2,289
Views
105
CrossRef citations to date
0
Altmetric
Original Articles

Lactic Acid Bacteria as a Cell Factory for the Delivery of Functional Biomolecules and Ingredients in Cereal-Based Beverages: A Review

, , , &

REFERENCES

  • Adebawo, O.O., Akingbala, J.O., Ruiz-Barba, J.L. and Osilesi, O. (2000). Utilization of high lysine-producing strains of Lactobacillus plantarum as starter culture for nutritional improvement of ogi. World J. Microbiol. Biotechnol. 16:451–455.
  • Agarry, O.O., Nkama, I. and Akoma, O. (2010). Production of Kunun-zaki (A Nigerian fermented cereal beverage) using starter culture. Int. Res. J. Microbiol. 2:018–025.
  • A.G.M. Foods Pty, L. (2011). Grainfields Australia Probiotic Products. Ltd..
  • Andlid, T.A., Veide, J. and Sandberg, A.S. (2004). Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae. Int. J. Food Microbiol. 97:157–169.
  • Angelov, A., Gotcheva, V., Kuncheva, R. and Hristozova, T. (2006). Development of a new oat-based probiotic drink. Int. J. Food Microbiol. 112:75–80.
  • Arne, H. (2002). Frequency of cow's milk allergy in childhood. Ann Allergy Asthma Immunol. 89:33–37.
  • Arvidsson, T., Danielsson, B., Forsberg, P., Gillberg, C., Johansson, M. and Kjellgren, G. (1997). Autism in 3–6-year-old children in a suburb of goteborg, Sweden. Autism. 1:163–173.
  • Ayalew, A., Fehrmann, H., Lepschy, J., Beck, R. and Abate, D. (2006). Natural occurrence of mycotoxins in staple cereals from Ethiopia. Mycopathologia. 162:57–63.
  • Baird, G., Charman, T., Baron-Cohen, S., Cox, A., Swettenham, J., Wheelwright, S. and Drew, A. (2000). A screening instrument for Autism at 18 months of age: A 6-year follow-up study. J. A. Aca. Child Adol. Psyc. 39:694–702.
  • Banigo, E.O. I. and Muller, H.G. (1972). Manufacture of ogi (a Nigerian fermented cereal porridge): Comparative evaluation of corn, sorghum and millet. Can. Inst. Food Sci. Technol. 5:217.
  • Batish, V.K., Grover, S. and Lal, R. (1989). Screening lactic starter cultures for antifungal activity. Cultured Dairy Products J. 24:21–25.
  • Batish, V.K., Roy, U., Lal, R. and Grover, S. (1997). Antifungal attributes of lactic acid bacteria: A review. Crit. Rev. Biotechnol. 17:209–225.
  • Belakova, S., Benesova, K., Mikulikova, R. and Svoboda, Z. (2011). Determination of ochratoxin A in brewing materials and beer by ultraperformance liquid chromatography with fluorescence detection. Food Chem. 126:321–325.
  • Bengmark, S. and Gil, Á. (2006). Control bioecológico y nutricional de la enfermedad: Prebióticos, probióticos y simbióticos. Nutrición Hospital. 21:73–86.
  • Beuchat, L.R. (2008). Indigenous fermented foods. In: Biotechnology Set, pp. 505–559. Weinheim, Germany: Wiley-VCH Verlag GmbH.
  • Blandino, A., Al-Aseeri, M.E., Pandiella, S.S., Cantero, D. and Webb, C. (2003). Cereal-based fermented foods and beverages. Food Res. Int. 36:527–543.
  • Bohn, L., Meyer, A.S. and Rasmussen, S.K. (2008). Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. J. Zhejiang Univ. Sci. B. 9:165–191.
  • Boling, M.B. and Eisner, N. (1982). Bogobe: Sorghum porridge of Botswana. : International Symposium on Sorghum Grain Quality, India. Patancheru 502 324, A.P, 28–31 October 1981, pp. 32–35.
  • Botes, A., Todorov, S.D., von Mollendorff, J.W., Botha, A. and Dicks, L.M. T. (2007). Identification of lactic acid bacteria and yeast from boza. Process Biochem. 42:267–270.
  • Bresler, G., Brizzio, S.B. and Vaamonde, G. (1995). Mycotoxin-producing potential of fungi isolated from Amaranth seeds in Argentina. Int. J. Food Microbiol. 25:101–108.
  • Brune, M., Rossanderhulten, L., Hallberg, L., Gleerup, A. and Sandberg, A.S. (1992). Iron-absorption from bread in humans: Inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. J. Nutr. 122:442–449.
  • Bullerman, L.B. and Bianchini, A. (2007). Stability of mycotoxins during food processing. Int. J. Food Microbiol. 119:140–146.
  • Calo-Mata, P., Arlindo, S., Boehme, K., de Miguel, T., Pascoal, A. and Barros-Velazquez, J. (2008). Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food Bioprocess Technol. 1:43–63.
  • Capozzi, V., Menga, V., Digesu, A.M., De Vita, P., van Sinderen, D., Cattivelli, L., Fares, C. and Spano, G. (2011). Biotechnological production of vitamin B2-enriched bread and pasta. J. Agric. Food Chem. 59:8013–8020.
  • Cascella, N.G., Kryszak, D., Bhatti, B., Gregory, P., Kelly, D.L., Mc Evoy, J.P., Fasano, A. and Eaton, W.W. (2011). Prevalence of celiac disease and gluten sensitivity in the United States clinical antipsychotic trials of intervention effectiveness study population. Schizophrenia Bull. 37:94–100.
  • Castellano, P., Belfiore, C., Fadda, S. and Vignolo, G. (2008). A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina. Meat Sci. 79:483–499.
  • Chakrabarti, S. and Fombonne, E. (2001). Pervasive developmental disorders in preschool children. JAMA. 285:3093–3099.
  • Charalampopoulos, D., Pandiella, S.S. and Webb, C. (2002a). Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates. J. Appl. Microbiol. 92:851–859.
  • Charalampopoulos, D., Pandiella, S.S. and Webb, C. (2003). Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. Int. J. Food Microbiol. 82:133–141.
