46
Views
28
CrossRef citations to date
0
Altmetric
Research Article

The Atherogenic Significance of an Elevated Plasma Triglyceride Level

&
Pages 489-516 | Published online: 29 Sep 2008

References

  • The Scandinavian Simvastatin Survival Study Group. Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study. Lancet 1994; 344: 1383–1389.
  • Shepherd J, Cobbe SM, Ford I, et al. for the West of Scotland Coronary Prevention Study Group. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333: 1301–1307.
  • Austin MA. Plasma triglyceride and coronary heart disease. Arterioscler Thromb 1991; 11: 2–14.
  • Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 1996; 3: 213–219.
  • Assmann G, Schulte H von Eckardstein H. Hypertriglyceridemia and elevated lipoprotein (a) are risk factors for major coronary events in middle-aged men. Am J Cardiol 1996; 77: 1179–1184.
  • Shen BW, Scanu AM, Kezdy FJ. Structure of human serum lipoproteins inferred from compositional analysis. Proc Natl Acad Sci USA 1977; 74: 837–841.
  • Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801–809.
  • Guyton JR, Klemp KF. The lipid-rich core region of human atherosclerotic fibrous plaques. Prevalence of small lipid droplets and vesicles by electron microscopy. Am J Pathol 1989; 134: 705–717.
  • Piha M, Lindstedt L Kovanen PT. Fusion of proteolysed low density lipoprotein in the fluid phase: a novel mechanism generating atherogenic lipoprotein particles. Biochemistry 1995; 34: 10120–10129.
  • Rapp JH, Lespine A, Hamilton RL, et al. Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb 1994; 14: 1767–1774.
  • Yla-Herttuala S, Jaakkola O, Ehnholm C, et al. Characterization of two lipopro-teins containing apolipoproteins B and E from lesion-free human aortic intima. J Lipid Res 1988; 29: 563–572.
  • Nordestgaard BG, Tybjaerg-Hansen A Lewis B. Influx in vivo of low density, intermediate density and very low density lipoproteins into aortic intimas of genetically hyperlipidemic rabbits. Roles of plasma concentration, extent of aortic lesion, and lipoprotein particle size as determinants. Arterioscler Thromb 1992; 12: 6–18.
  • Stender S, Zilversmit DB. Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits. Molecular size as a determinant of plasma lipoprotein influx. Arteriosclerosis 1981; 1: 38–49.
  • Fry DL, Haupt MW Pap JM. Effect of endothelial integrity, transmural pressure, and time on the intimal-medial uptake of serum 125I-albumin and 125I-LDL in an in vitro porcine arterial organ-support system. Arterioscler Thromb 1992; 12: 1313–1328.
  • Nordestgaard BG, Tybjaerg-Hansen A. IDL, VLDL, chylomicrons and atherosclerosis. Eur J Epidemiol. 1992; 8: 92–98.
  • Nordestgaard BG, Nielsen LB. Atherosclerosis and arterial influx of lipopro-teins. Curr Opin Lipidolol 1994; 5: 252–257.
  • Nordestesgaard BG. The vascular endothelial barrier — selective retention of lipoproteins. Curr Opin Lipidolol 1996; 7: 269–273.
  • Wootton R, Baskerville P, Turner P, et al. A method for quantifying lipoprotein flux rates between plasma and arterial intima in vivo. Clin Phys Physiol Meas 1987; 4: 596–605.
  • Stender S, Hjelms E. In vivo transfer of cholesterol ester from high- and low-density plasma lipoproteins into human aortic tissue. Arteriosclerosis 1988; 8: 252–262.
  • Nordestgaard BG, Hjelms E, Stender, S, et al. Different efflux pathways for high- and low-density lipoproteins from porcine aortic intima. Arteriosclerosis 1990; 10: 477–485.
  • Nordestgaard BG, Zilversmit DB. Large lipoproteins are excluded from the arterial wall in diabetic cholesterol-fed rabbits. J Lipid Res 1988; 29: 1491–1500.
  • Nordestgaard BG, Stender S Kjeldsen K. Reduced atherogenesis in cholesterol-fed diabetic rabbits. Giant lipoproteins do not enter the arterial wall. Arteriosclerosis 1988; 8: 421–428.
  • Shaikh M, Wootton R, Nordestgaard BG, et al. Quantitative studies of transfer in vivo of low density, Sf 12-60 and Sf 60-400 lipoproteins between plasma and arterial intima in humans. Arterioscler Thromb 1991; 11: 569–577.
