1,878
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Near-infrared Spectroscopy in the Brewing Industry

, &

REFERENCES

  • Allison, M. J. (1989). Areas of absorption relating to malt extract value in modified near infrared spectra of barley flour. J. Inst. Brew. 95:283–286.
  • Allison, M. J., Cowe, I. A. and McHale, R. (1978). The use of infra-red reflectance for the rapid estimation of the soluble β-glucan content of barley. J. Inst. Brew. 84:153–155.
  • Allosio, N., Boivin, P., Bertrand, P. and Courcoux, P. (1997). Characterisation of barley transformation into malt by three-way factor analysis of near infrared spectra. J. Near Infrared Spec. 5(3):157–166.
  • The American Society for Testing and Materials (ASTM) Practice E1655-00. (2001). In: ASTM Annual Book of Standards, 03.06 (Ed., Erin McElrone), pp. 573–600, West Conshohocken, PA USA.
  • Andersen, C. M. and Bro, R. (2010). Variable selection in regression—a tutorial. J. Chemometr. 24(11):728–737.
  • Angelino, S. A. G. F. (1996). Determination of the moisture and nitrogen contents of barley and malt by near infrared spectroscopy. J. Inst. Brew. 102(2):73–74.
  • Armenta, S., Moros, J., Garrigues, S. and De La Guardia, M. (2010). The use of near-infrared spectrometry in the olive oil industry. Crit. Rev. Food Sci. 50:567–582.
  • Axcell, B. C., Tulej, R. and Murray, J. (1981a). An ultra-fast system for hop analysis. I. The determination of alpha acids and moisture by near infrared reflectance spectroscopy. Brewers Digest. 56:18–19.
  • Axcell, B. C., Tulej, R. and Murray, J. (1981b). An ultra-fast system fort hop analysis. II. The determination of beta acids and prediction of hop storage index by near infrared reflectance spectroscopy. Brewers Digest. 56:32–33.
  • The Barth Report hops 2010–2011. (2011). World Beer Production 2009/2010. In: The Barth Report hops 2010–2011 (Eds., Heinrich Meier, Georgensgmuend). pp. 7–8. Taylor & Francis Nuremberg, Germany.
  • Berardo, N., Pisacane, V., Battilani, P., Scandolara, A., Pietri, A. and Marocco, A. (2005). Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy. J. Agr. Food Chem. 53:8128–8134.
  • Biendl, M. (1996). New developments in the hop analysis. Hopfen-Rundschau. Int. Ed. 1:28–32.
  • Black, C. and Panozzo, J. F. (2001). Utilising near infrared spectroscopy for predicting malting quality in whole grain barley and whole grain malt. In: Proceedings of the 10th Australian Barley Technical Symposium, Canberra, Taylor & Francis, Australia.
  • Bouveresse, E., Hartmann, C., Massart, D. L., Last, I. R. and Prebble, K. A. (1996). Standardization of near-infrared spectrometric instruments. Anal. Chem. 68:982–990.
  • Briggs, D. E., Boulton, C. A., Brookes, P. A. and Stevens, R. (2004). Beer flavour and sensory assessment. In: Brewing—Science and Practice, pp. 732–774. (Ed. D. E. Briggs). Woodhead Publishing Limited and CRC Press LLC, Taylor & Francis, Cambridge, UK.
  • Bro, R. (1996). Multiway calibration. Multilinear PLS. Chemometr. Intell. Lab. 10(1):47–61.
  • Bro, R., van den Berg, F., Thybo, A., Andersen, C. M., Jørgensen, B. M. and Andersen, H. (2002). Multivariate data analysis as a tool in advanced quality monitoring in the food production chain. Trends Food Sci. Tech. 130:235–244.
  • Brown, S. D. (1995). Chemical systems under indirect observation: Latent properties and chemometrics. Appl. Spectrosc. 49(12):14A–31A.
