7,920
Views
133
CrossRef citations to date
0
Altmetric
Original Articles

Chickpeas—Composition, Nutritional Value, Health Benefits, Application to Bread and Snacks: A Review

, &

REFERENCES

  • Agriculture and Agri-Food Canada. (2006). Chickpeas: Situation and outlook. Bi-weekly Bull. 19:1–14.
  • Alajaji, S.A. and El-Adawy, T.A. (2006). Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. J. Food Composition Anal. 19:806–812.
  • Alsohaimy S.A., Sitohy M.Z. and El-Masry R.A. (2007). Isolation and partial characterization of chickpea, lupine and lentil and lentil seed proteins. World J. Agric. Sci. 3(1):123–129.
  • Amrein, T.M., Schonbachler, B., Escher, F. and Amado, R. (2004). Acrylamide gingerbread: Critical factors for formation and possible ways for reduction. J. Agric. Food Chem. 52:4282–4288.
  • Angulo-Bejarano, P.J., Verdugo-Montoya, N.M., Cuevas-Rodrıguez, E.O., Milan-Carrillo, J., Mora-Escobedo, R., Lopez-Valenzuela, J.A., Garzon-Tiznado, J.A. and Reyes-Moreno, C. (2008). Tempeh flour from chickpea (Cicer arietinum L.) nutritional and physicochemical properties. Food Chem. 106:106–112.
  • Attia, R.S., El-Tabey Shehata, A.M., Aman, M.E. and Hamza, M.A. (1994). Effect of cooking and decortication on the physical properties, the chemical composition and the nutritive value of chickpea (Cicer arietinum L.). Food Chem. 50:125–131.
  • Berrios, J.D. J., Morales, P., Cámara, M. and Sánchez-Mata, M.C. (2010). Food Res. Int. 43:531–536.
  • Biggs, M., McVicar, J. and Flowerdew, B. (2007). Wielka Księga warzyw, ziół i owoców, pp. 72–73. Bellona, Poland.
  • Boye, J., Zare, F. and Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 43:414–431.
  • Candela, M., Astiasaran, I. and Bello, J. (1997). Cooking and warm-holding: Effect on general composition and amino acids of kidney beans (Phaseolus vulgaris), chickpeas (Cicer arietimum), and lentils (Lens culinaris). J. Agric. Food Chem. 45:4763–4767.
  • Chitra, U., Singh, U. and Rao, V.R. (1996). Phytic acid, in vitro protein digestibility, dietary fiber, and minerals of pulses as influenced by processing methods. Plant Foods Hum. Nutr. 49:307–316.
  • Chitra, U., Vimala, V., Singh, U. and Geervani, P. (1995). Variability in phytic acid content and protein digestibility of grain legumes. Plant Foods Hum. Nutr. 47:163–172.
  • Claus, A., Carle, R. and Schieber, A. (2008). Acrylamide in cereal products: A review. J. Cereal Sci. 47:118–133.
  • Clemente, A., Shanchez-Vioque, R., Vioque, J., Bautistab, J. and Millin, F. (1998). Effect of cooking on protein quality of chickpea (Cicer arietinrum) seeds. Food Chem. 62:14.
  • Cook, D.J. and Taylor, A.J. (2005). On-line MS/MS monitoring of acrylamide generation in potato- and cereal-based systems. J. Agric. Food Chem. 53:8926–8933.
  • da Silva, M.A., Neves, V.A. and Lourenço, E.J. (2001). Protein fractions and major globulin from chickpea (Cicer arietinum L.). Alimentose Nutriçăo. 12:131–149.
  • Dhawan, K., Malhotra, S., Dahiya, B.S. and Singh, D. (1991). Seed protein fractions and amino acid composition in gram (Cicer arietinum). Plant Foods Hum. Nutr. 41:225–232.
  • Dodok, L., Ali, M.A., Hozova, B., Halasova, G. and Polacek, I. (1993). Importance and utilization of chickpea in cereal technology. Acta Alimentaria. 22:119–129.
  • Esmat, A.A. A., Helmy, I.M. F. and Bareh G.F. (2010). Nutritional evaluation and functional properties of chickpea (Cicer arietinum L.) flour and the improvement of spaghetti produced from its. J. Am. Sci. 6(10):1055–1072.
  • Foster-Powell, K., Holt, S.H. A. and Brand-Miller, J.C. (2002). International table of glycemic index and glycemic load values. Am. J. Clin. Nutr. 76:5–56.
