02647.x.
  • Kiebzak GM, Beinart GA, Perser K, et al. Undertreatment of osteoporosis in men with hip fracture. Arch Intern Med. 2002;162(19):2217–2222. doi: 10.1001/archinte.162.19.2217.
  • Lee DY, Shin S. Association of sarcopenia with osteopenia and osteoporosis in community-dwelling older Korean adults: a cross-sectional study. J Clin Med. 2021;11(1):129. doi: 10.3390/jcm11010129.
  • Reiss J, Iglseder B, Alzner R, et al. Sarcopenia and osteoporosis are interrelated in geriatric inpatients. Z Gerontol Geriatr. 2019;52(7):688–693. doi: 10.1007/s00391-019-01553-z.
  • Locquet M, Beaudart C, Reginster J-Y, et al. Prevalence of concomitant bone and muscle wasting in elderly women from the sarcophage cohort: preliminary results. J Frailty Aging. 2017;6(1):18–23. doi: 10.14283/jfa.2016.111.
  • Khongsri N, Tongsuntud S, Limampai P, et al. The prevalence of sarcopenia and related factors in a community-dwelling elders thai population. Osteoporos Sarcopenia. 2016;2(2):110–115. doi: 10.1016/j.afos.2016.05.001.
  • Huo YR, Suriyaarachchi P, Gomez F, et al. Phenotype of osteosarcopenia in older individuals with a history of falling. J Am Med Dir Assoc. 2015;16(4):290–295. doi: 10.1016/j.jamda.2014.10.018.
  • Monaco D, Vallero M, Di Monaco F, et al. Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch Gerontol Geriatr. 2011;52(1):71–74. doi: 10.1016/j.archger.2010.02.002.
  • Clynes MA, Gregson CL, Bruyère O, et al. Osteosarcopenia: where osteoporosis and sarcopenia collide. Rheumatology. 2021;60(2):529–537. doi: 10.1093/rheumatology/keaa755.
  • Hirschfeld HP, Kinsella R, Duque G. Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int. 2017;28(10):2781–2790. doi: 10.1007/s00198-017-4151-8.
  • He C, He W, Hou J, et al. Bone and muscle crosstalk in aging. Front Cell Dev Biol. 2020;8:585644. doi: 10.3389/fcell.2020.
  • Bettis T, Kim BJ, Hamrick MW. Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle-bone crosstalk with aging and disuse. Osteoporos Int. 2018;29(8):1713–1720. doi: 10.1007/s00198-018-4570-1.
  • Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4(1):177–197. doi: 10.1002/cphy.c130024.
  • Lu K, Shi TS, Shen SY, et al. Defects in a liver-bone axis contribute to hepatic osteodystrophy disease progression. Cell Metab. 2022;34(3):441–457.e7. doi: 10.1016/j.cmet.2022.02.006.
  • Wang X, Wei W, Krzeszinski JY, et al. A liver-bone endocrine relay by IGFBP1 promotes osteoclastogenesis and mediates FGF21-induced bone resorption. Cell Metab. 2015;22(5):811–824. doi: 10.1016/j.cmet.2015.09.010.
  • Li Z, Wen X, Li N, et al. The roles of hepatokine and osteokine in liver-bone crosstalk: advance in basic and clinical aspects. Front Endocrinol. 2023;14:1149233. doi: 10.3389/fendo.2023.1149233.
  • Ehnert S, Aspera-Werz RH, Ruoß M, et al. Hepatic osteodystrophy-molecular mechanisms proposed to favor its development. Int J Mol Sci. 2019;20(10):2555. doi3390/ijms20102555. doi: 10.3390/ijms20102555.
  • Danford CJ, Trivedi HD, Bonder A. Bone health in patients with liver diseases. J Clin Densitom. 2020;23(2):212–222. doi: 10.1016/j.jocd.2019.01.004.
  • Guañabens N, Parés A. Liver and bone. Arch Biochem Biophys. 2010;503(1):84–94. doi: 10.1016/j.abb.2010.05.030.
  • Meyer F, Bannert K, Wiese M, et al. Molecular mechanism contributing to malnutrition and sarcopenia in patients with liver cirrhosis. Int J Mol Sci. 2020;21(15):5357. doi: 10.3390/ijms21155357.
  • Dasarathy S. Etiology and management of muscle wasting in chronic liver disease. Curr Opin Gastroenterol. 2016;32(3):159–165. doi: 10.1097/MOG.0000000000000261.
  • Staels B, Fonseca VA. Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care. 2009;32(Suppl 2):S237–S245. doi: 10.2337/dc09-s355.
  • Di Gregorio MC, Cautela J, Galantini L. Physiology and physical chemistry of bile acids. Int J Mol Sci. 2021;22(4):1780. doi: 10.3390/ijms22041780.
  • Thomas C, Pellicciari R, Pruzanski M, et al. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008;7(8):678–693. doi: 10.1038/nrd2619.
  • Yang S, Li H, Gu Y, et al. The association between total bile acid and bone mineral density among patients with type 2 diabetes. Front Endocrinol. 2023;14:1153205. doi: 10.3389/fendo.2023.