  • Campbell, M. R., Mannis, S. R., Port, H. A., Zimmerman, A. M. and Glover, D. V. (1999). Prediction of starch amylose content versus total grain amylose content in corn by near-infrared transmittance spectroscopy. Cereal Chem. 76:552–557.
  • Castritius, S., Kron, A., SchaFer, T., RaDle, M. and Harms, D. (2010). Determination of alcohol and extract concentration in beer samples using a combined method of near-infrared (NIR) spectroscopy and refractometry. J. Agric. Food Chem. 58:12634–12641.
  • Cavinato, A. G., Mayes, D. M., Ge, Z. H. and Callis, J. B. (1990). Non-invasive method for monitoring ethanol in fermentation processes using fiber-optic near infrared spectroscopy. Anal. Chem. 62:1977–1982.
  • Cen, H. and He, Y. (2007). Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci. Tech. 18:72–83.
  • Chandley, P. (1993). The application of the DESIR technique to the analysis of beer. J. Near Infrared Spec. 1:133–139.
  • Conzen, J. P. (2006). Multivariate Calibration—A Practical Guide for Developing Methods in the Quantitative Analytical Chemistry. Taylor & Francis, Ettlingen, Germany.
  • Coventry, A. G. (1994). In line measurement of alcohol and original gravity using fiber optic sensors. Cerevisia Biotechnol. 19:48–52.
  • Coventry, A. G. and Hunston, M. J. (1984). Applications of near-infrared spectroscopy to the analysis of beer samples. Cereal Foods World. 29:715–718.
  • Cruciani, G., Baroni, T., Clementi, S., Costantino, F., Riganelli, D. and Skagerberg, B. (1989). Predictive ability of regressions models. Part I: Standard deviation of prediction errors (SDEP). J. Chemometr. 3:499–509.
  • Czuchajowska, Z., Szczodrak, J. and Pomeranz, Y. (1992). Characterization and estimation of barley polysaccharides by near-infrared spectroscopy. I. Barleys, starches and beta-D-glucans. Cereal Chem. 69(4):413–418.
  • Dahm, D. J. and Dahm, K. D. (2001). The physics of near infrared scattering. In: Near-Infrared Technology in the Agricultural and Food Industries, pp. 1–18. Williams, P. and Norris, K., Eds., Taylor & Francis, St. Paul, Minnesota, USA.
  • Dambergs, R. G., Esler, M. B. and Gishen, M. (2004). Application in analysis of beverages and brewing products. In: Near Infrared Spectroscopy in Agriculture, pp. 465–486. Roberts, C. A., Workman, J. and Reeves, J. B., Eds., Taylor & Francis. Madison, WI, USA.
  • de Sá, R. M. and Palmer, G. H. (2006). Analysis of β-glucan in single grains of barley and malt using NIR-spectroscopy. J. Inst. Brew. 112(1):9–16.
  • Delwiche, S. R. (1998). Protein content of single kernels of wheat by near infrared reflectance spectroscopy. J. Cereal Sci. 27:241–254.
  • Downey, G. (1985). Estimation of moisture in undried wheat and barley by near infrared reflectance. J. Sci. Food Agric. 36:951–958.
  • Duncan, J. L. (1991). The determination of vibrational anharmonicity in the molecules from spectroscopic observations. Spectrochim Acta A, 47:1–27.
  • EBC. (2006). EBC (European Brewery Convention), Analytica-EBC. Taylor & Francis, Nurnberg, Germany.
  • EBC. (2007). EBC Barley and Malt Committee, Results Field Trials Harvest 2006. Taylor & Francis, Zoeterwoude.
  • Eberl, R. (1998). A near infrared spectroscopic sensor for the monitoring of brewing processes. J. Near Infrared Spec. 6(A):133–140.
  • Edney, M. J., Morgan, J. E., Williams, P. C. and Campbell, L. D. (1994). Analysis of feed barley by near infrared reflectance technology. J. Near Infrared Spec. 2:33–41.