  • Frias, J., Vidal-Valverde C., Sotomayor C., Diaz-Pollan C. and Urbano G. (2000). Influence of processing on available carbohydrate content and antinutritional factors of chickpeas. Eur. Food Res. Technol. 210:340–345.
  • Friedman, M. and Levin, C.E. (2008). Review of methods for the reduction of dietary content and toxicity of acrylamide. J. Agric. Food Chem. 56:6113–6140.
  • Gertz, Ch. and Klostermann, S. (2002). Analysis of acrylamide and mechanism of its formation in deep-fried products. Eur. J. Lipid Sci. Technol. 104:762–771.
  • Gomez, M., Oliete, B., Rosell, M.C., Pando, V. and Encarnacion F. (2008). Studies on cake quality made of wheat-chickpea flour blends. LWT - Food Sci. Technol. 41:1701–1709.
  • Gonz´lez De Mejíaa E., Prisecarua V. I. (2005). Lectins as bioactive plant proteins: A potential in cancer treatment. Critical Reviews in Food Science and Nutrition, 45:425–445.
  • Granvogl, M. and Schieberle, P. (2006). Thermally Generated 3-Aminopropionamide as a transient intermediate in the formation of acrylamide. J. Agric. Food Chem. 54:5933–5938.
  • Gupta, R. and Dhillon, S. (1993). Characterization of seed storage proteins of Lentil (Lens culinaris M.). Ann. Biol. 9:71–78.
  • Hallab, A.H., Khatchadourian, H.A. and Jabr, I. (1974). The nutritive value and organoleptic properties of white Arabic bread supplemented with soybean and chickpea. Am. Cereal Chem. 51:106–112.
  • Han, I.H., Swanson, B.G. and Baik, B.K. (2007). Protein digestibility of selected legumes treated with ultrasound and high hydrostatic pressure during soaking. Cereal Chem. 84:518–521.
  • Hemeda, H.M. and Eman, F.M. (2010). Functional attribute of chickpea and defatted soybean flour blends on quality characteristic of shortening cake. Eur. J. Appl. Sci. 2(2):44–50.
  • Hollingsworth, B.A. (2007). Effects of ground chickpea as wheat flour replacer in corn muffins. Individual Project Written Raport. F&N. 453:1–11.
  • Hulse, J.H. (1991). Nature, composition and utilization of grain legumes. In: Uses of Tropical Legumes, pp. 11–27. ICRISAT Center. ICRISAT, India.
  • International Agency for Research on Cancer (IARC). (1994). Summaries & Evaluations, ACRYLAMIDE (Group 2A). 60:389.
  • Ionescu, A., Aprodu, I., Daraba, A., Gurau, G., Baciu, C. and Nichita, A. (2009). Chemical amd functional characterization of chickpea protein derivates. Food Technol. 33:16–27.
  • Johnson, S.K., Thomas, S.J. and Hall, R.S. (2005). Palatability and glucose, insulin and satiety responses of chickpea flour and extruded chickpea flour bread eaten as part of a breakfast. Eur J. Clin. Nutr. 59:169–176.
  • Jood, S., Chauhan, B.M. and Kapoor, A.C. (1989). Protein digestibility (in vitro) of chickpea and blackgram seeds as affected by domestic processing and cooking. Plant Foods Hum. Nutr. 39:149–154.
  • Khan, M.A., Akhtar, I.U. and Jaffery, S. (1995). Nutritional evaluation of desi and kabuli chickpeas and their products commonly consumed in Pakistan. Int. J. Food Sci. Nutr. 46:215–223.
  • Maheri-Sis, N., Chamani, M., Sadeghi, A-A., Mirza-Aghazadeh, A. and Aghajanzadeh-Golshani, A. (2008). Nutritional evaluation of kabuli and desi type chickpeas (Cicer arietinum L.) for ruminants using in vitro gas production technique. Afr. J. Biotechnol. 7:2946–2951.
  • Marzo, F., Alonso, R., Urdaneta, E., Arricibita, F.J. and Ibánez, F. (2002). Nutritional quality of extruded kidney bean (Phaseolus vulgaris L. var Pinto) and its effects on growth and skeletal muscle nitrogen fractions in rats. J. Anim. Sci. 80:875–879.