  • Mamo JCL, Wheeler JR. Chylomicrons or their remnants penetrate rabbit thoracic aorta as efficiently as smaller macromolecules including low density lipoproteins, high density lipoproteins and albumin. Coron Artery Dis 1994; 5: 695–705
  • Proctor SD, Mamo JCL. Arterial fatty lesions have increased uptake of chylo-micron remnants but not low density lipoproteins. Coron Artery Dis 1996; 7: 239–245.
  • Havel RJ, Kane. Primary dysbetalipoproteinemia: predominance of a specific apoprotein species in triglyceride-rich lipoproteins. Proc Natl Acad Aci USA 1973; 70: 2015–2019.
  • Mahley RW, Rall SC Jr. Type III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotein E in normal and abnormal lipoprotein metabolism. In: Scriver CR, Beaudet AL Sly WS, Valle D, eds. The metabolic and molecular bases of inherited disease. 7th ed. Pp. 1953-1980. New York: McGraw-Hill, Inc, 1995.
  • Breslow JL. Mouse models of atherosclerosis. Science 1996; 272: 685–688.
  • Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation 1979; 60: 473–485.
  • Nordestgaard BG, Wootton R Lewis B. Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo. Molecular size as a determinant of fractional loss from the intima-inner media. Arterioscler Thromb Vasc Biol 1995; 15: 534–542.
  • Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogen-esis. Arterioscler Thromb Vasc Biol 1995; 15: 551–561.
  • Gianturco SH, Bradley WA, Gotto AM, et al. Hypertriglyceridemic very low density lipoproteins induce triglyceride synthesis in mouse peritoneal macroph-ages. J Clin Invest 1982; 70: 168–178.
  • Huff MW, Evans AJ, Sawyez CG, et al. Cholesterol accumulation in J774 macrophages induced by triglyceride-rich lipoproteins: a comparison of VLDL from subjects with types III, IV and V hyperlipoproteinemia. Arterioscler Thromb 1991; 11: 221–233.
  • Evans AJ, Sawyez CG, Wolfe BM, et al. Evidence that cholesteryl ester and triglyceride accumulation in J774 macrophages induced by very low density lipoprotein subfractions occurs by different mechanisms. J Lipid Res 1993; 34: 703–717.
  • Whitman SC, Miller DB, Wolfe BM, et al. Uptake of type III hypertriglyceridemic VLDL by macrophages is enhanced by oxidation, especially after remnant formation. Arterioscler Thromb Vasc Biol 1997; 17: 1707–1715.
  • Koo C, Wernette-Hammond ME, Garcia Z, et al. Uptake of cholesterol-rich remnant lipoproteins by human monocyte-derived macrophages is mediated by low density lipoprotein receptors. J Clin Invest 1988; 81: 1332–1340.
  • Yla-Herttuala S, Rosenfeld ME, Parthasarathy S, et al. Gene expression in macrophage-rich human atherosclerotic lesions: 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest 1991; 87: 1146–1152.
  • Luoma J, Hiltunen T, Sarkioja T, et al. Expression of alpha2-macroglobulin receptor/low density lipoprotein receptor-related protein and scavenger receptor in human atherosclerotic lesions. J Clin Invest 1994; 93: 2014–2021.
  • Daugherty A, Rateri DL. Presence of LDL receptor-related protein/alpha2 mac-roglobulin receptors in macrophages of atherosclerotic lesions from cholesterol-fed New Zealand and heterozygous Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb 1994; 14: 2017–2024.
  • Lupu F, Heim D, Bachman F, et al. Expression of LDL receptor-related protein/ alpha2-macroglobulin receptor in human normal and atherosclerotic arteries. Arterioscler Thromb 1994; 14: 1438–1444.
  • Krieger M, Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem 1994; 63: 601–637.
  • Nykjaer A, Bengtsson-Olivecrona G, Lookene A, et al. The a2-macroglobulin receptor/low density lipoprotein receptor-related protein binds lipoprotein lipase and B-migrating very low density lipoprotein associated with the lipase. J Biol Chem 1993; 268: 15048–15055.
  • Takahashi S, Kawarabayashi Y, Nakai T, et al. Rabbit very low density lipopro-tein receptor: a low density lipoprotein receptor-like protein with distinct ligand specificity. Proc Natl Acad Sci USA 1992; 89: 9252–9256.