  • Engelhard, S., Kumke, M. U. and Lohmannsroben, H. (2006). Examples of the application of optical process and quality sensing (OPQS) to beer brewing and polyurethane foaming processes. Anal. Bioanal. Chem. 384:1107–1112.
  • Engelhard, S., Lohmannsroben, H. G. and Schael, F. (2004). Quantifying ethanol content of beer using interpretive near-infrared spectroscopy. Appl. Spectrosc. 58:1205–1209.
  • Fernández-Ibañez, V., Soldado, A., Martínez-Fernández, A. and de la Roza-Delgado, B. (2009). Application of near infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical quality assessment. Food Chem. 113:629–634.
  • Fontaine, J., Schirmer, B. and Horr, J. (2002). Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum. J. Agric. Food Chem. 50:3902–3911.
  • Fox, G. P., Onley-Watson, K. and Osman, A. (2002). Multiple linear regression calibrations for barley and malt protein based on the spectra of hordein. J. Inst. Brew. 108(2):155–159.
  • Fox, G. P., Osborne, B., Bowman, J., Kelly, A., Cakir, M., Poulsen, D., Inkerman, A. and Henry, R. (2007). Measurement of genetic and environmental variation in barley (Hordeum vulgare) grain hardness. J. Cereal. Sci. 46:82–92.
  • Garden, S. W. and Freeman, P. L. (1998). Applications of near-infrared spectroscopy in malting: Calibrations for analysis of green malt. J. Am. Soc. Brew. Chem. 56(4):159–163.
  • Garden, S. W., Pruneda, T., Irby S. and Hysert, D. W. (2000). Development of near-infrared calibrations for hop analysis. J. Am. Soc. Brew. Chem. 58(2):73–82.
  • Geladi, P. and Kowalski, B. R. (1986). Partial least-squares regression: A tutorial. Anal. Chim. Acta. 185:1–17.
  • Haaland D. M. and Thomas, E. V. (1988). Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 60(11):1193–1202.
  • Halsey, S. A. (1985). The use of transmission and transflectance near infrared spectroscopy for the analysis of beer. J. Inst. Brew. 91:306–312.
  • Halsey, S. A. (1986). The application of transmission near infrared spectroscopy to the analysis of worts. J. Inst. Brew. 92:387–393.
  • Halsey, S. A. (1987). Analysis of whole barley kernels using near infrared reflectance spectroscopy. J. Inst. Brew. 93:461–464.
  • Henry, R. J. (1985a). Use of a scanning near-infrared reflectance spectrophotometer for assessment of the malting potential of barley. J. Sci. Food Agric. 36:249–254.
  • Henry, R. J. (1985b). Evaluation of barley and malt quality using near-infrared reflectance techniques. J. Inst. Brew. 91:393–396.
  • Hindle, P. H. (2001). Historical development. In: Handbook of Near Infrared Analysis, pp. 1–5. Burns, D. A. and Ciurczak, E. W., Eds., Taylor & Francis, New York, USA.
  • Huang, H., Yu, H., Xu, H. and Ying, Y. (2008). Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review. J. Food Eng. 87:303–313.
  • Iñón, F. A., Garrigues, S. and de la Guardia, M. (2006). Combination of mid- and near-infrared spectroscopy for the determination of the quality properties of beers. Anal. Chim. Acta. 571:167–174.
  • Iñón, F. A., Llario, R., Garrigues, S. and de la Guardia, M. (2005). Development of a PLS based method for determination of the quality of beers by use of NIR: spectral ranges and sample-introduction considerations. Anal. Bioanal. Chem. 382(7):1549–1561.
  • Jacobsen, S., Søndergaard, I., Møller, B., Desler, T. and Munck, L. (2005). A chemometric evaluation of the underlying physical and chemical patterns that support near infrared spectroscopy of barley seeds as a tool for explorative classification of endosperm genes and gene combinations. J. Cereal Sci. 42:281–299.