  • Zhao X, Liu Z, Sun F, et al. Bile acid detection techniques and bile acid-related diseases. Front Physiol. 2022;13:826740. doi: 10.3389/fphys.2022.
  • Liu J, Chen Y, Luo Q. The association of serum total bile acids with bone mineral density in chinese adults aged 20–59: a retrospective cross-Sectional study. Front Endocrinol. 2022;13:817437. doi: 10.3389/fendo.2022.817437.
  • Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72(1):137–174. doi: 10.1146/annurev.biochem.72.121801.161712.
  • Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev. 2003;83(2):633–671. doi: 10.1152/physrev.00027.2002.-Molecular.
  • Pandak WM, Bohdan P, Franklund C, et al. Expression of sterol 12α-hydroxylase alters bile acid pool composition in primary rat hepatocytes and in vivo. Gastroenterology. 2001;120(7):1801–1809. doi: 10.1053/gast.2001.24833.
  • Gälman C, Angelin B, Rudling M. Pronounced variation in bile acid synthesis in humans is related to gender, hypertriglyceridaemia and circulating levels of fibroblast growth factor 19. J Intern Med. 2011;270(6):580–588. doi: 10.1111/j.1365-2796.2011.02466.x.
  • Meier PJ, Stieger B. Bile salt transporters. Annu Rev Physiol. 2002;64(1):635–661. doi: 10.1146/annurev.physiol.64.082201.100300.
  • Inagaki T, Moschetta A, Lee Y-K, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sciences. 2006;103:3920–3925. doi: 10.1073/pnas.0509592103.
  • Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res. 2014;55(8):1553–1595. doi: 10.1194/jlr.R049437.
  • Sjövall J. Fifty years with bile acids and steroids in health and disease. Lipids. 2004;39(8):703–722. doi: 10.1007/s11745-004-1288-1.
  • Shackleton C, Pozo OJ, Marcos J. GC/MS in recent years has defined the normal and clinically disordered steroidome: will it soon be surpassed by LC/tandem MS in this role? J Endocr Soc. 2018;2(8):974–996. doi: 10.1210/JS.2018-00135.
  • Simstich S, Fauler G. Bile acids. Mass spectrometry for lipidomics. 2023;2:509–529. doi: 10.1002/9783527836512.ch17.
  • Amplatz B, Zöhrer E, Haas C, et al. Bile acid preparation and comprehensive analysis by high performance liquid chromatography–high-resolution mass spectrometry. Clin Chim Acta. 2017;464:85–92. doi: 10.1016/j.cca.2016.11.014.
  • Haange SB, Till A, Bergh PO, et al. Ring trial on quantitative assessment of bile acids reveals a method-and analyte-specific accuracy and reproducibility. Metabolites. 2022;12(7):583. doi: 10.3390/metabo12070583.
  • Prost JC, Brunner F, Bovet C, et al. A UHPLC–MS/MS method for the quantification of 7α-hydroxy-4-cholesten-3-one to assist in diagnosis of bile acid malabsorption. Clin Mass Spectrom. 2017;3:1–6. doi: 10.1016/j.clinms.2017.02.001.
  • Hu T, Li H, Xu B, et al. Parallel derivatization strategy for comprehensive profiling of unconjugated and glycine-conjugated bile acids using ultra-high performance liquid chromatography-tandem mass spectrometry. J Steroid Biochem Mol Biol. 2021;214:105986. doi: 10.1016/j.jsbmb.2021.
  • Honda A, Yamashita K, Numazawa M, et al. Highly sensitive quantification of 7α-hydroxy-4-cholesten-3-one in human serum by LC-ESI-MS/MS. J Lipid Res. 2007;48(2):458–464. doi: 10.1194/jlr.D600032-JLR200.
  • Huang J, Bathena SPR, Csanaky IL, et al. Simultaneous characterization of bile acids and their sulfate metabolites in mouse liver, plasma, bile, and urine using LC-MS/MS. J Pharm Biomed Anal. 2011;55(5):1111–1119. doi: 10.1016/j.jpba.2011.03.035.
  • Shafaei A, Rees J, Christophersen CT, et al. Extraction and quantitative determination of bile acids in feces. Anal Chim Acta. 2021;1150:338224. doi: 10.1016/j.aca.2021.
  • Cai Y, Shen X, Lu L, et al. Bile acid distributions, sex-specificity, and prognosis in colorectal cancer. Biol Sex Differ. 2022;13(1):61. doi: 10.1186/s13293-022-00473-9.
  • Patton ME, Kelekar S, Taylor LJ, et al. Circulating bile acid levels direct sex-differences in liver cancer development. bioRxiv. 2020; doi: 10.1101/2020.06.25.172635.
  • Xie G, Wang Y, Wang X, et al. Profiling of serum bile acids in a healthy Chinese population using UPLC-MS/MS. J Proteome Res. 2015;14(2):850–859. doi: 10.1021/pr500920q.
  • Fitzinger J, Rodriguez-Blanco G, Herrmann M, et al. Gender-specific bile acid profiles in non-alcoholic fatty liver disease. Nutrients. 2024;16(2):250. doi: 10.3390/nu16020250.