  • Nakazato K, Ishibashi T, Shindo J, et al. Expression of very low density lipoprotein receptor mRNA in rabbit atherosclerotic lesions. Am J Pathol 1996; 149: 1831–1838.
  • Multhaupt HAB, Gafveis ME, Kariko K, et al. Expression of very low density lipoprotein receptor in the vascular wall: analysis of human tissues by in situ hybridization and immunochemistry. Am J Pathol 1996; 148: 1985–1997.
  • Wyne KL, Pathak RK, Seabra MC, et al. Expression of the VLDL receptor in endothelial cells. Arterioscler Thromb Vasc Biol 1996; 16: 407–415.
  • Rosenfeld ME, Butler S, Ord VA, et al. Abundant expression of apoprotein E by macrophages in human and rabbit atherosclerotic lesions. Arterioscler Thromb 1993; 13: 1382–1389.
  • Mazzone T. Apolipoprotein E secretion by macrophages: its potential physiological functions. Curr Opin Lipidol 1996; 7: 303–307.
  • Yla-Herttuala S, Lipton BA Rosenfeld ME, et al. Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 1991; 88: 10143–10147.
  • O’Brien KD, Gordon D, Deeb S, et al. Lipoprotein lipase is synthesized by macrophage-derived foam cells in human coronary atherosclerotic plaques. J Clin Invest 1992; 89: 1544–1550.
  • Gianturco SH, Ramprasad MP, Lin AHY, et al. Cellular binding site and membrane binding proteins for triglyceride-rich lipoproteins in human mono-cyte-macrophages and THP-1 monocytic cells. J Lipid Res 1994; 35: 1674–1687.
  • Ramprasad MP, Li R, Bradley WA, et al. Human THP-1 monocyte-macrophage membrane binding proteins: distinct receptor(s) for triglyceride-rich lipopro-teins. Biochemistry 1995; 34: 9126–35.
  • Ramprasad MP, Li R, Gianturco SH, et al. Purification of the human THP-1 monocyte-macrophage triglyceride-rich lipoprotein receptor. Biochem Biophys Res Commun 1995; 210: 491–7.
  • Seo T, St. Clair RW. Heparan sulfate proteoglycans mediate internalization and degradation of b-VLDL and promote cholesterol accumulation by pigeon mac-rophages. J Lipid Res 1997; 38: 765–779.
  • Myers JN, Tabas I, Jones NL, et al. b-Very low density lipoprotein is sequestered in surface-connected tubules in mouse peritoneal macrophages. J Cell Biol 1993; 123: 1389–1402.
  • Mamo JCL, Elsegood CL, Gennat HC, et al. Degradation of chylomicron remnants by macrophages occurs via phagocytosis. Biochemistry 1996; 35: 10210–10214.
  • Krauss RM, Burke DJ. Identification of multiple subclasses of plasma lipopro-teins in normal humans. J Lipid Res 1982; 23: 97–104
  • Austin MA, Krauss RM. Genetic control of low density lipoprotein subclasses. Lancet 1986; 2: 592–594.
  • Austin MA, Breslow JL, Hennekens CH, et al. Low density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 1988; 260: 1917–1921.
  • Austin MA, King MC, Vranizan KM, et al. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 1990; 82: 495–506.
  • Griffin BA, Freeman DJ, Tait GW, et al. Role of plasma triglycerides in the regulation of plasma low density lipoprotein (LDL) subfractions: relative contribution of small dense LDL to coronary heart disease risk. Atherosclerosis 1994; 106: 241–253.
  • Shepherd J, Packard CJ. Triglycerides and coronary risk. Isr J Med Sci 1996; 32: 345–355.
  • Packard CJ, Munro A, Lorimer A, et al. Metabolism of apolipoprotein B in large triglyceride-rich very low density lipoproteins of normal and hypertriglyceridemic subjects. J Clin Invest 1984; 74: 2178–2192.
  • Packard CJ, Shepherd J. Lipoprotein heterogeneity and apolipoprotein B metabolism. Arterioscler Thromb Vasc Biol 1997; 17: 3542–3556.
  • Caslake MJ, Packard CJ, Series JJ, et al. Plasma triglyceride and low density lipoprotein metabolism. Eur J Clin Invest 1992; 22: 96–104.
  • Shepherd J, Packard CJ, Stewart JM, et al. Apolipoprotein A and B (Sf 100-400) metabolism during bezafibrate therapy in hypertriglyceridemic subjects. J Clin Invest 1984; 74: 2164–2177.
