354
Views
0
CrossRef citations to date
0
Altmetric
Invited Review

Methods applied to neonatal dried blood spot samples for secondary research purposes: a scoping review

ORCID Icon, ORCID Icon, , , , , , , , , & show all
Received 29 Jan 2024, Accepted 24 May 2024, Published online: 10 Jun 2024

References

  • Therrell BL, Padilla CD, Loeber JG, et al. Current status of newborn screening worldwide: 2015. Semin Perinatol. 2015;39(3):171–187. doi: 10.1053/j.semperi.2015.03.002.
  • Wilcken B, Wiley V. Newborn screening. Pathology. 2008;40(2):104–115. doi: 10.1080/00313020701813743.
  • Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;102(1):236–237. doi: 10.1542/peds.32.3.338.
  • Benkendorf J, Goodspeed T, Watson MS. Newborn screening residual dried blood spot use for newborn screening quality improvement. Genet Med. 2010;12(12 Suppl):S269–S272. doi: 10.1097/GIM.0b013e3181fea489.
  • Caggana M, Jones EA, Shahied SI, et al. Newborn screening: from guthrie to whole genome sequencing. Public Health Rep. 2013;128(Suppl 2):14–19. doi: 10.1177/00333549131280S204.
  • Botkin JR, Goldenberg AJ, Rothwell E, et al. Retention and research use of residual newborn screening bloodspots. Pediatrics. 2013;131(1):120–127. doi: 10.1542/peds.2012-0852.
  • Kingston A, Jagger C. Review of methodologies of cohort studies of older people. Age Ageing. 2018;47(2):215–219. doi: 10.1093/ageing/afx183.
  • Tarini BA. Storage and use of residual newborn screening blood spots: a public policy emergency. Genet Med. 2011;13(7):619–620. doi: 10.1097/GIM.0b013e31822176df.
  • Hougaard DM, Bybjerg-Grauholm J, Christiansen M, et al. Response to “newborn dried blood spot samples in Denmark: the hidden figures of secondary use and research participation. Eur J Hum Genet. 2019;27(11):1625–1627. doi: 10.1038/s41431-019-0437-y.
  • Rothwell E, Johnson E, Riches N, et al. Secondary research uses of residual newborn screening dried bloodspots: a scoping review. Genet Med. 2019;21(7):1469–1475. doi: 10.1038/s41436-018-0387-8.
  • Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–473. doi: 10.7326/M18-0850.
  • Peters MDJ, Casey M, Tricco AC, et al. Updated methodological guidance for the conduct of scoping reviews. JBI Evid Implement. 2021;19(1):3–10. doi: 10.1097/XEB.0000000000000277.
  • Makowski GS, Davis EL, Hopfer SM. The effect of storage on Guthrie cards: implications for deoxyribonucleic acid amplification. Ann Clin Lab Sci. 1996;26(5):458–469.
  • Haak PT, Busik JV, Kort EJ, et al. Archived unfrozen neonatal blood spots are amenable to quantitative gene expression analysis. Neonatology. 2009;95(3):210–216. doi: 10.1159/000155652.
  • Resau JH, Ho NT, Dykema K, et al. Evaluation of sex-specific gene expression in archived dried blood spots (DBS). Int J Mol Sci. 2012;13(8):9599–9608. doi: 10.3390/ijms13089599.
  • Slaughter J, Wei C, Korzeniewski SJ, et al. High correlations in gene expression between paired umbilical cord blood and neonatal blood of healthy newborns on Guthrie cards. J Matern Fetal Neonatal Med. 2013;26(18):1765–1767. doi: 10.3109/14767058.2013.804050.
  • Ponnusamy V, Kapellou O, Yip E, et al. A study of microRNAs from dried blood spots in newborns after perinatal asphyxia: a simple and feasible biosampling method. Pediatr Res. 2016;79(5):799–805. doi: 10.1038/pr.2015.276.
  • Bybjerg-Grauholm J, Hagen CM, Khoo SK, et al. RNA sequencing of archived neonatal dried blood spots. Mol Genet Metab Rep. 2016;10:33–37. doi: 10.1016/j.ymgmr.2016.12.004.
  • Gauffin F, Nordgren A, Barbany G, et al. Quantitation of RNA decay in dried blood spots during 20 years of storage. Clin Chem Lab Med. 2009;47(12):1467–1469. doi: 10.1515/CCLM.2009.351.