  • Kang L, Connolly TM, Weng N, et al. LC–MS/MS quantification of 7α-hydroxy-4-cholesten-3-one (C4) in rat and monkey plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1064:49–55. doi: 10.1016/j.jchromb.2017.09.006.
  • LeníĿek M, Vecka M, Žížalová K, et al. Comparison of simple extraction procedures in liquid chromatography–mass spectrometry based determination of serum 7α-hydroxy-4-cholesten-3-one, a surrogate marker of bile acid synthesis. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1033–1034:317–320. doi: 10.1016/j.jchromb.2016.08.046.
  • Griffiths WJ, Sjövall J. Bile acids: analysis in biological fluids and tissues. J Lipid Res. 2010;51(1):23–41. doi: 10.1194/jlr.R001941-JLR200.
  • Minato K, Suzuki M, Nagao H, et al. Development of analytical method for simultaneous determination of five rodent unique bile acids in rat plasma using ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1002:399–410. doi: 10.1016/j.jchromb.2015.08.047.
  • Bobeldijk I, Hekman M, de Vries-van der Weij J, et al. Quantitative profiling of bile acids in biofluids and tissues based on accurate mass high resolution LC-FT-MS: compound class targeting in a metabolomics workflow. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;871(2):306–313. doi: 10.1016/j.jchromb.2008.05.008.
  • Zhu X, Xia EQ, Liu YG, et al. Characterization and quantification of representative bile acids in ileal contents and feces of diet-induced obese mice by UPLC-MS/MS. Chin J Anal Chem. 2023;51(3):100175. doi: 10.1016/j.cjac.2022.
  • Bathena SPR, Mukherjee S, Olivera M, et al. The profile of bile acids and their sulfate metabolites in human urine and serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;942–943:53–62. doi: 10.1016/j.jchromb.2013.10.019.
  • Asano T, Taki K, Kitamori K, et al. One-pot extraction and quantification method for bile acids in the rat liver by capillary liquid chromatography tandem mass spectrometry. ACS Omega. 2021;6(12):8588–8597. doi: 10.1021/acsomega.1c00403.
  • Li Y, Zhang X, Chen J, et al. Targeted metabolomics of sulfated bile acids in urine for the diagnosis and grading of intrahepatic cholestasis of pregnancy. Genes Dis. 2018;5(4):358–366. doi: 10.1016/j.gendis.2018.01.005.
  • Wu T, Yang M, Xu H, et al. Serum bile acid profiles improve clinical prediction of nonalcoholic fatty liver in T2DM patients. J Proteome Res. 2021;20(8):3814–3825. doi: 10.1021/acs.jproteome.1c00104.
  • Habler K, Koeppl B, Bracher F, et al. Targeted profiling of 24 sulfated and non-sulfated bile acids in urine using two-dimensional isotope dilution UHPLC-MS/MS. Clin Chem Lab Med. 2022;60(2):220–228. doi: 10.1515/cclm-2021-1111.
  • Choucair I, Nemet I, Li L, et al. Quantification of bile acids: a mass spectrometry platform for studying gut microbe connection to metabolic diseases. J Lipid Res. 2020;61(2):159–177. doi: 10.1194/jlr.RA119000311.
  • Steiner C, von Eckardstein A, Rentsch KM. Quantification of the 15 major human bile acids and their precursor 7α-hydroxy-4-cholesten-3-one in serum by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(28):2870–2880. doi: 10.1016/j.jchromb.2010.08.045.
  • Ramos-Garcia V, Ten-Doménech I, Vento M, et al. Fast profiling of primary, secondary, conjugated, and sulfated bile acids in human urine and murine feces samples. Anal Bioanal Chem. 2023;415(20):4961–4971. doi: 10.1007/s00216-023-04802-8.
  • Wang YZ, Mei PC, Bai PR, et al. A strategy for screening and identification of new amino acid-conjugated bile acids with high coverage by liquid chromatography-mass spectrometry. Anal Chim Acta. 2023;1239:340691. doi: 10.1016/j.aca.2022.
  • Lee G, Lee H, Hong J, et al. Quantitative profiling of bile acids in rat bile using ultrahigh-performance liquid chromatography–orbitrap mass spectrometry: alteration of the bile acid composition with aging. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1031:37–49. doi: 10.1016/j.jchromb.2016.07.017.
  • Shi Y, Gao Y, Parys MV, et al. Definitive profiling of plasma bile acids as potential biomarkers for human liver diseases using UPLC-HRMS. Bioanalysis. 2018;10(12):917–932. doi: 10.4155/bio-2018-0018.
  • Jiang P, Sun Y, Cheng N. Liver metabolomic characterization of sophora flavescens alcohol extract-induced hepatotoxicity in rats through UPLC/LTQ-Orbitrap mass spectrometry. Xenobiotica. 2020;50(6):670–676. doi: 10.1080/00498254.2019.1687962.
  • Rago B, Tierney B, Rodrigues AD, et al. A multiplex HRMS assay for quantifying selected human plasma bile acids as candidate OATP biomarkers. Bioanalysis. 2018;10(9):645–657. doi: 10.4155/bio-2017-0274.