  • Dachet C, Cavallero E, Martin C, et al. Effect of gemfibrozil on the concentration and composition of very low density and low density lipoprotein subfractions in hypertriglyceridemic patients. Atherosclerosis 1995; 113: 1–9.
  • Nichols AV, Smith L. Effect of very low density lipoproteins on lipid transfer in incubated serum. J Clin Invest 1965; 6: 206–210.
  • DeGraaf J, Hak-Lemmers HLM, Hectors MPC, et al. Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler Thromb 1991; 11: 298–306.
  • Tribble DL, Holl LG, Wood PD, et al. Variations in oxidative susceptibility among six low density lipoprotein subfractions of different density and particle size. Atherosclerosis 1992; 93: 189–199.
  • Austin MA, Hokanson JE Brunzell JD. Characterization of low density lipopro-tein subclasses: methodologic approaches and clinical relevance. Curr Opin Lipidol 1994; 5: 395–403.
  • Gardner CD, Fortmann SP Krauss RM. Association of small low density lipo-protein particles with the incidence of coronary artery disease in men and women. JAMA 1996; 276: 875–881.
  • Stampfer MJ, Krauss RM, Ma J, et al. A prospective study of triglyceride level, low density lipoprotein particle diameter and risk of myocardial infarction. JAMA 1996; 276: 882–888.
  • Lamarche B, Tchernof A, Moorjani S, et al. Small, dense low-density lipopro-tein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. Circulation 1997; 95: 69–75.
  • Deckelbaum RJ, Granot E, Oschry R, et al. Plasma triglyceride determines structure composition in low and high density lipoproteins. Arteriosclerosis 1984; 4: 225–231.
  • Rao SN, Magill PJ, Miller NE, et al. Plasma high density lipoprotein metabolism in subjects with primary hypertriglyceridemia: altered metabolism of apoproteins A-I and A-II. Clin Sci 1980; 59: 359–367.
  • Fidge N, Nestel P, Ishikawa T, et al. Turnover of apoproteins A-I and A-II of high density lipoprotein and the relationship to other lipoproteins in normal and hyperlipidemic individuals. Metabolism 1980; 29: 643–653.
  • Schaefer EJ, Zech LA, Jenkins LL, et al. Human apolipoprotein A-I and A-II metabolism. J Lipid Res 1982; 23: 850–862.
  • Saku K, Gartside PS, Hynd BA, et al. Apolipoprotein A-I and A-II metabolism in patients with primary high density lipoprotein deficiency associated with familial hypertriglyceridemia. Metabolism Clin Exp 1985; 34: 754–764.
  • Brinton EA, Eisenberg S Breslow JL. Increased apoA-I and apo A-II fractional catabolic rate in patients with low high density lipoprotein cholesterol levels with or without hypertriglyceridemia. J Clin Invest 1991; 87: 536–544.
  • Brinton EA, Eisenberg S, Breslow JL. Human HDL cholesterol levels are determined by apo A-I fractional catabolic rate, which correlates inversely with estimates of HDL particle size. Arterioscler Thromb 1994; 14: 707–720.
  • Le NA, Ginsberg HN. Heterogeneity of apolipoprotein A-I turnover in subjects with reduced concentrations of plasma high density lipoprotein cholesterol. Metabolism 1988; 37: 614–617.
  • Gylling H, Vega GL Grundy SM. Physiologic mechanisms for reduced apolipoprotein A-I concentrations associated with low levels of high density lipoprotein cholesterol in patients with normal plasma lipids. J Lipid Res 1992; 33: 1527–1539.
  • Hodis HN, Mack WJ. Triglyceride-rich lipoproteins and the progression of coronary artery disease. Curr Opin Lipidol 1996; 6: 209–214.
  • Brensike JF, Levy RI, Kelsey SF, et al. Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: results of the NHLBI type II coronary intervention study. Circulation 1984; 69: 313–324.
  • Krauss RM, Lindgren FT, Williams PT, et al. Intermediate density lipoproteins and progression of coronary artery disease in hypercholesterolemic men. Lancet 1987; 2: 62–66.
  • Blankenhorn DH, Nessim SA, Johnson RL, et al. Beneficial effects of combined colestipol/niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 1987; 257: 3233–3240.
  • Blankenhorn DH, Alaupovic P, Wickham E, et al. Prediction of angiographic change in native human coronary arteries and aortocoronary bypass grafts: Lipid and nonlipid factors. Circulation 1990; 81: 470–476.