  • Grauholm J, Khoo SK, Nickolov RZ, et al. Gene expression profiling of archived dried blood spot samples from the Danish neonatal screening biobank. Mol Genet Metab. 2015;116(3):119–124. doi: 10.1016/j.ymgme.2015.06.011.
  • Chaisomchit S, Wichajarn R, Janejai N, et al. Stability of genomic DNA in dried blood spots stored on filter paper. Southeast Asian J Trop Med Public Health. 2005;36(1):270–273.
  • Hardin J, Finnell RH, Wong D, et al. Whole genome microarray analysis, from neonatal blood cards. BMC Genet. 2009;10(1):38. doi: 10.1186/1471-2156-10-38.
  • Klassen TL, Drabek J, Tomson T, et al. Visual automated fluorescence electrophoresis provides simultaneous quality, quantity, and molecular weight spectra for genomic DNA from archived neonatal blood spots. J Mol Diagn. 2013;15(3):283–290. doi: 10.1016/j.jmoldx.2013.01.003.
  • Lane JA, Noble JA. Maximizing deoxyribonucleic acid yield from dried blood spots. J Diabetes Sci Technol. 2010;4(2):250–254. doi: 10.1177/193229681000400204.
  • Pedersen CB, Bybjerg-Grauholm J, Pedersen MG, et al. The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol Psychiatry. 2018;23(1):6–14. doi: 10.1038/mp.2017.196.
  • Rajatileka S, Luyt K, El-Bokle M, et al. Isolation of human genomic DNA for genetic analysis from premature neonates: a comparison between newborn dried blood spots, whole blood and umbilical cord tissue. BMC Genet. 2013;14(1):105. doi: 10.1186/1471-2156-14-105.
  • Sjöholm MI, Dillner J, Carlson J. Assessing quality and functionality of DNA from fresh and archival dried blood spots and recommendations for quality control guidelines. Clin Chem. 2007;53(8):1401–1407. doi: 10.1373/clinchem.2007.087510.
  • Sok P, Lupo PJ, Richard MA, et al. Utilization of archived neonatal dried blood spots for genome-wide genotyping. PLoS One. 2020;15(2):e0229352. doi: 10.1371/journal.pone.0229352.
  • St Julien KR, Jelliffe-Pawlowski LL, Shaw GM, et al. High quality genome-wide genotyping from archived dried blood spots without DNA amplification. PLoS One. 2013;8(5):e64710. doi: 10.1371/journal.pone.0064710.
  • Hannelius U, Lindgren CM, Melén E, et al. Phenylketonuria screening registry as a resource for population genetic studies. J Med Genet. 2005;42(10):e60–e60. doi: 10.1136/jmg.2005.032987.
  • Hollegaard MV, Grauholm J, Børglum A, et al. Genome-wide scans using archived neonatal dried blood spot samples. BMC Genomics. 2009a;10(1):297. doi: 10.1186/1471-2164-10-297.
  • Hollegaard MV, Grove J, Thorsen P, et al. High-throughput genotyping on archived dried blood spot samples. Genet Test Mol Biomarkers. 2009b;13(2):173–179. doi: 10.1089/gtmb.2008.0073.
  • Hollegaard MV, Thorsen P, Norgaard-Pedersen B, et al. Genotyping whole-genome-amplified DNA from 3- to 25-year-old neonatal dried blood spot samples with reference to fresh genomic DNA. Electrophoresis. 2009c;30(14):2532–2535. doi: 10.1002/elps.200800655.
  • Hollegaard MV, Grove J, Grauholm J, et al. Robustness of genome-wide scanning using archived dried blood spot samples as a DNA source. BMC Genet. 2011;12(1):58. doi: 10.1186/1471-2156-12-58.
  • Auma E, Hall T, Chopra S, et al. Using dried blood spots for a Sero-Surveillance study of maternally derived antibody against group B Streptococcus. Vaccines (Basel). 2023;11(2):357. doi: 10.3390/vaccines11020357.
  • Mei JV, Li L, Rasmussen SA, et al. Effect of specimen storage conditions on newborn dried blood spots used to assess Toxoplasma gondii immunoglobulin M (IgM). Clin Chim Acta. 2011;412(5-6):455–459. doi: 10.1016/j.cca.2010.11.028.