  • Lin M, Chen X, Wang Z, et al. Global profiling and identification of bile acids by multi-dimensional data mining to reveal a way of eliminating abnormal bile acids. Anal Chim Acta. 2020;1132:74–82. doi: 10.1016/j.aca.2020.07.067.
  • Frommherz L, Bub A, Hummel E, et al. Age-related changes of plasma bile acid concentrations in healthy adults-results from the cross-sectional karmen study. PLOS One. 2016;11(4):e0153959. doi: 10.1371/journal.pone.0153959.
  • de Paiva MJN, Menezes HC, da Silva C, et al. New method for the determination of bile acids in human plasma by liquid-phase microextraction using liquid chromatography-ion-trap-time-of-flight mass spectrometry. J Chromatogr A. 2015;1388:102–109. doi: 10.1016/j.chroma.2015.02.016.
  • Poland JC, Leaptrot KL, Sherrod SD, et al. Collision cross section conformational analyses of bile acids via ion Mobility-Mass spectrometry. J Am Soc Mass Spectrom. 2020;31(8):1625–1631. doi: 10.1021/jasms.0c00015.
  • Kanu AB, Dwivedi P, Tam M, et al. Ion mobility-mass spectrometry. J Mass Spectrom. 2008;43(1):1–22. doi: 10.1002/jms.1383.
  • Draper J, Lloyd AJ, Goodacre R, et al. Flow infusion electrospray ionisation mass spectrometry for high throughput, non-targeted metabolite fingerprinting: a review. Metabolomics. 2013;9(S1):4–29. doi: 10.1007/s11306-012-0449-x.
  • Setchell KDR, Heubi E. Defects in bile acid biosynthesis - diagnosis and treatment. J Pediatr Gastroenterol Nutr. 2006;43(Suppl 1):S17–S22. doi: 10.1097/01.mpg.0000226386.79483.7b.
  • Züllig T, Köfeler HC. High resolution mass spectrometry in lipidomics. Mass Spectrom Rev. 2021;40(3):162–176. doi: 10.1002/mas.21627.
  • Blaženović I, Kind T, Ji J, et al. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites. 2018;8(2):31. doi: 10.3390/metabo8020031.
  • Ma Y, Cao Y, Song X, et al. BAFinder: a software for unknown bile acid identification using accurate mass LC-MS/MS in positive and negative modes. Anal Chem. 2022;94(16):6242–6250. doi: 10.1021/acs.analchem.1c05648.
  • Jacob M, Lopata AL, Dasouki M, et al. Metabolomics toward personalized medicine. Mass Spectrom Rev. 2019;38(3):221–238. doi: 10.1002/mas.21548.
  • Quinn RA, Melnik AV, Vrbanac A, et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020;579(7797):123–129. doi: 10.1038/s41586-020-2047-9.
  • Mancin L, Wu GD, Paoli A. Gut microbiota–bile acid–skeletal muscle axis. Trends Microbiol. 2023;31(3):254–269. doi: 10.1016/j.tim.2022.10.003.
  • De Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17(5):657–669. doi: 10.1016/j.cmet.2013.03.013.
  • Kaeslin J, Zenobi R. Resolving isobaric interferences in direct infusion tandem mass spectrometry. Rapid Commun Mass Spectrom. 2022;36(9):e9266. doi: 10.1002/rcm.9266.
  • Wang M, Wang C, Han RH, et al. Novel advances in shotgun lipidomics for biology and medicine. Prog Lipid Res. 2016;61:83–108. doi: 10.1016/j.plipres.2015.12.002.
  • Pöhö P, Lipponen K, Bespalov MM, et al. Comparison of liquid chromatography-mass spectrometry and direct infusion microchip electrospray ionization mass spectrometry in global metabolomics of cell samples. Eur J Pharm Sci. 2019;138:104991. doi: 10.1016/j.ejps.2019.
  • Southam AD, Weber RJM, Engel J, et al. A complete workflow for high-resolution spectral-stitching nanoelectrospray direct-infusion mass-spectrometry-based metabolomics and lipidomics. Nat Protoc. 2017;12(2):310–328–328. doi: 10.1038/nprot.2016.156.
  • Fiorucci S, Distrutti E, Carino A, et al. Bile acids and their receptors in metabolic disorders. Prog Lipid Res. 2021;82:101094. doi: 10.1016/j.plipres.2021.101094.
  • Sato H, Genet C, Strehle A, et al. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem Biophys Res Commun. 2007;362(4):793–798. doi: 10.1016/j.bbrc.2007.06.130.
  • Sorrentino G, Perino A, Yildiz E, et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology. 2020;159(3):956–968.e8. doi: 10.1053/j.gastro.2020.05.067.
  • Molinaro A, Wahlström A, Marschall HU. Role of bile acids in metabolic control. Trends Endocrinol Metab. 2018;29(1):31–41. doi: 10.1016/j.tem.2017.11.002.
  • Chávez-Talavera O, Tailleux A, Lefebvre P, et al. Bile acids in meta-inflammatory disorders. Gastroenterology. 2017;152(7):1679–1694.e3. doi: 10.1053/j.gastro.2017.01.055ï.
  • Keitel V, Kubitz R, Häussinger D. Endocrine and paracrine role of bile acids. World J Gastroenterol. 2008;14(37):5620–5629. doi: 10.3748/wjg.14.5620.