  • Wang CS, McConathy WJ, Kloer HU, et al. Modulation of lipoprotein lipase activity by apolipoproteins: Effect of apolipoprotein C-III. J Clin Invest 1985; 75: 384–390.
  • Windler E, Chao Y Havel RJ. Regulation of the hepatic uptake of triglyceride-rich lipoproteins in the rat: opposing effects of homologous apolipoprotein E and individual C apoproteins. J Biol Chem 1980; 255: 8303–8307.
  • Kowal RC, Herz J, Weisgraber KH, et al. Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J Biol Chem 1990; 265: 10771–10779.
  • de Silva HV, Lauer SJ, Wang J, et al. Overexpression of human apolipoprotein C-III in transgenic mice results in an accumulation of apolipoprotein B48 remnants that is corrected by excess apolipoprotein E. J Biol Chem 1994; 269: 2324–2335.
  • Blankenhorn DH, Selzer RH, Crawford DW, et al. Beneficial effects of colestipol-niacin therapy on the common carotid artery: two- and four-year reduction of intima-media thickness measured by ultrasound. Circulation 1993; 88: 20–28.
  • Blankenhorn DH, Azen SP, Kramsch DM, et al. Results and comparative clinical significance of the Monitored Atherosclerosis Regression Study (MARS). Ann Intern Med 1993; 119: 969–976.
  • Hodis HN, Mack WJ, Azen SP, et al. Triglyceride- and cholesterol-rich lipopro-teins have a differential effect on mild/moderate and severe lesion progression as assessed by quantitative coronary angiography in a controlled trial of lovastatin. Circulation 1994; 90: 42–49.
  • Alaupovic P, Mack WJ, Knight-Gibson C, et al. The role of triglyceride-rich lipoprotein families in the progression of atherosclerotic lesions as determined by sequential coronary angiography from a controlled clinical trial. Arterioscler Thromb Vasc Biol 1997; 17: 715–722.
  • Alaupovic P, Knight-Gibson C, Wang CS, et al. Isolation and characterization of an apoA-II-containing lipoprotein (LpA-II:B complex) from plasma very low density lipoproteins of patients with Tangier disease and type V hyper-lipoproteinemia. J Lipid Res 1991; 32: 9–19.
  • Mack WJ, Krauss RM, Hodis HN. Lipoprotein subclasses in the Monitored Atherosclerosis Regression Study (MARS): treatment effects and relation to coronary angiographic progression. Arterioscler Thromb Vasc Biol 1996; 16: 697–704.
  • Phillips NR, Waters D Havel RJ. Plasma lipoproteins and progression of coronary artery disease evaluated by angiography and clinical events. Circulation 1993; 88: 2762–2770.
  • Ericsson CG, Hamsten A, Nilsson J, et al. Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 1996; 347: 849–53.
  • Reardon MF, Nestel PJ, Craig IH, et al. Lipoprotein predictors of the severity of coronary artery disease in men and women. Circulation 1985; 71: 881–888.
  • Steiner G, Schwartz L, Shumak S, et al. The association of increased levels of intermediate density lipoproteins with smoking and with coronary artery disease. Circulation 1987; 75: 124–130.
  • Tatami R, Mabuchi H, Ueda K, et al. Intermediate density lipoprotein and cholesterol-rich very low density lipoprotein in angiographically determined coronary artery disease. Circulation 1981; 64: 1174–1184.
  • Kameda K, Matsuzawa Y, Kubo M, et al. Increased frequency of lipoprotein disorders similar to type III hyperlipoproteinemia in survivors of myocardial infarction in Japan. Atherosclerosis 1984; 51: 241–249.
  • Tkac I, Kimball BP, Lewis G, et al. The severity of coronary atherosclerosis in type 2 diabetes mellitus is related to the number of circulating triglyceride-rich lipoprotein particles. Arterioscler Thromb Vasc Biol 1997; 17: 3633–3638.
  • Simons LA, Dwyer T, Simons J, et al. Chylomicrons and chylomicron remnants in coronary artery disease: a case-control study. Atherosclerosis 1987; 65: 181–189.
  • Groot PH, van Stiphout WA, Krauss XH, et al. Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arterioscler Thromb 1991; 11: 653–662.
  • Simpson HS, Williamson CM, Olivecrona T, et al. Postprandial lipemia, fenofibrate and coronary artery disease. Atherosclerosis 1990; 85: 193–202.