  • Charalampopoulos, D., Wang, R., Pandiella, S.S. and Webb, C. (2002b). Application of cereals and cereal components in functional foods: A review. Int. J. Food Microbiol. 79:131–141.
  • Chung, T.C., Axelsson, L., Lindgren, S.E. and Dobrogosz, W.J. (1989). In vitro studies on reuterin synthesis by lactobacillus reuteri. Microb. Ecol. Health D. 2:137–144.
  • Coallier-Ascah, J. and Idziak, E.S. (1985). Interaction between Streptococcus lactis and Aspergillus flavus on production of aflatoxin. Appl. Environ. Microbiol. 49:163–167.
  • Coda, R., Rizzello, C.G., Trani, A. and Gobbetti, M. (2011). Manufacture and characterization of functional emmer beverages fermented by selected lactic acid bacteria. Food Microbiol. 28:526–536.
  • Coloretti, F., Carri, S., Armaforte, E., Chiavari, C., Grazia, L. and Zambonelli, C. (2007). Antifungal activity of lactobacilli isolated from salami. Fems Microbiol. Lett. 271:245–250.
  • Corsetti, A., Gobbetti, M., Rossi, J. and Damiani, P. (1998). Antimould activity of sourdough lactic acid bacteria: Identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl. Microbiol. Biotechnol. 50:253–256.
  • Cross, M.L., Stevenson, L.M. and Gill, H.S. (2001). Anti-allergy properties of fermented foods: An important immunoregulatory mechanism of lactic acid bacteria? Int. Immunopharmacol. 1:891–901.
  • Dal Bello, F., Clarke, C.I., Ryan, L.A. M., Ulmer, H., Schober, T.J., Strom, K., Sjogren, J., van Sinderen, D., Schnurer, J. and Arendt, E.K. (2007). Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J. Cereal Sci. 45:309–318.
  • Dalié, D.K. D., Deschamps, A.M. and Richard-Forget, F. (2010). Lactic acid bacteria—Potential for control of mould growth and mycotoxins: A review. Food Control. 21:370–380.
  • De Angelis, M., Gallo, G., Corbo, M.R., McSweeney, P.L. H., Faccia, M., Giovine, M. and Gobbetti, M. (2003). Phytase activity in sourdough lactic acid bacteria: Purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int. J. Food Microbiol. 87:259–270.
  • de Valdez, G.F., Gerez, C.L., Torino, M.I. and Rollán, G. (2010). New trends in cereal-based products using lactic acid bacteria. In: Biotechnology of Lactic Acid Bacteria: Novel Applications, p. 393. Mozzi, F., Raya, R.R. and Vignolo, G.M. (Eds.), John Wiley and Sons, Iowa, USA.
  • Del Prete, V., Rodriguez, H., Carrascosa, A.V., de las Rivas, B., Garcia-Moruno, E. and Munoz, R. (2007). In vitro removal of ochratoxin A by wine lactic acid bacteria. J. Food Prot. 70:2155–2160.
  • Di Cagno, R., Rizzello, C.G., De Angelis, M., Cassone, A., Giuliani, G., Benedusi, A., Limitone, A., Surico, R.F. and Gobbetti, M. (2008). Use of selected sourdough strains of Lactobacillus for removing gluten and enhancing the nutritional properties of gluten-free bread. J. Food Prot. 71:1491–1495.
  • Dlusskaya, E., Jansch, A., Schwab, C. and Ganzle, M.G. (2008). Microbial and chemical analysis of a kvass fermentation. Eur. Food Res. Technol. 227:261–266.
  • D’Mello, J.P. F. and MacDonald, A.M. C. (1997). Mycotoxins. Animal Feed Sci. Technol. 69:155–166.
  • D’Mello, J.P. F., Placinta, C.M. and Macdonald, A.M. C. (1999). Fusarium mycotoxins: A review of global implications for animal health, welfare and productivity. Animal Feed Sci. Technol. 80:183–205.
  • Dols, M., Simeon, M.R., Willemot, R.M., Vignon, M.R. and Monsan, P.F. (1997). Structural characterization of the maltose acceptor-products synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. Carbohydrate Res. 305:549–559.
  • Doran, P.J. and Briggs, D.E. (1993). Microbes and grain germination. J. I. Brewing. 99:165–170.
  • Đorđević, T.M., Šiler-Marinković, S.S. and Dimitrijević-Branković, S.I. (2010). Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem. 119:957–963.
  • Dortu, C. and Thonart, P. (2009). Bacteriocins from lactic acid bacteria: Interest for food products biopreservation. Biotechnologie Agronomie Societe Et Environnement. 13:143–154.
  • Edema, M.O. and Sanni, A.I. (2008). Functional properties of selected starter cultures for sour maize bread. Food Microbiol. 25:616–625.
  • Edwards, C. (2003). Mahewu-where to for Africa's energy drink? South African Food Rev. 30:25–27.
  • Ekundayo, J.A. (1969). The production of pito, a Nigerian fermented beverage. Int. J. Food Sci. Technol. 4:217–225.
  • El-Ghaish, S., Ahmadova, A., Hadji-Sfaxi, I., El Mecherfi, K.E., Bazukyan, I., Choiset, Y., Rabesona, H., Sitohy, M., Popov, Y.G., Kuliev, A.A., Mozzi, F., Chobert, J.-M. and Haertlé, T. (2011). Potential use of lactic acid bacteria for reduction of allergenicity and for longer conservation of fermented foods. Trends Food Sci. Technol. 22:509–516.
  • El-Nezami, H.S., Chrevatidis, A., Auriola, S., Salminen, S. and Mykkanen, H. (2002a). Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Addit. Contam. 19:680–686.
  • El-Nezami, H.S., Haskard, C., Salminen, E., Mykknen, H., Ahokas, J. and Salminen, S. (2002b). Lactic acid bacteria and bifidobacteria can reduce dietary exposure to aflatoxins. Br. J. Nutr. 88:S115–S116.
  • El-Nezami, H.S., Kankaanpaa, P., Salminen, S. and Ahokas, J. (1998). Physicochemical alterations enhance the ability of dairy strains of lactic acid bacteria to remove aflatoxin from contaminated media. J. Food Prot. 61:466–468.