  • Nguyen A, Bouscarel B. Bile acids and signal transduction: role in glucose homeostasis. Cell Signal. 2008;20(12):2180–2197. doi: 10.1016/j.cellsig.2008.06.014.
  • Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. Embo J. 2006;25(7):1419–1425. doi: 10.1038/sj.emboj.7601049.
  • Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284(5418):1365–1368. doi: 10.1126/science.284.5418.1365.
  • Li T, Chiang JYL. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev. 2014;66(4):948–983. doi: 10.1124/pr.113.008201.
  • Holter MM, Chirikjian MK, Govani VN, et al. Tgr5 signaling in hepatic metabolic health. Nutrients. 2020;12(9):2598. doi: 10.3390/nu12092598.
  • Keitel V, Häussinger D. Role of TGR5 (GPBAR1) in liver disease. Semin Liver Dis. 2018;38(4):333–339. doi: 10.1055/s-0038-1669940.
  • Shi Y, Su W, Zhang L, et al. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation. Front Immunol. 2020;11:609060. doi: 10.3389/fimmu.2020.609060.
  • Zhou H, Zhou S, Shi Y, et al. TGR5/cathepsin E signaling regulates macrophage innate immune activation in liver ischemia and reperfusion injury. Am J Transplant. 2021;21(4):1453–1464. doi: 10.1111/ajt.16327.
  • Asgharpour A, Kumar D, Sanyal A. Bile acids: emerging role in management of liver diseases. Hepatol Int. 2015;9(4):527–533. doi: 10.1007/s12072-015-9656-7.
  • Miller NE, Nestel PJ. Triglyceride-lowering effect of chenodeoxycholic acid in patients with endogenous hyperglyceridaemia. Lancet. 1974;2(7886):929–931. doi: 10.1016/s0140-6736(74)91134-9.
  • Hirokane H, Nakahara M, Tachibana S, et al. Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J Biol Chem. 2004;279(44):45685–45692. doi: 10.1074/jbc.M404255200.
  • Camarri E, Fici F, Marcolongo R. Influence of chenodeoxycholic acid on serum triglycerides in patients with primary hypertriglyceridemia. Int J Clin Pharmacol Biopharm. 1978;16:523–526.
  • Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–489. doi: 10.1038/nature04330.
  • Alekos NS, Moorer MC, Riddle RC. Dual effects of lipid metabolism on osteoblast function. Front Endocrinol. 2020;11:578194. doi: 10.3389/fendo.2020.578194.
  • Kim G, Kang SH, Kim MY, et al. Prognostic value of sarcopenia in patients with liver cirrhosis: a systematic review and meta-analysis. PLOS One. 2017;12(10):e0186990. doi1371/journal.pone.0186990. doi: 10.1371/journal.pone.0186990.
  • Akhmedov D, Berdeaux R. The effects of obesity on skeletal muscle regeneration. Front Physiol. 2013;4 doi: 10.3389/fphys.2013.00:.371.
  • Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus a short-term, double-blind, crossover trial. Ann Intern Med. 1994;121(6):416–422. doi: 10.7326/0003-4819-121-6-199409150-00004.
  • Angelin B, Leijd B, Hultcrantz R, et al. Increased turnover of very low density lipoprotein triglyceride during treatment with cholestyramine in familial hypercholesterolaemia. J Intern Med. 1990;227(3):201–206. doi: 10.1111/j.1365-2796.1990.tb00143.x.
  • Kast HR, Nguyen CM, Sinal CJ, et al. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol Endocrinol. 2001;15(10):1720–1728. doi: 10.1210/mend.15.10.0712.
  • Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol. 2012;13(4):213–224. doi: 10.1038/nrm3312.
  • Zhang Y, Edwards PA. FXR signaling in metabolic disease. FEBS Lett. 2008;582(1):10–18. doi: 10.1016/j.febslet.2007.11.015.
  • Ghosh Laskar M, Eriksson M, Rudling M, et al. Treatment with the natural FXR agonist chenodeoxycholic acid reduces clearance of plasma LDL whilst decreasing circulating PCSK9, lipoprotein(a) and apolipoprotein C-III. J Intern Med. 2017;281(6):575–585. doi: 10.1111/joim.12594.
  • Yamagata K, Daitoku H, Shimamoto Y, et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem. 2004;279(22):23158–23165. doi: 10.1074/jbc.M314322200.
  • Claudel T, Inoue Y, Barbier O, et al. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology. 2003;125(2):544–555. doi: 10.1016/S0016-5085(03)00896-5.
  • Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113(10):1408–1418. doi: 10.1172/jci200421025.
  • Camarri E, Marcolongo R, Zaccherotti L, et al. The hypotriglyceridemic effect of chenodeoxycholic acid in type IV hyperlipemia. Biomedicine. 1978;29:193–198.
  • Cipriani C, Colangelo L, Santori R, et al. The interplay between bone and glucose metabolism. Front Endocrinol. 2020;11 doi: 10.3389/fendo.2020.00:.122.