  • Patsch JR, Miesenbock G, Hopferwieser T, et al. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb 1992; 12: 1336–1345.
  • Braun D, Gramlich A, Brehme U, et al. Postprandial lipemia after a moderate fat challenge in normolipidemic men with and without coronary artery disease. J Cardiovasc Risk 1997; 4: 143–149.
  • Karpe F, Steiner G, Uffelman K, et al. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis 1994; 106: 83–97.
  • Meyer E, Westerveld HT, de Ruyter-Meijstek FC, et al. Abnormal postprandial apolipoprotein B48 and triglyceride responses in normolipidemic women with greater than 70% stenotic coronary artery disease: a case-control study. Atherosclerosis 1996; 124: 221–235.
  • Lewis GF, Steiner G. Hypertriglyceridemia and its metabolic consequences as a risk factor for atherosclerotic cardiovascular disease in non-insulin-dependent diabetes mellitus. Diabetes Metab Rev 1996; 12: 37–56.
  • Attman PO, Samuelson O Alaupovic P. Diagnosis and classification of dyslipidemia in renal disease. Blood Purif 1996; 14: 49–57.
  • Kamanna VS, Bassa BV Kirschenbaum MA. Atherogenic lipoproteins and human disease: extending concepts beyond the heart to the kidney. Curr Opin Nephrol Hypertensi 1977; 6: 205–211.
  • Davignon J, Gregg RE Sing CF. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 1988; 8: 1–21.
  • Ooi TC, Simo IE Yakichuk JA. Delayed clearance of postprandial chylomicrons and their remnants in the hypoalphalipoproteinemia and mild hypertriglyceridemia syndrome. Arterioscler Thromb 1992; 12: 1184–1190.
  • Simo IE, Yakichuk JA Ooi TC. Effect of gemfibrozil and lovastatin on postprandial lipoprotein clearance in the hypoalphalipoproteinemia and hyper-triglyceridemia syndrome. Atherosclerosis 1993; 100: 55–64.
  • Castelli WP. Epidemiology of triglycerides: a view from Framingham. Am J Cardiol 1992; 70: 3H-9H.
  • Genest JJ Jr., Martin-Munley SS, McNamara JR, et al. Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation 1992; 85: 2025–2033.
  • Assman G, Schulte H. Relation of high density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Am J Cardiol 1992; 70: 733–737.
  • Manninen V, Tnekanen L, Koskinen P, et al. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study: implications for treatment. Circulation 1992; 85: 37–45
  • Cabezas MC, de Bruin TW, Jansen H, et al. Impaired chylomicron remnant clearance in familial combined hyperlipidemia. Arterioscler Thromb 1993; 13: 804–814.
  • Cabezas MC, Erkelens DW, Kock LA, et al. Postprandial apolipoprotein B100 and B48 metabolism in familial combined hyperlipidemia before and after reduction of fasting plasma triglycerides. Eur J Clin Invest 1994; 24: 669–678.
  • Dejager S, Bruckert E Chapman MJ. Dense low density lipoprotein subspecies with diminished oxidative resistance predominate in combined hyperlipidemia. J Lipid Res 1993; 34: 295–308.
  • Hokanson JE, Austin MA, Zambon A, et al. Plasma triglyceride and LDL heterogeneity in familial combined hyperlipidemia. Arterioscler Thromb 1993; 13: 427–434.
  • Bredie SJ, Kiemeney LA, de Haan AF, et al. Inherited susceptibility determines the distribution of dense low-density lipoprotein subfraction profiles in familial combined hyperlipidemia. Am J Hum Genet 1996; 58: 812–22.
  • Connelly PW, Maguire G, Lee M, et al. Plasma lipoproteins in familial hepatic lipase deficiency. Arteriosclerosis 1990; 10: 40–48.
  • Hegele RA, Little JA, Vezina C, et al. Hepatic lipase deficiency: clinical, biochemical and molecular genetic characteristics. Arterioscler Thromb 1993; 13: 720–728.
  • Huff MW, Sawyez CG, Connelly PW, et al. b-VLDL in hepatic lipase deficiency induces apoE-mediated cholesterol ester accumulation in macrophages. Arterioscler Thromb 1993; 13: 1282–1290.
  • Nakajima K, Saito T, Tamura A, et al. Cholesterol in remnant-like lipoproteins in human serum using monoclonal anti apo B100 and anti apo AI immunoaffinity mixed gels. Clin Chim Acta 1993; 223: 53–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.