  • El-Nezami, H., Polychronaki, N., Lee, Y.K., Haskard, C., Juvonen, R., Salminen, S. and Mykkanen, H. (2004). Chemical moieties and interactions involved in the binding of zearalenone to the surface of Lactobacillus rhamnosus strains GG. J. Agric. Food Chem. 52:4577–4581.
  • El-Nezami, H., Polychronaki, N., Salminen, S. and Mykkanen, H. (2002c). Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative alpha-zearalenol. Appl. Environ. Microbiol. 68:3545–3549.
  • Falguni, P., Shilpa, V.I. J. and Mann, B. (2010). Production of proteinaceous antifungal substances from Lactobacillus brevis NCDC 02. Int. J. Dairy Technol. 63:70–76.
  • Faparusi, S.I., Olofinboba, M.O. and Ekundayo, J.A. (1973). The microbiology of burukutu beer. Z. Allgemeine Mikrobiol. 13:563–568.
  • Fasano, A. (2010). Gluten sensitivity baffles celiac disease specialists. In: Gastroenterology & Endoscopy News, p. 28. McMahon, USA.
  • Feldman, S.R. (2011). Monitoring psoriasis patients being treated with tumour necrosis factor inhibitors: Use your judgment. Bri. J. Derm. 165:229–230.
  • Florianowicz, T. (2001). Antifungal activity of some microorganisms against Penicillium expansum. Eur. Food Res. Technol. 212:282–286.
  • Food and Drug Administration. (1997). Food labeling: Health claims; Soluble fiber from whole oats and risk of coronary heat disease. Federal Register. 62:15343–14344.
  • Fuchs, S., Sontag, G., Stidl, R., Ehrlich, V., Kundi, M. and Knasmuller, S. (2008). Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food Chem. Toxicol. 46:1398–1407.
  • Gadaga, T.H., Mutukumira, A.N., Narvhus, J.A. and Feresu, S.B. (1999). A review of traditional fermented foods and beverages of Zimbabwe. Int. J. Food Microbiol. 53:1–11.
  • Galvez, A., Lopez, R.L., Abriouel, H., Valdivia, E. and Ben Omar, N. (2008). Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 28:125–152.
  • Geoffrey, C.-P. (1994). Fermented foods a world perspective. Food Res. Int. 27:253–257.
  • Gerez, C.L., Torino, M.I., Rollan, G. and de Valdez, G.F. (2009). Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control. 20:144–148.
  • Gobbetti, M. and Corsetti, A. (1997). Lactobacillus sanfrancisco a key sourdough lactic acid bacterium: A review. Food Microbiol. 14:175–187.
  • Gobbetti, M., Corsetti, A. and Rossi, J. (1994). The sourdough microflora. Interactions between lactic acid bacteria and yeasts: Metabolism of amino acids. World J. Microbiol. Biotechnol. 10:275–279.
  • Gourama, H. and Bullerman, L.B. (1997). Anti-aflatoxigenic activity of Lactobacillus casei pseudoplantarum. Int. J. Food Microbiol. 34:131–143.
  • Graham, G., MacLean, W.J., Morales, E., Hamaker, B., Kirleis, A., Mertz, E. and Axtell, J. (1986). Digestibility and utilization of protein and energy from Nasha, a traditional Sudanese fermented sorghum weaning food. J. Nutr. 116:978–984.
  • Greiner, R. and Konietzny, U. (2006). Phytase for food application. Food Technol. Biotechnol. 44:125–140.
  • Gupta, S., Cox, S. and Abu-Ghannam, N. (2010). Process optimization for the development of a functional beverage based on lactic acid fermentation of oats. Biochem. Eng. J. 52:199–204.
  • Haikara, A., Uljas, H. and Suurnëkki, A. (1993). Lactic starter cultures in malting: A novel solution to gushing problems. In: European Brewery Convention, Oxford, UK, pp. 164–172.
  • Han, E.-H., Lee, T.-S., Noh, B.-S. and Lee, D.-S. (1998). Quality characteristics in mash of takju prepared by using different nuruk during fermentation. Korean J. Food Sci. Technol. 29:555–562.
  • Hancioğlu, Ö. and Karapinar, M. (1997). Microflora of Boza, a traditional fermented Turkish beverage. Int. J. Food Microbiol. 35:271–274.
  • Haskard, C.A., El-Nezami, H.S., Kankaanpaa, P.E., Salminen, S. and Ahokas, J.T. (2001). Surface binding of aflatoxin B-1 by lactic acid bacteria. Appl. Environ. Microbiol. 67:3086–3091.
  • Hassan, Y. and Bullerman, L.I. B. (2008). Antifungal activity of lactobacillus paracasei subsp. tolerans against Fusarium proliferatum and Fusarium graminearum in a liquid culture setting. J. Food Prot. 71:2213–2216.
  • Hegrova, B., Farkova, M., Macuchova, S., Havel, J. and Preisler, J. (2009). Investigation of relationships between barley stress peptides and beer gushing using SDS-PAGE and MS screening. J. Sep. Sci. 32:4247–4253.
  • Heidenreich, P.A., Trogdon, J.G., Khavjou, O.A., Butler, J., Dracup, K., Ezekowitz, M.D., Finkelstein, E.A., Hong, Y., Johnston, S.C., Khera, A., Lloyd-Jones, D.M., Nelson, S.A., Nichol, G., Orenstein, D., Wilson, P.W. F. and Woo, Y.J. (2011). Forecasting the future of cardiovascular disease in the United States. Circulation. 123:933–944.
  • Hill, J.E. (1989). Method and Inoculant for Preserving Agricultural Products for Animal Feed. Pioneer Hi-Bred International, I. (Ed.), Pioneer Hi-Bred International, Inc., USA.
  • Hippeli, S. and Elstner, E.F. (2002). Are hydrophobins and/or non-specific lipid transfer proteins responsible for gushing in beer? New hypotheses on the chemical nature of gushing inducing factors. Z. Naturforsch. C. 57:1–8.
  • Hischenhuber, C., Crevel, R., Jarry, B., MÄKi, M., Moneret-Vautrin, D.A., Romano, A., Troncone, R. and Ward, R. (2006). Review article: Safe amounts of gluten for patients with wheat allergy or coeliac disease. Alimentary Pharmacol. Ther. 23:559–575.