  • Lee WC, Guntur AR, Long F, et al. Energy metabolism of the osteoblast: implications for osteoporosis. Endocr Rev. 2017;38(3):255–266. doi: 10.1210/er.2017-00064.
  • Daily JW, Park S. Sarcopenia Is a cause and consequence of metabolic dysregulation in aging humans: effects of gut dysbiosis, glucose dysregulation, diet and lifestyle. Cells. MDPI. 2022;11(3):030338. doi: 10.3390/cells11030338.
  • Baquet A, Hue L, Meijer AJ, et al. Swelling of rat hepatocytes stimulates glycogen synthesis. J Biol Chem. 1990;265(2):955–959. doi: 10.1016/S0021-9258(19)40142-7.
  • Saha N, Stoll B, Lang F, et al. Effect of anisotonic cell‐volume modulation on glutathione‐S‐conjugate release, t‐butylhydroperoxide metabolism and the pentose‐phosphate shunt in perfused rat liver. Eur J Biochem. 1992;209(1):437–444. doi: 10.1111/j.1432-1033.1992.tb17307.x.
  • Ma K, Saha PK, Chan L, et al. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 2006;116(4):1102–1109. doi: 10.1172/JCI25604.
  • Zhang Y, Ying Lee F, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA. 2006;103(4):1006–1011. doi: 10.1073/pnas.0506982103.
  • De Fabiani E, Mitro N, Gilardi F, et al. Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle. J Biol Chem. 2003;278(40):39124–39132. doi: 10.1074/jbc.M305079200.
  • Newsome WP, Warskulat U, Noe B, et al. Modulation of phosphoenolpyruvate carboxykinase mRNA levels by the hepatocellular hydration state. Biochem J. 1994;304(Pt 2):555–560. doi: 10.1042/bj3130697.
  • Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised european consensus on definition and diagnosis. Age Ageing. 2019;48(4):601–631. doi: 10.1093/ageing/afz046.
  • Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 2012;26(4):312–324. doi: 10.1101/gad.184788.111.
  • Schaap FG. Role of fibroblast growth factor 19 in the control of glucose homeostasis. Curr Opin Clin Nutr Metab Care. 2012;15(4):386–391. doi: 10.1097/MCO.0b013e3283547171.
  • Zhang Y, Castellani LW, Sinal CJ, et al. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev. 2004;18(2):157–169. doi: 10.1101/gad.1138104.
  • Kir S, Beddow SA, Samuel VT, et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science. 2011;331(6024):1621–1624. 1979 doi: 10.1126/science.1198363.
  • Duran-Sandoval D, Le Mautino G, Ve Martin G, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes. 2004;53(4):890–898. doi: 10.2337/diabetes.53.4.890.
  • Son SW, Song DS, Chang UI, et al. Definition of sarcopenia in chronic liver disease. Life. 2021;11(4):11. doi: 10.3390/life11040349.
  • Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005;329(1):386–390. doi: 10.1016/j.bbrc.2005.01.139.
  • Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. Transl Gastroenterol Hepatol. 2018;3:47–47. doi: 10.21037/tgh.2018.07.06.
  • Okubo T, Atsukawa M, Tsubota A, et al. Relationship between serum vitamin D level and sarcopenia in chronic liver disease. Hepatol Res. 2020;50(5):588–597. doi: 10.1111/hepr.13485.
  • Kobayashi Y, Hara N, Sugimoto R, et al. The associations between circulating bile acids and the muscle volume in patients with non-alcoholic fatty liver disease (NAFLD). Intern Med. 2017;56(7):755–762. doi: 10.2169/internalmedicine.56.7796.
  • Allen SL, Quinlan JI, Dhaliwal A, et al. Sarcopenia in chronic liver disease: mechanisms and countermeasures. Am J Physiol Gastrointest Liver Physiol. 2021;320(3):G241–G257. doi: 10.1152/ajpgi.00373.2020.
  • Graf J, Haddad P, Haeussinger D, et al. Cell volume regulation in liver. Ren Physiol Biochem. 1988;11(3-5):202–220. doi:10.1059/000173163.
  • Häussinger D, Lang F. Cell volume in the regulation of hepatic function: a mechanism for metabolic control. Biochim Biophys Acta. 1991;1071(4):331–350. doi: 10.1016/0304-4157(91)90001-d.
  • Häussinger D. The role of cellular hydration in the regulation of cell function. Biochem J. 1996;313 (Pt 3)(Pt 3):697–710. doi: 10.1042/bj3130697.
  • Pols TWH, Noriega LG, Nomura M, et al. The bile acid membrane receptor TGR5: a valuable metabolic target. Dig Dis. 2011;29(1):37–44. doi: 10.1159/000324126.
  • Campos F, Abrigo J, Aguirre F, et al. Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin–proteasome system and oxidative stress. Pflugers Arch. 2018;470(10):1503–1519. doi: 10.1007/s00424-018-2167-3.
  • Sasaki T, Kuboyama A, Mita M, et al. The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice. J Biol Chem. 2018;293(26):10322–10332. doi: 10.1074/jbc.RA118.002733.
  • Yoshida T, Delafontaine P. Mechanisms of IGF-1-Mediated regulation of skeletal muscle hypertrophy and atrophy. Cells. 2020;9(9):1970. doi: 10.3390/cells9091970.