  • Kawamura, S., Natsuga, M. and Itoh, K. (1999). Determination of undried rough rice constituent content using near-infrared transmission spectroscopy. T. ASAE. 42:813–818.
  • Kays, S. E., Shimizu, N., Barton II, F. E. and Ohtsubo, K. (2005). Near-infrared transmission and reflectance spectroscopy for the determination of dietary fiber in barley cultivars. Crop. Sci. 45:2307–2311.
  • Kreisz, S. (2009). Malting. In: Handbook of Brewing, pp. 147–164. Eßlinger, H. M., Ed., Taylor & Francis. KGaA, Weinheim, Germany.
  • Kunze, W. (2004a). Raw materials. In: Technology Brewing and Malting, pp. 32–49. Kunze, W., Ed., Taylor & Francis, Germany.
  • Kunze, W. (2004b). Malt production. In: Technology Brewing and Malting, pp. 97–194. Kunze, W., Ed., Taylor & Francis, Germany.
  • Kunze, W. (2004c). Mashing. In: Technology Brewing and Malting, pp. 214–255. Kunze, W., Ed., Taylor & Francis, Germany.
  • Kunze, W. (2004d). Beer production. In: Technology Brewing and Malting, pp. 367–531. Kunze, W., Ed., Taylor & Francis, Germany.
  • Li, Y. and Brown, C. W. (1999). Near infrared spectroscopic determination of alcohols—solving non-linearity with linear and non-linear methods. J. Near Infrared Spec. 7(1):55–62.
  • Li, Y., Laycock, G. and Fernets, W. (1995). Rapid assessment of potential malting quality of barley by near infrared diffuse reflectance spectroscopy. Near Infrared Spec. [WWW Document]. Available from http://www.nirs.net/arquivos/nirmalt.pdf 02-Nov.2006.
  • Lin, M., Rasco, B. A., Cavinato, A. G. and Al-Holy, M. (2008). Infrared (IR) spectroscopy—near- infrared spectroscopy and mid-infrared spectroscopy. In: Infrared Spectroscopy for Food Quality Analysis and Control, pp. 119–144. Sun, D.-W., Ed., Taylor & Francis, Burlington, USA.
  • Llario, R., Iñón, F. A., Garrigues, S. and de la Guardia, M. (2006). Determination of quality parameters of beers by the use of attenuated total reflectance-Fourier transform infrared spectroscopy. Talanta. 69:469–480.
  • Livermore, D., Wang, Q. and Jackson, R. S. (2003). Understanding near infrared spectroscopy and its applications in the distillery. In: The Alcohol Textbook, 4th ed., pp. 145–170. Jacques, K. A., Lyons, T. P. and Kelsall, D. R., Eds., Taylor & Francis, Nottingam.
  • Majara, M., Mochaba, F. M., Oconnorcox, E. S. C., Axcell, B. C. and Alexander, A. (1998). Yeast protein measurement using near-infrared refl ectance spectroscopy. J. Inst. Brew. 104:143–146.
  • Marte, L., Belloni, P., Genorini, E., Sileoni, V., Perretti, G., Montanari, L. and Marconi, O. (2009). Near infrared reflectance models for the rapid prediction of quality of brewing raw materials. J. Agr. Food Chem. 57:326–333.
  • Martens, H. and Martens, M. (2001). Why multivariate data analysis? In: Multivariate Analysis of Quality—An Introduction, pp. 1–24. Martens, H. and Martens, M., Eds., Taylor & Francis, New York, USA.
  • Martens, H. and Naes, T. (1989). Introduction to multivariate calibration. In: Multivariate Calibration, pp. 1–34. Martens, H. and Naes, T., Eds., Taylor & Francis, New York, USA.
  • McClure, W. F. (1993). Near infrared spectroscopy. In: Spectroscopic Methods for Food Analysis, pp: 13–57. Wilson, R. H., Ed., Taylor & Francis, New York, USA.