  • Menale, K., Bekele, S., Solomon, A., Tsedeke, A., Geoffrey, M., Setotaw, F., Million, E. and Kebebew, A. (2009). Current Situation and Future Outlooks of the Chickpea Sub-Sector in Ethiopia. ICRISAT and EIAR. 1–35.
  • Mestdagh, F., Castelein, P., Peteghem, C., & Meulenaer, B. (2008). Importance of oil degradation components in the formation of acrylamide in fried foodstuffs. J. Agric. Food Chem. 56:6141–6144.
  • Miśkiewicz, K., Nebesny, E. and Oracz, J. (2012). Formation of acrylamide during baking of shortcrust cookies derived from various flours. Czech J. Food Sci. 30:53–66.
  • Mondor, M., Aksay, S., Drolet, H., Roufik, S., Farnworth, E. and Boye, J.I. (2009). Influence of processing on composition and antinutritional factors of chickpea protein concentrates produced by isoelectric precipitation and ultrafiltration. Innovative Food Sci. Emerg. Technol. 10:342–347.
  • Monsoor, M.A. and Yusuf, H.K. M. (2002). In vitro protein digestibility of lathyrus pea (Lathyrus sativus), lentil (Lens culinaris) and chickpea (Cicer arietinum). Int. J. Food Sci. Technol. 37:97–99.
  • Mottram, D.S., Wedzicha, B. and Dodson, A.T. (2002). Acrylamide is formed in the Maillard reaction. Nature 419:448–449.
  • Nwokolo, E. and Smartt, J. (1996). Food and feed from legumes and oilseeds, pp. 4–5. Chapman and Hall E-publishing.
  • Omima, E.F., Abdullahi, H.E. and Babiker, E.E. (2010). Effect of fermentation on biochemical characteristics of Sorghum flour supplemented with Chickpea flour. J. Appl. Sci. Res.. 6(7):860–865.
  • Oomah, B.D. (2001). Flaxseed as a functional food source. J. Food Sci. 81:889–894.
  • Peumans, W.J. and Van Damme, E.J. M. (1996). Prevalence, biological activity and genetic manipulation of lectins in foods. Trends Food Sci. Technol. 7:132–138.
  • Prakash, V.H. P. and Prakash, J. (1999). In vitro protein digestibility of legumes cooked with spices. Nahrung/Food. 43:19–21.
  • Recommendation Commission of 2 June 2010 on the monitoring of acrylamide levels in food (Text with EEA relevance) (2010/307/UE). EUROPEAN COMMISSION having regard to the Treaty on the Functioning of the European Union in particular 292.
  • FAO/WHO. (1985). Ref. Pattern.
  • Rice, J.M.(2005). The carcinogenicity of acrylamide. Mutat. Res. 580:3–20.
  • Roy, F., Boye, J.I. and Simpson, B.K. (2010). Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Res. Int. 43:432–442.
  • Saharan, K. and Khetarpaul, N. (1994). Protein quality traits of vegetable and field peas: Varietal differences. Plant Foods Hum. Nutr. 45:11–22.
  • Sames, K., Shumacher, U., Halata, Z., Van Damme, E.J., Peumans, W.J., Asmus, B., et al. (2001). Lectins as bioactive plant proteins: A potential in cancer treatment. Crit. Rev. Food Sci. Nutr. 45:425–445.
  • Sánchez-Mata, M.C., Penuela-Teruel, M.J., Camara-Hurtado, M., Diez-Marques, C. and Torija-Isasa, M.E. (1998). Determination of mono-, di-, and oligosaccharides in legumes by high-performance liquid chromatography using an amino-bonded silica column. J. Agric. Food Chem. 46:3648–3652.
  • Sánchez-Vioque, R., Clemente, A., Vioque, J., Bautista, J. and Millan, F. (1999). Protein isolates from chickpea (Cicer arietinum L.): Chemical composition, functional properties and protein characterization. Food Chem. 64:237–243.
  • Sánchez-Vioque, R., Clemente, A., Vioque, J., Bautista, J. and Millan, F. (1998). Neutral lipids of chickpea flour and protein isolates. J. Am. Oil Chem. Soc. (JAOCS) 75:851–855.
  • Sasaki, T., Yasui, T. and Matsuki, J. (2000). Influence of non-starch polysaccharides isolated from wheat flour on the gelatinization and gelation of wheat starches. Food Hydrocolloids. 14:295–303.