  • Holzapfel, W.H. (1997). Use of starter cultures in fermentation on a household scale. Food Control. 8:241–258.
  • Holzapfel, W.H., Geisen, R. and Schillinger, U. (1995). Biological Preservation of Foods with Reference to Protective Cultures, Bacteriocins and Food-Grade Enzymes. Int. J. Food Microbiol. 24:343–362.
  • Hugenholtz, J. (2008). The lactic acid bacterium as a cell factory for food ingredient production. Int. Dairy J. 18:466–475.
  • Joint Health Claims Initiative. Final report on a generic health claim for oats and reduction of blood cholesterol. http://www.jhci.org.uk/. United Kingdom Accessed December 10, 2013.
  • Kadesjö, B., Gillberg, C. and Hagberg, B. (1999). Brief report: Autism and Asperger syndrome in even-year-old children: A total population study. J. Autism Develop. Disorders. 29:327–331.
  • Katina, K., Laitila, A., Juvonen, R., Liukkonen, K.H., Kariluoto, S., Piironen, V., Landberg, R., Aman, P. and Poutanen, K. (2007). Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol. 24:175–186.
  • Kayodé, A.P. P., Hounhouigan, D.J., Nout, M.J. R. and Niehof, A. (2007). Household production of sorghum beer in Benin: Technological and socio-economic aspects. Int. J. Consumer Stud. 31:258–264.
  • Kazanas, N. and Fields, M.L. (1981). Nutritional improvement of Sorghum by fermentation. J. Food Sci. 46:819–821.
  • Kerovuo, J. and Tynkkynen, S. (2000). Expression of Bacillus subtilis phytase in Lactobacillus plantarum 755. Lett. Appl. Microbiol. 30:325–329.
  • Khetarpaul, N. and Chauhan, B.M. (1989). Effect of fermentation on protein, fat, minerals and thiamine content of pearl millet. Plant Foods Hum. Nutr. (Formerly Qualitas Plantarum). 39:169–177.
  • King, S.W., Fowler, G.G. and Vandenberg, P.A. (1990). Method for inhibiting fungi. In: Book. Microlife Technics, Inc., Sarasota, FL, USA.
  • Kingamkono, R., Sjögren, E., Svanberg, U. and Kaijser, B. (1995). Inhibition of different strains of enteropathogens in a lactic-fermenting cereal gruel. World J. Microbiol. Biotechnol. 11:299–303.
  • Kivanç, M., Yilmaz, M. and Cakir, E. (2011). Isolation and identifi cation of lactic acid bacteria from boza, and their microbial activity against several reporter strains. Turk. J. Biol. 35:313–324.
  • Kreisz, S., Arendt, E.K., Hübner, F. and Zarnkov, M. (2008). Cereal-based gluten-free functional drinks. Food Sci. Technol. Int. Ser. 373–391.
  • Lahtinen, S.J., Haskard, C.A., Ouwehand, A.C., Salminen, S.J. and Ahokas, J.T. (2004). Binding of aflatoxin B-1 to cell wall components of Lactobacillus rhamnosus strain GG. Food Addit. Contam. 21:158–164.
  • Laitila, A., Alakomi, H.L., Raaska, L., Mattila-Sandholm, T. and Haikara, A. (2002). Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. J. Appl. Microbiol. 93:566–576.
  • Laitila, A., Sweins, H., Vilpola, A., Kotaviita, E., Olkku, J., Home, S. and Haikara, A. (2006). Lactobacillus plantarum and Pediococcus pentosaceus starter cultures as a tool for microflora management in malting and for enhancement of malt processability. J. Agric. Food Chem. 54:3840–3851.
  • Laitila, A., Tapani, K.M. and Haikara, A. (1997). Lactic acid starter cultures for the prevention of the formation of Fusarium mycotoxins during malting. In: European Brewery Convention Congress. Maastricht, IRL Press, Oxford.
  • Lancova, K., Hajslova, J., Poustka, J., Krplova, A., Zachariasova, M., Dostalek, P. and Sachambula, L. (2008). Transfer of Fusarium mycotoxins and ‘masked’ deoxynivalenol (deoxynivalenol-3-glucoside) from field barley through malt to beer. Food Addit. Contam Part A Chem. Anal. Control Expo. Risk Assess. 25:732–744.
  • Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A. and Gobbetti, M. (2000). Purification and characterization of novel antifungal compounds from the Sourdough Lactobacillus plantarum strain 21B. Appl. Environ. Microbiol. 66:4084–4090.
  • Lefyedi, M.L. and , J. R. N. (2007). Control of the growth of coliforms and moulds in sorghum malting by bacterial and yeast cultures. J. Inst. Brew. 113:123–129.
  • Leroy, F. and De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15:67–78.
  • Leszczyńska, J., Diowksz, A., Łącka, A., Bryszewska, M., Wolska, K. and Ambroziak, W. (2009). Decrease of wheat flour allergenicity via lactic acid fermentation. Food Agric. Immunol. 20:139–145.
  • Liske, R.B., Niessen, L. and Vogel, R.F. (2000). Potential of lactic acid bacteria to reduce the growth of Fusarium culmorum in the malting process. Mycotoxin Res. 16:62–65.
  • Lockhart, H.B. and Hurt, D.H. (1986). Nutrition of oats. In: Oats: Chemistry and Technology, pp. 297–308. Webster, F.H. (Ed.), AACC, St. Paul.
  • Lomer, M.C. E., Parkes, G.C. and Sanderson, J.D. (2008). Review article: Lactose intolerance in clinical practice – myths and realities. Alimentary Pharmacol. Therapeutics. 27:93–103.
  • Lopez, H.W., Ouvry, A., Bervas, E., Guy, C., Messager, A., Demigne, C. and Remesy, C. (2000). Strains of lactic acid bacteria isolated from sour doughs degrade phytic acid and improve calcium and magnesium solubility from whole wheat flour. J. Agric. Food Chem. 48:2281–2285.