  • McDermott, L. P. (1992). On-line blending control for beer production using near infrared spectroscopy. Master Brew Assoc. Am. Technical Quarterly. 29:96–100.
  • McGuire, C. F. (1982). Near-infrared reflectance estimates of malt extract. Cereal Chem. 59:510–511.
  • McLeod, G., Clelland, K., Tapp, H., Kemsley, E. K., Wilson, R. H., Poulter, G., Coombs, D. and Hewitt, C. J. (2009). A comparison of variate pre-selection methods for use in partial least squares regression: a case study on NIR spectroscopy applied to monitoring beer fermentation. J. Food Eng. 90(2):300–307.
  • MEBAK. (2002). Sudwerkkontrolle, Wurze, Bier, Biermischgetranke und AfG, 4th ed.). Taylor & Francis, Freising, Germany.
  • Meurens, M., Kadji, E. and Meurens, N. (2005). Process control by NIR spectroscopy in brewery. Cerevisia. 30(3):195–198.
  • Meurens, M. and Yan, S. H. (2002). Applications of vibrational spectroscopy in brewing. In: Handbook of Vibrational Spectroscopy, pp. 3663–3671. Chalmers, J. M. and Griffiths, P. R., Eds., Taylor & Francis, Chichester, UK.
  • Meussdoerffer, F. G. (2009). A comprehensive history of beer brewing. In: Handbook of Brewing, pp: 1–42. Eßlinger, H. M., Ed., Taylor & Francis, Weinheim, Germany.
  • Mitter, W. (1996). Infrared. Initial experiences with NIR. Hopfen Rundschau, Int. Ed. 1:48–49.
  • Mochaba, F., Torline, P. and Axcell, B. C. (1994). A novel and rapid approach for the determination of glycogen in pitching yeasts. J. Am. Soc. Brew Chem. 52:145–147.
  • Møller, B. (2004). Near infrared transmission spectra of barley of malting grade represent a physical-chemical fingerprint of the sample that is able to predict germinative vigour in a multivariate data evaluation model. J. Inst. Brew. 110(1):18–33.
  • Moonsamy, N., Mochaba, F., O’Connor-Cox, E. S. C. and Axcell, B. C. (1995). Rapid yeast trehalose measurement using near infrared reflectance spectroscopy. J. Inst. Brew. 101:203–206.
  • Morgan, A. G. (1977). The relationship between barley extract viscosity curves and malting ability. J. Inst. Brew. 83(4):231–234.
  • Munar, M., Christopher, D., Edney, M., Habernicht, D., Joy, R., Laycock, G., Seiben, R., Swenson, W. and Casey, G. (1998). Protein and moisture in whole-grain barley by near-infrared spectroscopy. J. Am. Soc. Brew Chem. 56(4):189–194.
  • Munck, L. and Møller, B. (2004). A new germinative classification model of barley for prediction of malt quality amplified by a near infrared transmission spectroscopy calibration for vigour “on line” both implemented by multivariate data analysis. J. Inst. Brew. 110(1):3–17.
  • Munck, L. and Møller, B. (2005). Principal component analysis of near infrared spectra as a tool of endosperm mutant characterization and in barley breeding for quality. Czech J. Genet. Plant Breed. 41(3):89–95.
  • Munck, L., Møller, B., Jacobsen, S. and Søndergaard, I. (2004). Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1–3, 1–4)-β-glucan in barley. J. Cereal Sci. 40:213–222.
  • Munck, L., Pram Nielsen, J., Møller, B., Jacobsen, S., Søndergaard, I., Engelsen, S. B., Nørgaard, L. and Bro, R. (2001). Exploring the phenotypic expression of a regulatory proteome-altering gene by spectroscopy and chemometrics. Anal. Chim. Acta. 446:171–186.
  • Naes, T., Isaksson, T., Fearn, T. and Davies, T. (2002). Univariate calibration and the need for multivariate methods. In: A User-Friendly Guide to Multivariate Calibration and Classification, pp. 11–18. Naes, T., Isaksson, T., Fearn, T. and Davies, T., Eds., Taylor & Francis, Chichester, UK.