  • Aguirre F, Abrigo J, Gonzalez F, et al. Protective effect of angiotensin 1–7 on sarcopenia induced by chronic liver disease in mice. Int J Mol Sci. 2020;21(11):3891. doi: 10.3390/ijms21113891.
  • Hara N, Iwasa M, Sugimoto R, et al. Sarcopenia and sarcopenic obesity are prognostic factors for overall survival in patients with cirrhosis. Intern Med. 2016;55(8):863–870. doi: 10.2169/internalmedicine.55.5676.
  • Ebadi M, Bhanji RA, Mazurak VC, et al. Sarcopenia in cirrhosis: from pathogenesis to interventions. J Gastroenterol. 2019;54(10):845–859. doi: 10.1007/s00535-019-01605-6.
  • Abrigo J, Olguín H, Gutierrez D, et al. Bile acids induce alterations in mitochondrial function in skeletal muscle fibers. Antioxidants. 2022;11(9):1706. doi: 10.3390/antiox11091706.
  • Abrigo J, Campos F, Gonzalez F, et al. Sarcopenia induced by chronic liver disease in mice requires the expression of the bile acids membrane receptor tgr5. Int J Mol Sci. 2020;21(21):7922. doi: 10.3390/ijms21217922.
  • Orozco-Aguilar J, Tacchi F, Aguirre F, et al. Ursodeoxycholic acid induces sarcopenia associated with decreased protein synthesis and autophagic flux. Biol Res. 2023;56(1):28. doi: 10.1186/s40659-023-00431-8.
  • Yang F, Mao C, Guo L, et al. Structural basis of GPBAR activation and bile acid recognition. Nature. 2020;587(7834):499–504. doi: 10.1038/s41586-020-2569-1.
  • Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. doi: 10.1038/s41580-019-0199-y.
  • Tamai Y, Eguchi A, Shigefuku R, et al. Association of lithocholic acid with skeletal muscle hypertrophy through TGR5-IGF-1 and skeletal muscle mass in cultured mouse myotubes, chronic liver disease rats and humans. Elife. 2022;11:1–16. doi: 10.7554/eLife.80638.
  • Marques J, Shokry E, Uhl O, et al. Sarcopenia: investigation of metabolic changes and its associated mechanisms. Skelet Muscle. 2023;13(1):2. doi: 10.1186/s13395-022-00312-w.
  • Aliwa B, Horvath A, Traub J, et al. Altered gut microbiome, bile acid composition and metabolome in sarcopenia in liver cirrhosis. J Cachexia Sarcopenia Muscle. 2023;14(6):2676–2691. doi: 10.1002/jcsm.13342.
  • Lee Y-H, Kim SU, Song K, et al. Sarcopenia Is associated With significant liver fibrosis independently of obesity and insulin resistance in nonalcoholic fatty liver disease: nationwide surveys (KNHANES 2008-2011). Hepatology. 2016;63(3):776–786. doi: 10.1002/hep.28376/suppinfo.
  • Maruyama T, Miyamoto Y, Nakamura T, et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun. 2002;298(5):714–719. doi: 10.1016/s0006-291x(02)02550-0.
  • Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278(11):9435–9440. doi: 10.1074/jbc.M209706200.
  • Basuray S, Smagris E, Cohen JC, et al. The PNPLA3 variant associated With fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology. 2017;66(4):1111–1124. doi: 10.1002/hep.29273/suppinfo.
  • Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol. 2011;6(1):121–145. doi: 10.1146/annurev-pathol-011110-130203.
  • Robling AG, Bonewald LF. The osteocyte: new insights. Annu Rev Physiol. 2020;82(1):485–506. doi: 10.1146/annurev-physiol-021119-034332.
  • Arai Y, Park H, Park S, et al. Bile acid-based dual-functional prodrug nanoparticles for bone regeneration through hydrogen peroxide scavenging and osteogenic differentiation of mesenchymal stem cells. J Control Release. 2020;328:596–607. doi: 10.1016/j.jconrel.2020.09.023.
  • Id Boufker H, Lagneaux L, Fayyad-Kazan H, et al. Role of farnesoid X receptor (FXR) in the process of differentiation of bone marrow stromal cells into osteoblasts. Bone. 2011;49(6):1219–1231. doi: 10.1016/j.bone.2011.08.013.
  • Wang Q, Wang G, Wang B, et al. Activation of TGR5 promotes osteoblastic cell differentiation and mineralization. Biomed Pharmacother. 2018;108:1797–1803. doi: 10.1016/j.biopha.2018.08.093.
  • Rourke JL, Hu Q, Screaton RA. AMPK and friends: central regulators of β cell biology. Trends Endocrinol Metab. 2018;29(2)Elsevier Inc:111–122. doi: 10.1016/j.tem.2017.11.007.
  • Zhao YX, Song YW, Zhang L, et al. Association between bile acid metabolism and bone mineral density in postmenopausal women. Clinics. 2020;75 doi: 10.6061/clinics/2020/:.e1486.