  • Lopez, Y., Gordon, D.T. and Fields, M.L. (1983). Release of phosphorus from phytate by natural lactic-acid fermentation. J. Food Sci. 48:953–&.
  • Lorri, W. and Svanberg, U. (1993). Lactic acid-fermented cereal gruels: Viscosity and flour concentration. Int. J. Food Sci. Nutr. 44:207–213.
  • Luchese, R.H. and Harrigan, W.F. (1990). Growth of and aflatoxin production by Aspergillus parasiticus when in the presence of either Lactococcus lactis or lactic acid and at different initial pH values. J. Appl. Microbiol. 69:512–519.
  • Madovi, P.B. (1981). Food handling in Shona villages of Zimbabwe. Ecol. Food Nutr. 11:133–144.
  • Magnusson, J. and Schnürer, J. (2001). Lactobacillus coryniformis subsp.coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 67:1–5.
  • Magnusson, J., Strom, K., Roos, S., Sjogren, J. and Schnurer, J. (2003). Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. Fems Microbiol. Lett. 219:129–135.
  • Majamaa, H. and Isolauri, E. (1997). Probiotics: A novel approach in the management of food allergy. J. Allergy Clin. Immun. 99:179–185.
  • Makanjuola, D.B., Tymon, A. and Springham, D.G. (1992). Some effects of lactic acid bacteria on laboratory-scale yeast fermentations. Enzyme Microbial Technol. 14:350–357.
  • Maqueda, M., Sanchez-Hidalgo, M., Fernandez, M., Montalban-Lopez, M., Valdivia, E. and Martinez-Bueno, M. (2008). Genetic features of circular bacteriocins produced by Gram-positive bacteria. Fems Microbiol. Rev. 32:2–22.
  • Marklinder, I.M., Larsson, M., Fredlund, K. and Sandberg, A.S. (1995). Degradation of phytate by using varied sources of phytases in an oat-based nutrient solution fermented by Lactobacillus plantarum strain 299 V. Food Microbiol. 12:487–495.
  • Martínez-Anaya, M.A. (1996). Enzymes and bread flavor†. J. Agric. Food Chem. 44:2469–2480.
  • Matsuzaki, T. and Chin, J. (2000). Modulating immune responses with probiotic bacteria. Immunol. Cell Biol. 78:67–73.
  • Mauch, A., Dal Bello, F., Coffey, A. and Arendt, E.K. (2010). The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. Int. J. Food Microbiol. 141:116–121.
  • Mäyrä-mäkinen, A. (1998). A novel microorganism strain, bacterial preparations comprising said strain, and use of said strain and preparations for the controlling of yeasts and moulds. Suomalainen, Tarja Kristianinkatu 7 B, Helsinki, SF-00170, FI.
  • Mbugua, S.K., Ahrens, R.A., Kigutha, H.N. and Subramanian, V. (1992). Effect of fermentation, malted flour treatment and drum drying on nutritional quality of uji. Ecol. Food Nutr. 28:271–277.
  • McFeeters, R.F. (2004). Fermentation microorganisms and flavor changes in fermented foods. J. Food Sci. 69:FMS35–FMS37.
  • McMaster, L.D., Kokott, S.A., Reid, S.J. and Abratt, V.R. (2005). Use of traditional African fermented beverages as delivery vehicles for Bifidobacterium lactis DSM 10140. Int. J. Food Microbiol. 102:231–237.
  • Mearin, F., Badía, X., Balboa, A., Baró, E., Caldwell, E., Cucala, M., Díaz-Rubio, M., Fueyo, A., Ponce, J., Roset, M. and Talley, N.J. (2001). Irritable bowel syndrome prevalence varies enormously depending on the employed diagnostic criteria: Comparison of Rome II versus previous criteria in a general population. Scand. J. Gastroenterol. 36:1155–1161.
  • Mei, G.-Y., Carey, C.M., Tosh, S. and Kostrzynska, M. (2011). Utilization of different types of dietary fibres by potential probiotics. Can. J. Microbiol. 57:857–865.
  • Kinvanc, M., Yilmaz, M. and Çakir, E. (2011). Isolation and identifi cation of lactic acid bacteria from boza, and their microbial activity against several reporter strains. Turkish J. Biol. 35:313–324.
  • Michida, H., Tamalampudi, S., Pandiella, S.S., Webb, C., Fukuda, H. and Kondo, A. (2006). Effect of cereal extracts and cereal fiber on viability of Lactobacillus plantarum under gastrointestinal tract conditions. Biochem. Eng. J. 28:73–78.
  • Molin, G. (2001). Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. Am. J. Clin. Nutr. 73:380s–385s.
  • Moneret-Vautrin, D., Kanny, G. and Perrier, P. (2003). Etude prospective 1999–2002 de l’allergie alimentaire à la farine de blé chez l’enfant et chez l’adulte, comparée à la maladie coeliaque. Alim Inter. 8:2–8.
  • Morcos, S.R., Hegazi, S.M. and El-Damhougy, S.T. (1973). Fermented foods of common use in Egypt. II. The chemical composition of bouza and its ingredients. J. Sci. Food Agric. 24:1157–1161.
  • Mugula, J.K., Nnko, S.A. M., Narvhus, J.A. and Sarhaug, T. (2003a). Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. Int. J. Food Microbiol. 80:187–199.
  • Mugula, J.K., SÃrhaug, T. and Stepaniak, L. (2003b). Proteolytic activities in togwa, a Tanzanian fermented food. Int. J. Food Microbiol. 84:1–12.
  • Murdock, F.A. and Fields, M.L. (1984). B-vitamin content of natural lactic acid fermented cornmeal. J. Food Sci. 49:373–375.
  • Muyanja, C.M. B. K., Narvhus, J.A., Treimo, J. and Langsrud, T. (2003). Isolation, characterisation and identification of lactic acid bacteria from bushera: A Ugandan traditional fermented beverage. Int. J. Food Microbiol. 80:201–210.
  • Mwesigye, P.K. and Okurut, T.O. (1995). A survey of the production and consumption of traditional alcoholic beverages in Uganda. Process Biochem. 30:497–501.
  • Naczk, M. and Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 41:1523–1542.