  • Nielsen, J. P., Bro, R., Larsen, J. and Munck, L. (2002). Application of fuzzy logic and near infrared spectroscopy for malt quality evaluation. J. Inst. Brew. 108(4):444–451.
  • Norgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L. and Engelsen, S. B. (2000). Interval partial least-squares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy. Appl. Spectrosc. 54(3):413–419.
  • Osborne, B. G. (1981). Principles and practice of near infra-red (NIR) reflectance analysis. J. Food Sci. Technol. 16:13–19.
  • Osborne, B. G., Fearn, T. and Hindle, P. H. (1993). Applications of near infrared spectroscopy in food and beverage analysis. In: Practical NIR Spectroscopy with Applications in Food and Beverage Analysis, pp. 145–199. Osborne, B. G., Fearn, T. and Hindle, P. H., Eds., Taylor & Francis, New York, USA.
  • Ozdemir, D. (2006). Genetic multivariate calibration for near infrared spectroscopic determination of protein, moisture, dry mass, hardness and other residues of wheat. Int. J. Food Sci. Tech. 41:12–21.
  • Petersen, P. B., Andersen, J. K., Johansen, J. T. and Roge, E. H. (1992). In-line measurement of important beer variables with near-infrared spectroscopy. In: EBC Symposium, Instrumentation and Measurement, pp. 56–72. Taylor & Francis, Denmark.
  • Ratcliffe, M. and Panozzo, J. F. (1999). The application of near infrared spectroscopy to evaluate malting quality. J. Inst. Brew. 105(2):85–88.
  • Rinnan, A., van den Berg, F. and Balling Engelsen, S. (2009). Review of the most common pre-processing techniques for near-infrared spectra. Trends Anal. Chem. 28(10):1201–1222.
  • Roberts, C. A., Marquardt, R. R., Frohlich, A. A., McGraw, R. L., Rotter, R. G. and Henning, J. C. (1991). Chemical and spectral quantification of mold in contaminated barley. Cereal Chem. 68(3):272–275.
  • Romía, M. B. and Bernàrdez, M. A. (2008). Multivariate calibration for quantitative analysis. In: Infrared Spectroscopy for Food Quality Analysis and Control, pp. 51–79. Sun, D.-W., Ed., Taylor & Francis, Burlington, USA.
  • Ruan, R., Li, Y., Lin, X. and Chen, P. (2002). Non-destructive determination of Deoxynivalenol levels in barley using near-infrared spectroscopy. Appl. Eng. Agric. 18(5):549–553.
  • Seefeldt, H. F., Blennow, A., Møller Jespersen, B., Wollenweber, B. and Balling Engelsen, S. (2009). Accumulation of mixed linkage (1/3) (1/4)- β-D-glucan during grain filling in barley: A vibrational spectroscopy study. J. Cereal Sci. 49:24–31.
  • Siesler, H. W. (2008). Basic principles of near-infrared spectroscopy. In: Handbook of Near Infrared Analysis, 3rd ed., pp. 7–20. Burns, D. A. and Ciurczak, E. W., Eds., Taylor & Francis, New York, USA.
  • Sileoni, V., Della Sera, R., Marconi, O., Perretti, G. and Fantozzi, P. (2009a). Malting process parameters evaluation by near-infrared spectroscopy in reflectance (NIR). 32nd Congress of the European Brewery Convention, 10 May–14 May Hamburg, Germany.
  • Sileoni, V., Marconi, O., Perretti, G., Buiatti, S. and Fantozzi, P. (2010b). Development of a NIR calibration model for malt extract determination and validation of its long-term stability. In: Proceedings of the 9th edition of the international symposium “Trends in Brewing”, 13 April–16 April, Ghent, (Belgium), 13–16 April 2010.