  • Ruiz-Gaspà S, Guañabens N, Enjuanes A, et al. Lithocholic acid downregulates vitamin D effects in human osteoblasts. Eur J Clin Invest. 2010;40(1):25–34. doi: 10.1111/j.1365-2362.2009.02230.x.
  • Kuchuk NO, Pluijm SMF, Van Schoor NM, et al. Relationships of serum 25-hydroxyvitamin D to bone mineral density and serum parathyroid hormone and markers of bone turnover in older persons. J Clin Endocrinol Metab. 2009;94(4):1244–1250. doi: 10.1210/jc.2008-1832.
  • Bischoff SC, Bernal W, Dasarathy S, et al. ESPEN practical guideline: clinical nutrition in liver disease. Clin Nutr. 2020;39(12):3533–3562. doi: 10.1016/j.clnu.2020.09.001.
  • Cha BH, Jung MJ, Moon BK, et al. Administration of tauroursodeoxycholic acid enhances osteogenic differentiation of bone marrow-derived mesenchymal stem cells and bone regeneration. Bone. 2016;83:73–81. doi: 10.1016/j.bone.2015.10.011.
  • Ahn TK, Kim KT, Joshi HP, et al. Therapeutic potential of tauroursodeoxycholic acid for the treatment of osteoporosis. Int J Mol Sci. 2020;21(12):4274. doi: 10.3390/ijms21124274.
  • Cho SW, An JH, Park H, et al. Positive regulation of osteogenesis by bile acid through FXR. J Bone Miner Res. 2013;28(10):2109–2121. doi: 10.1002/jbmr.1961.
  • Li Z, Huang J, Wang F, et al. Dual targeting of bile acid receptor-1 (TGR5) and farnesoid X receptor (FXR) prevents Estrogen-Dependent bone loss in mice. J Bone Miner Res. 2019;34(4):765–776. doi: 10.1002/jbmr.3652.
  • Ruiz-Gaspà S, Guañabens N, Jurado S, et al. Bilirubin and bile acids in osteocytes and bone tissue. Potential role in the cholestatic-induced osteoporosis. Liver Int. 2020;40(11):2767–2775. doi: 10.1111/liv.14630.
  • Zheng T, Kang J-H, Sim J-S, et al. The farnesoid X receptor negatively regulates osteoclastogenesis in bone remodeling and pathological bone loss. Oncotarget. 2017;8(44):76558–76573. doi: 10.18632/oncotarget.20576.
  • Uchida K, Chikai T, Takase H, et al. Age-related changes of bile acid metabolism in rats. Arch Gerontol Geriatr. 1990;10(1):37–48. doi: 10.1016/0167-4943(90)90042-5.
  • Chen H, Ma J, Ma X. Administration of tauroursodeoxycholic acid attenuates dexamethasone-induced skeletal muscle atrophy. Biochem Biophys Res Commun. 2021;570:96–102. doi: 10.1016/j.bbrc.2021.06.102.
  • Vidal M, Thibodaux RJ, Neira LFV, et al. Osteoporosis: a clinical and pharmacological update. Clin Rheumatol. 2019;38(2):385–395. doi: 10.1007/s10067-018-4370-1.
  • Deng D, Pan C, Wu Z, et al. An integrated metabolomic study of osteoporosis: discovery and quantification of hyocholic acids as candidate markers. Front Pharmacol. 2021;12:725341. doi: 10.3389/fphar.2021.
  • Zhao Q, Shen H, Su KJ, et al. Metabolomic profiles associated with bone mineral density in US caucasian women. Nutr Metab. 2018;15(1):57. doi: 10.1186/s12986-018-0296-5.
  • Ewang-Emukowhate M, Alaghband-Zadeh J, Vincent RP, et al. An association between post-meal bile acid response and bone resorption in normal subjects. Ann Clin Biochem. 2013;50(Pt 6):558–563. doi: 10.1177/0004563213482891.
  • Yang F, Xu W, Wu L, et al. NTCP deficiency affects the levels of circulating bile acids and induces osteoporosis. Front Endocrinol. 2022;13:898750. doi: 10.3389/fendo.2022.
  • Stürznickel J, Behler-Janbeck F, Baranowsky A, et al. Increased concentrations of conjugated bile acids are associated with osteoporosis in PSC patients. Sci Rep. 2022;12(1):16491. doi: 10.1038/s41598-022-20351-z.
  • Guañabens N, Parés A. Osteoporosis in chronic liver disease. Liver Int. 2018;38(5):776–785. doi: 10.1111/liv.13730.
  • Guyton JR, Goldberg AC. Bile acid sequestrants. In: Clinical lipidology: a companion to braunwald’s heart disease. Philadelphia, USA: Elsevier Inc. 2009. p. 281–287.
  • Chiang JYL. Bile acid metabolism and signaling in liver disease and therapy. Liver Res. 2017;1(1):3–9. doi: 10.1016/j.livres.2017.05.001.
  • Li T, Chiang JYL. Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surg Nutr. 2020;9(2):152–169. doi: 10.21037/hbsn.2019.09.03.
  • Dutta M, Cai J, Gui W, et al. A review of analytical platforms for accurate bile acid measurement. Anal Bioanal Chem. 2019;411(19):4541–4549. doi: 10.1007/s00216-019-01890-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.