  • Schwenke, K.D. (2001). Reflections about the functional potential of legume proteins. Nahrung/Food. 45:377–381.
  • Segev, A., Badani, H., Kapulnik, Y., Shomer, I., Oren-Shamir, M. and Galili, S. (2010). Determination of polyphenols, flavonoids, and antioxidant capacity in colored chickpea (Cicer arietinum L.). J. Food Sci. 75(2):115–119.
  • Sękara, A. (2005). Chickpea milkvetch. Działkowiec. 12:1–2.
  • Shahzadi, F., Butt, M.S., Rehman, S. and Sharif, K. (2007). Chemical Characteristics of Various Composite Flours. Int. J. Agric. Biol. 7:105–108.
  • Silva-Cristobala L., Osorio-Díaza P., J. Tovarb J. and Bello-Péreza L.A. (2010). Chemical composition, carbohydrate digestibility, and antioxidant capacity of cooked black bean, chickpea, and lentil Mexican varieties. CyT—J. Food. 8(1):7–14.
  • Singh, U. (1988). Antinutritional factors of chickpea and pigeonpea and their removal by processing. Plant Foods Hum. Nutr. 38:251–261.
  • Singh, U. and Jambunathan, R. (1981). Studies on desi and kabuli chickpea (Cicer arietinum L.) cultivars: Levels of protease inhibitors, levels of polyphenolic compounds and in vitro protein digestibility. J. Food Sci. 46:1364–1367.
  • Singh, U. and Jambunathan, R. (1982). Distribution of seed protein fractions and amino acids in different anatomical parts of chickpea (Cicer arietinum L.) and pigeonpea (Cajanus cajan L.). Plant Foods Hum. Nutr. 31:347–354.
  • Smith, V. and Jimmerson, J. (2005). Chickpeas (Garbanzo beans), p. 55. Agricultural Marketing Policy Center (AMPC).
  • Swanson, B.G. (1990). Pea and lentil protein extraction and functionality. J. Am. Oil Chem. Soc. 67:276–280.
  • Tabaeh, E. and Seyed, S. (2007). Hydrocyclone fractionation of chickpea flour and measurement of physical and functional properties of flour and starch and protein fractions. In: Agricultural and Bioresource Engineering, pp. 134–147. University of Saskatchewan, Saskatoon, Canada.
  • Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S. and Tornqvist, M. (2002). Analysis of acrylamide a carcinogen formed in heated foodstuffs. J. Agric. Food Chem. 50:4998–5006.
  • Thavarajah, P., Thavarajah, D. and Vandenberg, A. (2009). Low phytic acid lentils (Lens culinaris L.): A potential solution for increased micronutrient bioavailability. J. Agric. Food Chem. 57:9044–9049.
  • Tiwari, P., Singh, A., Singh, U., Maurya, S. and Singh, M. (2009). Chromatographical analysis of Phenolic acids in different preparations of pea (Pisum sativum) and chickpea (Cicer arietinum). Internet J. Altern. Med. 8(1). Available from http://www.ispub.com/.
  • Vattem, D.A. and Kalidas, S. (2003). Acrylamide in food: A model for mechanism of formation and its reduction. Innovative Food Sci. Emerg. Technol. 4:331–338.
  • Wang, N., Hatcher, D.W., Tyler, R.T., Toews, R. and Gawalko, E.J. (2010). Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Res. Int. 43:589–594.
  • Xu, B.J. and Chang, S.K. A. (2007). Comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 2(72):159–166.
  • Xu, B. and Chang, S.C. K. (2009). Phytochemical profiles and health-promoting effects of cool-season food legumes as influenced by thermal processing. J. Agric. Food Chem. 57:10718–10731.
  • Yaylayayan, V.A., Wnorowski, A. and Perez, L.C. (2003). Why asparagine needs carbohydrates to generate acrylamide. J. Agric. Food Chem. 51:1753–1757.
  • Zhao, S., Zhang, L., Gao, P. and Shao, Z. (2009). Isolation and characterisation of the isoflavones from sprouted chickpea seeds. Food Chem. 114:869–873.
  • Zia-Ul-Haq, M., Iqbal, S., Ahmad, S., Imran, M., Niaz, A. and Bhanger, M.I. (2007). Nutritional and compositional study of Desi chickpea (Cicer arietinum L.) cultivars grown in Punjab, Pakistan. Food Chem. 105:1357–1363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.