  • Sileoni, V., Perretti, G., Marconi, O. and Fantozzi, P. (2009b). Evaluation of malt quality by near-infrared spectroscopy in reflectance. In: Proceedings of the 32nd Congress of the European Brewery Convention, 10 May–14 May, Hamburg, (Germany) 10–14 May 2009.
  • Sileoni, V., Perretti, G., Marte, L., Marconi, O., and Fantozzi, P. (2010a). Near-infrared spectroscopy for proficient quality evaluation of malt and maize in beer industry. J. Inst. Brew. 116(2):134–139.
  • Sileoni, V., van den Berg, F., Marconi, O., Perretti, G. and Fantozzi, P. (2011). Validation strategies for long term effects in NIR calibration models. J. Agr. Food Chem. 59:1541–1547.
  • Smilde, A., Bro, R. and Geladi, P. (2004). Multi-way Analysis. Taylor & Francis, Chichester, UK.
  • Sohn, M., Himmelsbach, D. S., Barton, F. E., Griffey, C. A., Brooks, W. and Hicks, K. B. (2008). Near-infrared analysis of whole kernel barley: Comparison of three spectrometers. Appl. Spectrosc. 62:427–432.
  • Szczodrak, J., Czuchajowska, Z. and Pomeranz, Y. (1992). Characterization and estimation of barley polysaccharides by near-infrared spectroscopy. II. Estimation of total–D-Glucans. Cereal Chem. 69(4):419–423.
  • Tenhunen, J. (1994). Determination of fermentable sugars and nitrogenous compounds in wort by near- and mid-infrared spectroscopy. J. Inst. Brew. 100:11–15.
  • Tragoonrung, S., Hayes, P. M. and Broich, S. L. (1990). Near-infrared reflectance estimates of grain protein and malt extract in hill and row plot evaluations of spring malting barley. Can. J. Plant Sci. 70(1):71–78.
  • Wehling, R. L., Jackson, D. S. and Hamaker, B. R. (1996). Prediction of corn dry-milling quality by near-infrared spectroscopy. Cereal Chem. 73:543–546.
  • Wiley, P. R., Tanner, G. J., Chandler, P. M. and Anderssen, R. S. (2009). Molecular classification of barley (Hordeum vulgare L.) mutants using derivative NIR spectroscopy. J. Agric. Food Chem. 57(10):4042–4050.
  • Williams, P. C. (1975). Application of near infrared reflectance spectroscopy to analysis of cereal grains and oilseeds. Cereal Chem. 52:561–576.
  • Williams, P. C. (2001). Implementation of near infrared technology. In: Near Infrared Technology in the Agricultural and Food Industries, pp. 145–170. Williams, P. and Norris, K., Eds., Taylor & Francis, St. Paul, USA.
  • Wold, H. (1975). Soft modeling by latent variables. In: The Nonlinear Iterative Partial Least Squares Approach, pp. 520–540. Gani, J., Ed., Taylor & Francis, London, UK.
  • Yan, S. H., Meurens, M., Maudoux, M., Derdelinckx, G. and Dufour, J. P. (1991). Assay of S-methylmethionine (SMM) in malt using NIR spectroscopy. In: Proceedings of the 23rd European Brewery Convention Congress, Lisbon, Portugal, 1991. pp. 489–496. Taylor & Francis, Oxford, UK.
  • Zanker, G. and Benes, R. (2004). Analytical device for measuring the ethanol concentration in beer based on NIR absorption. Brauwelt Int. 22(2):110–113.
  • Zsolt, S. and Beata, H. V. (1998). NIR characteristics of winter and spring barley and malt. Control applications in post-harvest and processing technology 1998. In: CAPPT ‘98—a proceedings volume from the 2nd IFAC/ISHS/CIGR/EURAGENG workshop, Budapest, Hungary, 3–5 June, 1998, pp: 105–107. Farkas, I., Ed., Taylor & Francis, Amsterdam, NL.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.