  • Narvhus, J.A., Østeraas, K., Mutukumira, T. and Abrahamsen, R.K. (1998). Production of fermented milk using a malty compound-producing strain of Lactococcus lactis subsp. lactis biovar. diacetylactis, isolated from Zimbabwean naturally fermented milk. Int. J. Food Microbiol. 41:73–80.
  • Nche, P.F., Nout, M.J. and Rombouts, F.M. (1995). The effects of processing on the availability of lysine in kenkey, a Ghanaian fermented maize food. Int. J. Food Sci. Nutr. 46:241–246.
  • Niderkorn, V., Boudra, H. and Morgavi, D.P. (2006). Binding of Fusarium mycotoxins by fermentative bacteria in vitro. J. Appl. Microbiol. 101:849–856.
  • Niderkorn, V., Morgavi, D.P., Aboab, B., Lemaire, M. and Boudra, H. (2009). Cell wall component and mycotoxin moieties involved in the binding of fumonisin B-1 and B-2 by lactic acid bacteria. J. Appl. Microbiol. 106:977–985.
  • Niderkorn, V., Morgavi, D.P., Pujos, E., Tissandier, A. and Boudra, H. (2007). Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Addit. Contam. 24:406–415.
  • Niggemann, B. (2001). The role of the atopy patch test (APT) in diagnosis of food allergy in infants and children with atopic dermatitis. Pediatric Allergy Immunol. 12:37–40.
  • Niku-Paavola, M.L., Laitila, A., Mattila-Sandholm, T. and Haikara, A. (1999). New types of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol. 86:29–35.
  • Nout, M.J. R. (2009). Rich nutrition from the poorest - cereal fermentations in Africa and Asia. Food Microbiol. 26:685–692.
  • Nout, M.J. R. (1980). Process development and preservation of Busaa, a Kenyan traditional opaque maize beer. Chem. Mikrobiol. Technol. Lebensmittel. 6:175–182.
  • Nout, M.J. R., Rombouts, F.M. and Havelaar, A. (1989). Effect of accelerated natural lactic fermentation of infant good ingredients on some pathogenic microorganisms. Int. J. Food Microbiol. 8:351–361.
  • Odunfa, S.A. and Oyewole, O.B. (1998). African fermented foods. In: Microbiology of Fermented Foods. Wood, B.J. B. (Ed.), Blackie Academy and Professional Thompson Science Publishers, London, UK.
  • Okkers, D.J., Dicks, L.M. T., Silvester, M., Joubert, J.J. and Odendaal, H.J. (1999). Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J. Appl. Microbiol. 87:726–734.
  • Olasupo, N., Olukoya, D. and Odunfa, S. (1997). Assessment of a bacteriocin-producing Lactobacillus strain in the control of spoilage of a cereal-based African fermented food. Folia Microbiol. 42:31–34.
  • Onilude, A., Fagade, O., Bello, M. and Fadahunsi, I. (2005). Inhibition of aflatoxin-producing aspergilli by lactic acid bacteria isolates from indigenously fermented cereal gruels. Afr. J. Biotechnol. 4:1404–1408.
  • Onyango, C., Noetzold, H., Bley, T. and Henle, T. (2004). Proximate composition and digestibility of fermented and extruded uji from maize–finger millet blend. LWT - Food Sci. Technol. 37:827–832.
  • Onyango, C., Noetzold, H., Ziems, A., Hofmann, T., Bley, T. and Henle, T. (2005). Digestibility and antinutrient properties of acidified and extruded maize-finger millet blend in the production of uji. Lwt-Food Sci. Technol. 38:697–707.
  • Orji, M.U., Mbata, T.I., Aniche, G.N. and Ahonkhai, I. (2003). The use of starter cultures to produce ‘Pito’, a Nigerian fermented alcoholic beverage. World J. Microbiol. Biotechnol. 19:733–736.
  • Papagianni, M. and Anastasiadou, S. (2009). Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications. Microbial Cell Factories. 8:1–16.
  • Patsioura, A., Galanakis, C.M. and Gekas, V. (2011). Ultrafiltration optimization for the recovery of β-glucan from oat mill waste. J. Membr. Sci. 373:53–63.
  • Pierides, M., El-Nezami, H., Peltonen, K., Salminen, S. and Ahokas, J. (2000). Ability of dairy strains of lactic acid bacteria to bind aflatoxin M-1 in a food model. J. Food Prot. 63:645–650.
  • Piotrowska, M. and Zakowska, Z. (2005). The limitation of ochratoxin A by lactic acid bacteria strains. Polish J. Microbiol. 54:279–286.
  • Prado, F.C., Parada, J.L., Pandey, A. and Soccol, C.R. (2008). Trends in non-dairy probiotic beverages. Food Res. Int. 41:111–123.
  • ProViva AB. (2011). Available from http://www.proviva.se/sv/Produkter/Fruktdryck/
  • Pszczola, D.E. (1992). The nutraceutical initiative: A proposal for economic and regulatory reform. Food Biotechnol. 46:77–79.
  • Reddy, K.R. N., Abbas, H.K., Abel, C.A., Shier, W.T., Oliveira, C.A. F. and Raghavender, C.R. (2009). Mycotoxin contamination of commercially important agricultural commodities. Toxin Rev. 28:154–168.
  • Reddy, N.R. and Pierson, M.D. (1994). Reduction in antinutritional and toxic components in plant foods (a) by fermentation. Food Res. Int. 27:281–290.
  • Rouse, S. and van Sinderen, D. (2008). Bioprotective potential of lactic acid bacteria in malting and brewing. J. Food Prot. 71:1724–1733.
  • Roy, U., Batish, V.K., Grover, S. and Neelakantan, S. (1996). Production of antifungal substance by Lactococcus lactis subsp. lactis CHD-28.3. Int. J. Food Microbiol. 32:27–34.
  • Ryan, L.A. M., Zannini, E., Dal Bello, F., Pawlowska, A., Koehler, P. and Arendt, E.K. (2011). Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. Int. J. Food Microbiol. 146:276–283.
  • Rycroft, C.E., Jones, M.R., Gibson, G.R. and Rastall, R.A. (2001). A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J. Appl. Microbiol. 91:878–887.