  • He D, Yan Q, Uppal K, et al. Metabolite stability in archived neonatal dried blood spots used for epidemiological research. Am J Epidemiol. 2023;192(10):1720–1730. doi: 10.1093/aje/kwad122.
  • Murphy MSQ, Hawken S, Cheng W, et al. Metabolic profiles derived from residual blood spot samples: a longitudinal analysis. Gates Open Res. 2018;2:28. doi: 10.12688/gatesopenres.
  • Ottosson F, Russo F, Abrahamsson A, et al. Effects of long-term storage on the biobanked neonatal dried blood spot metabolome. J Am Soc Mass Spectrom. 2023;34(4):685–694. doi: 10.1021/jasms.2c00358.
  • Petrick L, Edmands W, Schiffman C, et al. An untargeted metabolomics method for archived newborn dried blood spots in epidemiologic studies. Metabolomics. 2017;13(3):27. doi: 10.1007/s11306-016-1153-z.
  • Yu M, Dolios G, Yong-Gonzalez V, et al. Untargeted metabolomics profiling and hemoglobin normalization for archived newborn dried blood spots from a refrigerated biorepository. J Pharm Biomed Anal. 2020;191:113574. doi: 10.1016/j.jpba.2020.113574.
  • Asrani K, Shaw GM, Rine J, et al. DNA methylome profiling on the infinium HumanMethylation450 array from limiting quantities of genomic DNA from a single, small archived bloodspot. Genet Test Mol Biomarkers. 2017;21(8):516–519. doi: 10.1089/gtmb.2017.0019.
  • Cunningham-Burley S, McCartney DL, Campbell A, et al. Feasibility and ethics of using data from the scottish newborn blood spot archive for research. Commun Med (Lond). 2022;2(1):126. doi: 10.1038/s43856-022-00189-2.
  • Ghantous A, Saffery R, Cros MP, et al. Optimized DNA extraction from neonatal dried blood spots: application in methylome profiling. BMC Biotechnol. 2014;14(1):60. doi: 10.1186/1472-6750-14-60.
  • Ghantous A, Hernandez-Vargas H, Herceg Z. DNA methylation analysis from blood spots: increasing yield and quality for genome-wide and locus-specific methylation analysis. Methods Mol Biol. 2018;1708:605–619. doi: 10.1007/978-1-4939-7481-8_31.
  • Hollegaard MV, Grauholm J, Nørgaard-Pedersen B, et al. DNA methylome profiling using neonatal dried blood spot samples: a proof-of-principle study. Mol Genet Metab. 2013a;108(4):225–231. doi: 10.1016/j.ymgme.2013.01.016.
  • Zar Kyaw T, Yamaguchi S, Imai C, et al. The utility of post-test newborn blood spot screening cards for epigenetic association analyses: association between HIF3A methylation and birth weight-for-gestational age. J Hum Genet. 2019;64(8):795–801. doi: 10.1038/s10038-019-0621-5.
  • Bakhireva LN, Leeman L, Savich RD, et al. The validity of phosphatidylethanol in dried blood spots of newborns for the identification of prenatal alcohol exposure. Alcohol Clin Exp Res. 2014;38(4):1078–1085. doi: 10.1111/acer.12349.
  • Bakhireva LN, Shrestha S, Gutierrez HL, et al. Stability of phosphatidylethanol in dry blood spot cards. Alcohol Alcohol. 2016;51(3):275–280. doi: 10.1093/alcalc/agv120.
  • Henderson LO, Powell MK, Hannon WH, et al. Radioimmunoassay screening of dried blood spot materials for benzoylecgonine. J Anal Toxicol. 1993;17(1):42–47. doi: 10.1093/jat/17.1.42.
  • Spector LG, Hecht SS, Ognjanovic S, et al. Detection of cotinine in newborn dried blood spots. Cancer Epidemiol Biomarkers Prev. 2007;16(9):1902–1905. doi: 10.1158/1055-9965.
  • Yang J, Pearl M, Jacob P, 3rd, et al. Levels of cotinine in dried blood specimens from newborns as a biomarker of maternal smoking close to the time of delivery. Am J Epidemiol. 2013;178(11):1648–1654. doi: 10.1093/aje/kwt182.
  • Di Martino MT, Michniewicz A, Martucci M, et al. EDTA is essential to recover lead from dried blood spots on filter paper. Clin Chim Acta. 2004;350(1-2):143–150. doi: 10.1016/j.cccn.2004.07.019.
  • Funk WE, Waidyanatha S, Chaing SH, et al. Hemoglobin adducts of benzene oxide in neonatal and adult dried blood spots. Cancer Epidemiol Biomarkers Prev. 2008;17(8):1896–1901. doi: 10.1158/1055-9965.EPI-08-0356.
  • Funk WE, McGee JK, Olshan AF, et al. Quantification of arsenic, lead, mercury and cadmium in newborn dried blood spots. Biomarkers. 2013;18(2):174–177. doi: 10.3109/1354750X.2012.750379.
  • Kato K, Wanigatunga AA, Needham LL, et al. Analysis of blood spots for polyfluoroalkyl chemicals. Anal Chim Acta. 2009;656(1–2):51–55. doi: 10.1016/j.aca.2009.10.007.
  • Kim UJ, Kannan K. Method for the determination of iodide in dried blood spots from newborns by high performance liquid chromatography tandem mass spectrometry. Anal Chem. 2018;90(5):3291–3298. doi: 10.1021/acs.analchem.7b04827.
  • Ma W, Kannan K, Wu Q, et al. Analysis of polyfluoroalkyl substances and bisphenol a in dried blood spots by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem. 2013;405(12):4127–4138. doi: 10.1007/s00216-013-6787-3.
  • Björkesten J, Enroth S, Shen Q, et al. Stability of proteins in dried blood spot biobanks. Mol Cell Proteomics. 2017;16(7):1286–1296. doi: 10.1074/mcp.RA117.000015.
  • Dijkstra AM, de Blaauw P, van Rijt WJ, et al. Important lessons on long-term stability of amino acids in stored dried blood spots. Int J Neonatal Screen. 2023;9(3):34. doi: 10.3390/ijns9030034.
  • Klamer A, Skogstrand K, Hougaard DM, et al. Adiponectin levels measured in dried blood spot samples from neonates born small and appropriate for gestational age. Eur J Endocrinol. 2007;157(2):189–194. doi: 10.1530/EJE-06-0710.
  • McGuire JN, Eising S, Wägner AM, et al. Screening newborns for candidate biomarkers of type 1 diabetes. Arch Physiol Biochem. 2010;116(4-5):227–232. doi: 10.3109/13813455.2010.501801.
  • Mihalopoulos NL, Phillips TM, Slater H, et al. Validity and reliability of perinatal biomarkers of adiposity after storage as dried blood spots on paper. Am J Hum Biol. 2011;23(5):717–719. doi: 10.1002/ajhb.21199.
  • Mineyko A, Nettel-Aguirre A, de Jesus P, et al. Association of neonatal inflammatory markers and perinatal stroke subtypes. Neurology. 2020;95(9):e1163–e1173. doi: 10.1212/WNL.0000000000010309.
  • Raha-Chowdhury R, Moore CA, Bradley D, et al. Blood ferritin concentrations in newborn infants and the sudden infant death syndrome. J Clin Pathol. 1996;49(2):168–170. doi: 10.1136/jcp.49.2.168.
  • Samenuk GM, Kelley AR, Perry G, et al. Rapid method towards proteomic analysis of dried blood spots by MALDI mass spectrometry. Clin Mass Spectrom. 2019;12:30–36. doi: 10.1016/j.clinms.2019.03.002.
  • Skogstrand K, Thorsen P, Nørgaard-Pedersen B, et al. Simultaneous measurement of 25 inflammatory markers and neurotrophins in neonatal dried blood spots by immunoassay with xMAP technology. Clin Chem. 2005;51(10):1854–1866. doi: 10.1373/clinchem.2005.052241.
  • Yano Y, Grigoryan H, Schiffman C, et al. Untargeted adductomics of Cys34 modifications to human serum albumin in newborn dried blood spots. Anal Bioanal Chem. 2019;411(11):2351–2362. doi: 10.1007/s00216-019-01675-8.
  • Yeung EH, McLain AC, Anderson N, et al. Newborn adipokines and birth outcomes. Paediatr Perinat Epidemiol. 2015;29(4):317–325. doi: 10.1111/ppe.12203.
  • Durie D, Yeh E, McIntosh N, et al. Quantification of DNA in neonatal dried blood spots by adenine tandem mass spectrometry. Anal Chem. 2018;90(1):801–806. doi: 10.1021/acs.analchem.7b03265.