  • Salmeron, I., Fuciños, P., Charalampopoulos, D. and Pandiella, S.S. (2009). Volatile compounds produced by the probiotic strain Lactobacillus plantarum NCIMB 8826 in cereal-based substrates. Food Chem. 117:265–271.
  • Salovaara, H. (2006). 4th European Symposium on Oats—Oats and healthy foods. Cereal Foods World. 51:150–151.
  • Sarlin, T., Nakari-Setala, T., Linder, M., Penttila, M. and Haikara, A. (2005). Fungal hydrophobins as predictors of the gushing activity of malt. J. I. Brewing. 111:105–111.
  • Sarlin, T., Vilpola, A., Kotaviita, E., Olkku, J. and Haikara, A. (2007). A. Fungal hydrophobins in the barley-to-beer chain. J. I. Brewing. 113:147–153.
  • Sathe, S.J., Nawani, N.N., Dhakephalkar, P.K. and Kapadnis, B.P. (2007). Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. J. Appl. Microbiol. 103:2622–2628.
  • Schnürer, J. and Magnusson, J. (2005). Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci. Technol. 16:70–78.
  • Schwarz, P.B., Casper, H.H. and Beattie, S. (1995). Fate and development of naturally occurring Fusarium mycotoxins during malting and brewing. J. Am. Soc. Brewing Chem. 53:121–127.
  • Schweigart, F. and Fellilngham, J.A. (1963). A study of fermentation in the production of ‘Mahewu’, an indigenous sour maize beverage of Southern Africa. Milchwissenschaft. 18:241–224.
  • Schwenninger, S.M., von Ah, U., Niederer, B., Teuber, M. and Meile, A. (2005). Detection of antifungal properties in lactobacillus paracasei subsp. paracasei SM20, SM29, and SM63 and molecular typing of the strains. J. Food Prot. 68:111–119.
  • Scott, G. (1985). Antioxidants in vitro and in vivo. Chem. Brit. 21:648–653.
  • Scott, H.S. (2000). Determinants of systemic manifestations of food allergy. J. Allergy Clin. Immun. 106:S251–S257.
  • Sekwati-Monang, B. and Gänzle, M.G. (2011). Microbiological and chemical characterisation of ting, a sorghum-based sourdough product from Botswana. Int. J. Food Microbiol. 150:115–121.
  • Seo, E.S., Nam, S.H., Kang, H.K., Cho, J.Y., Lee, H.S., Ryu, H.W. and Kim, D. (2007). Synthesis of thermo- and acid-stable novel oligosaccharides by using dextransucrase with high concentration of sucrose. Enzyme Microbial Technol. 40:1117–1123.
  • Settanni, L. and Corsetti, A. (2008). Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 121:123–138.
  • Sharma, A. and Kapoor, A.C. (1996). Levels of antinutritional factors in pearl millet as affected by processing treatments and various types of fermentation. Plant Foods Hum. Nutr. (Formerly Qualitas Plantarum). 49:241–252.
  • Sharma, K.K. and Pattabiraman, T.N. (1982). Natural plant enzyme inhibitors. Purification and properties of an amylase inhibitor from yam (Dioscorea alata). J. Sci. Food Agric. 33:255–262.
  • Simango, C. (1997). Potential use of traditional fermented foods for weaning in Zimbabwe. Soc. Sci. Med. 44:1065–1068.
  • Simango, C. and Rukure, G. (1991). Survival of Campylobacter jejuni and pathogenic Escherichia coli in mahewu, a fermented cereal gruel. Trans. R. Soc. Trop. Med. Hyg. 85:399–400.
  • Simango, C. and Rukure, G. (1992). Survival of bacterial enteric pathogens in traditional fermented foods. J. Appl. Microbiol. 73:37–40.
  • Simwamba, C.G. and Elahi, M. (1986). Studies on the nutrient composition of Rhynchosia venulosa (munkoyo roots) and physicochemical changes in munkoyo roots and maize porridge mixture during preparation of munkoyo beverage. J. Agric. Food Chem. 34:573–575.
  • Sjögren, J., Magnusson, J., Broberg, A., Schnürer, J. and Kenne, L. (2003). Antifungal 3-Hydroxy Fatty Acids from Lactobacillus plantarum MiLAB 14. Appl. Environ. Microbiol. 69:7554–7557.
  • Smith, C.E. and Tucker, K.L. (2011). Health benefits of cereal fibre: A review of clinical trials. Nutr. Res. Rev. 24:118–131.
  • Smith, J.B., Tulloch, J.E., Meyer, L.J. and Zone, J.J. (1992). The incidence and prevalence of dermatitis herpetiformis in Utah. Arch. Dermatol. 128:1608–1610.
  • Songré-Ouattara, L.T., Mouquet-Rivier, C., Icard-Vernière, C., Rochette, I., Diawara, B. and Guyot, J.P. (2009). Potential of amylolytic lactic acid bacteria to replace the use of malt for partial starch hydrolysis to produce African fermented pearl millet gruel fortified with groundnut. Int. J. Food Microbiol. 130:258–264.
  • Sosulski, F.W., Minja, L.A. and Christensen, D.A. (1988). Trypsin-inhibitors and nutritive-value in cereals. Plant Foods Hum. Nutr. 38:23–34.
  • Sreeramulu, G., Srinivasa, D.S., Nand, K. and Joseph, R. (1996). Lactobacillus amylovorus as a phytase producer in submerged culture. Letters Appl. Microbiol. 23:385–388.
  • Steinkraus, K.H. (1983). Microbiology Series, Vol 55. Dekker, New York, USA.
  • Steinkraus, K.H. (1995). Indigenous fermented foods involving an acid fermentation: Preserving and enhancing organoleptic and nutritional qualities of fresh foods. In: Handbook of Indigenous Fermented Foods Food Science and Technology, pp. 211–263. Steinkraus, K.H. (Ed.), Marcel Dekker, Inc., New York.
  • Stiles, J., Penkar, S., Plocková, M., Chumchalov, J. and Bullerman, L.B. (2002). Antifungal Activity of Sodium Acetate and Lactobacillus rhamnosus. J. Food Prot. 65:1188–1191.
  • Stiles, M.E. (1996). Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek. 70:331–345.