  • Bassaganyas L, Freedman G, Vaka D, et al. Whole exome and whole genome sequencing with dried blood spot DNA without whole genome amplification. Hum Mutat. 2018;39(1):167–171. doi: 10.1002/humu.23356.
  • Ding Y, Owen M, Le J, et al. Scalable, high quality, whole genome sequencing from archived, newborn, dried blood spots. NPJ Genom Med. 2023;8(1):5. doi: 10.1038/s41525-023-00349-w.
  • Nagy AL, Csáki R, Klem J, et al. Minimally invasive genetic screen for GJB2 related deafness using dried blood spots. Int J Pediatr Otorhinolaryngol. 2010;74(1):75–81. doi: 10.1016/j.ijporl.2009.10.021.
  • Hollegaard MV, Grauholm J, Nielsen R, et al. Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing. Mol Genet Metab. 2013b;110(1-2):65–72. doi: 10.1016/j.ymgme.2013.06.004.
  • Poulsen JB, Lescai F, Grove J, et al. High-quality exome sequencing of whole-genome amplified neonatal dried blood spot DNA. PLoS One. 2016;11(4):e0153253. doi: 10.1371/journal.pone.0153253.
  • Winkel BG, Hollegaard MV, Olesen MS, et al. Whole-genome amplified DNA from stored dried blood spots is reliable in high resolution melting curve and sequencing analysis. BMC Med Genet. 2011;12(1):22. doi: 10.1186/1471-2350-12-22.
  • Needham BL, Hicken MT, Govia IO, et al. Maternal social disadvantage and newborn telomere length in archived dried blood spots from the Michigan neonatal biobank. Biodemography Soc Biol. 2017;63(3):221–235. doi: 10.1080/19485565.2017.1300520.
  • Barco S, Risso FM, Bruschettini M, et al. A validated LC-MS/MS method for the quantification of piperacillin/tazobactam on dried blood spot. Bioanalysis. 2014;6(21):2795–2802. doi: 10.4155/bio.14.205.
  • Rovito R, Warnatz HJ, Kiełbasa SM, et al. Impact of congenital cytomegalovirus infection on transcriptomes from archived dried blood spots in relation to long-term clinical outcome. PLoS One. 2018;13(7):e0200652. doi: 10.1371/journal.pone.0200652.
  • Cunningham S, O’Doherty KC, Sénécal K, et al. Public concerns regarding the storage and secondary uses of residual newborn bloodspots: an analysis of print media, legal cases, and public engagement activities. J Community Genet. 2015;6(2):117–128. doi: 10.1007/s12687-014-0206-0.
  • Zakaria R, Allen KJ, Koplin JJ, et al. Advantages and challenges of dried blood spot analysis by mass spectrometry across the total testing process. EJIFCC. 2016;27(4):288–317.
  • Lehmann S, Delaby C, Vialaret J, et al. Current and future use of “dried blood spot” analyses in clinical chemistry. Clin Chem Lab Med. 2013;51(10):1897–1909.) doi: 10.1515/cclm-2013-0228.
  • Lombardo S, Seedat F, Elliman D, et al. Policy-making and implementation for newborn bloodspot screening in Europe: a comparison between EURORDIS principles and UK practice. Lan Reg Health Eur. 2023;33:100714. doi: 10.1016/j.lanepe.2023.100714.
  • Morrison A, Polisena J, Husereau D, et al. The effect of english-language restriction on systematic review-based meta-analyses: a systematic review of empirical studies. Int J Technol Assess Health Care. 2012;28(2):138–144. doi: 10.1017/S0266462312000086.
  • Bhattacharya K, Wotton T, Wiley V. The evolution of blood-spot newborn screening. Transl Pediatr. 2014;3(2):63–70. doi: 10.3978/j.issn.2224-4336.2014.03.08.
  • Downing M, Pollitt R. Newborn bloodspot screening in the UK – past, present and future. Ann Clin Biochem. 2008;45(Pt 1):11–17. doi: 10.1258/acb.2007.007127.
  • Grüner N, Stambouli O, Ross RS. Dried blood spots–preparing and processing for use in immunoassays and in molecular techniques. J Vis Exp. 2015;(97):e52619. doi: 10.3791/52619.
  • Wilson JMG, Jungner G. Principles and practice of screening for disease. Geneva: WHO; 1968. Available from: http://www.who.int/bulletin/volumes/86/4/07-050112BP.pdf