  • Ström, K., Sjögren, J., Broberg, A. and Schnürer, J. (2002). Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(l-Phe-l-Pro) and cyclo(l-Phe-trans-4-OH-l-Pro) and 3-phenyllactic acid. Appl. Environ. Microbiol. 68:4322–4327.
  • Stubner, M., Lutterschmid, G., Vogel, R.F. and Niessen, L. (2010). Heterologous expression of the hydrophobin FcHyd5p from Fusarium culmorum in Pichia pastoris and evaluation of its surface activity and contribution to gushing of carbonated beverages. Int. J. Food Microbiol. 141:110–115.
  • Suzuki, I., Nomura, M. and Morichi, T. (1991). Isolation of lactic-acid bacteria which suppress mold growth and show antifungal action. Milchwissenschaft-Milk Sci. Int. 46:635–639.
  • Svanberg, U. and Lorri, W. (1997). Fermentation and nutrient availability. Food Control. 8:319–327.
  • Svanberg, U., Lorri, W. and Sandbeag, A.S. (1993). Lactic fermentation of non-tannin and high-tannin cereals: Effects on in vitro estimation of iron availability and phytate hydrolysis. J. Food Sci. 58: 408–412.
  • Swagerty, D.L. , Jr., Walling, A.D. and Klein, R.M. (2002). Lactose intolerance. Am. Fam. Physician. 65:1845–1850.
  • Talarico, T.L., Casas, I.A., Chung, T.C. and Dobrogosz, W.J. (1988). Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Ch. 32:1854–1858.
  • Tanaka, K., Sago, Y., Zheng, Y., Nakagawa, H. and Kushiro, M. (2007). Mycotoxins in rice. Int. J. Food Microbiol. 119:59–66.
  • Taylor, J. and Taylor, J.R. N. (2002). Alleviation of the adverse effect of cooking on sorghum protein digestibility through fermentation in traditional African porridges. Int. J. Food Sci. Technol. 37:129–137.
  • Todorov, S.D. (2010). Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria. Food Control. 21:1011–1021.
  • Todorov, S.D., Botes, M., Guigas, C., Schillinger, U., Wiid, I., Wachsman, M.B., Holzapfel, W.H. and Dicks, L.M. T. (2008). Boza, a natural source of probiotic lactic acid bacteria. J. Appl. Microbiol. 104:465–477.
  • Todorov, S.D. and Dicks, L.M. T. (2006). Screening for bacteriocin-producing lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria: Comparison of the bacteriocins. Process Biochem. 41:11–19.
  • Tůma, Š., Vogensen, F.K., Plocková, M. and Chumchalová, J. (2007). Isolation of Antifungally Active Lactobacilli from Edam Cheese, Vol. 55. Akademiai, Budapest, Hongrie.
  • Valerio, F., Favilla, M., De Bellis, P., Sisto, A., de Candia, S. and Lavermicocca, P. (2009). Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Syst. Appl. Microbiol. 32:438–448.
  • Van Der Walt, J.P. (1956). Kaffircorn malting and brewing studies. II.—Studies on the microbiology of Kaffir beer. J. Sci. Food Agric. 7:105–113.
  • van Hijum, S.A. F. T., Kralj, S., Ozimek, L.K., Dijkhuizen, L. and van Geel-Schutten, I.G. H. (2006). Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol. Mol. Biol. Rev. 70:157–+.
  • Van Loo, J., Cummings, J., Delzenne, N., Englyst, H., Franck, A., Hopkins, M., Kok, N., Macfarlane, G., Newton, D., Quigley, M., Roberfroid, M., van Vliet, T. and van den Heuvel, E. (1999). Functional food properties of non-digestible oligosaccharides: A consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br. J. Nutr. 81:121–132.
  • Vandenbergh, P. A., Sarasota, and Kunka, B. S. (1989). Antifungal product. US Patent.
  • Vermeulen, N., Gänzle, M.G. and Vogel, R.F. (2007). Glutamine deamidation by cereal-associated lactic acid bacteria. J. Appl. Microbiol. 103:1197–1205.
  • Vesa, T.H., Marteau, P. and Korpela, R. (2000). Lactose intolerance. J. Am. College Nutr. 19:165S–175S.
  • Vogel, R., Ehrmann, M. and Gänzle, M. (2002). Development and potential of starter lactobacilli resulting from exploration of the sourdough ecosystem. Antonie van Leeuwenhoek. 81:631–638.
  • Wang, H.-Y., Zhang, X.-J., Zhao, L.-P. and Xu, Y. (2008). Analysis and comparison of the bacterial community in fermented grains during the fermentation for two different styles of Chinese liquor. J. Ind. Microbiol. Biotechnol. 35:603–609.
  • Webster, L.K., Barry, B.N. and Short, J.A. (2002). Pulse oximetry interference in paediatric neurosurgery. Anaesthesia. 57:83–84.
  • Wiseman, D.W. and Marth, E.H. (1981). Growth and aflatoxin production by Aspergillus parasiticus when in the presence of Streptococcus lactis. Mycopathologia. 73:49–56.
  • Yang, E.J. and Chang, H.C. (2010). Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int. J. Food Microbiol. 139:56–63.
  • Yeargin-Allsopp, M., Rice, C., Karapurkar, T., Doernberg, N., Boyle, C. and Murphy, C. (2003). Prevalence of Autism in a US metropolitan area. JAMA. 289:49–55.
  • Yousif, N.E. and El Tinay, A.H. (2000). Effect of fermentation on protein fractions and in vitro protein digestibility of maize. Food Chem. 70:181–184.
  • Yvon, M. and Rijnen, L. (2001). Cheese flavour formation by amino acid catabolism. Int. Dairy J. 11:185–201.
  • Zannini, E., Pontonio, E., Waters, D. and Arendt, E. (2011). Applications of microbial fermentations for production of gluten-free products and perspectives. Appl. Microbiol. Biotechnol. 1–13.
  • Zorba, M., Hancioglu, O., Genc, M., Karapinar, M. and Ova, G. (2003). The use of starter cultures in the fermentation of boza, a traditional Turkish beverage. Process Biochem. 38:1405–1411.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.