772
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Statistical Approaches to Assess the Association between Phenolic Compounds and the in vitro Antioxidant Activity of Camellia sinensis and Ilex paraguariensis Teas

, , &

REFERENCES

  • Altman, D. G. (1999). Practical Statistics for Medical Research. Boca Raton: Chapman & Hall/CRC, 8a ed., 611 pgs.
  • Ares, G., Barreiro, C. and Gámbaro, A. (2009). Evaluation of antioxidant extracts from Uruguayan native plants: Importance of sensory characteristics. CyTA—J. Food. 8:201–207.
  • Alves, C. Q., David, J. M., David, J. P., Bahia, M. V. and Aguiar, R. M. (2010). Methods for determination of in vitro antioxidant activity for extracts and organic compounds. Química Nova. 33:2202–2210.
  • Ananingsih, V. K., Sharma, A. and Zhou, W. (2011). Green tea catechins during food processing and storage: A review on stability and detection. Food Res. Int. In Press. DOI: 10.1016/j.foodres.2011.03.004.
  • Bacquer, D. D., Clays, E., Delanghe, J. and Backer, G. (2006). Epidemiological evidence for an association between habitual tea consumption and markers of chronic inflammation. Atherosclerosis. 189:428–435.
  • Bassani, D. C., Granato, D., Nunes, D. S. (2014a). Optimization of phenolics and flavonoids extraction conditions and antioxidant activity of roasted yerba-mate leaves (Ilex paraguariensis A. St.-Hil., Aquifoliaceae) using response surface methodology. Annals of the Brazilian Academy of Sciences, 86(2):923–933.
  • Bassani, D., Nunes, D. S., Granato, D., (2014b). Quality control of Camellia sinensis and Ilex paraguariensis teas marketed in Brazil based on total phenolics, flavonoids and free-radical scavenging activity using chemometrics. In: Daniel Granato; Gaston Ares. (Org.). Mathematical and Statistical Approaches in Food Science and Technology. 1ed. Oxford: Wiley Blackwell, v. 1, p. 219–230.
  • Benzie, I. F. F. and Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: The FRAP assay. Anal. Biochem. 239:70–76.
  • Benzie, I. F., Szeto, Y. T., Strain, J. J. and Tomlinson, B. (1999). Consumption of green tea causes rapid increase in plasma antioxidant power in humans. Nutrition and Cancer. 34:83–87.
  • Berté, K. A., Beux, M. R., Spada, P. K. and Hoffmann-Ribani, R. (2011). Chemical composition and antioxidant activity of Yerba-mate (Ilex paraguariensis A.St.-Hil., Aquifoliaceae) extract as obtained by spray drying. J. Agr. Food Chem. 59:5523–5527.
  • Besten, M. A., Jasinski, V. C. G., Costa, A. G. L. C., Nunes, D. S., Sens, S. L., Wisniewski Jr, A., Simionatto, E. L., Riva, D., Dalmarco, J. and Granato, D. (2012). Chemical composition similarity between the essential oils isolated from male and female specimens of each five Baccharis species. J. Brazilian Chem. Soc. 23:1041–1047.
  • Bogdanski, P., Suliburska, J., Szulinska, M., Stepien, M., Pupek-Musialik, D. and Jablecka, A. (2012). Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr. Res. 32:451–457.
  • Brand-Williams, W.; Cuvelier, M. E. and Berset, C. (1995). Use of free-radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28:25–30.
  • Burns, R. B. and Burns, R. A. (2008). Cluster analysis. In: Business Research Methods and Statistics Using SPSS, pp. 552–567. Taylor & Francis, London.
  • Butt, M. S. and Sultan, M. T. (2009). Green tea: Nature's defense against malignancies. Cri. Rev. Food Sci. Nutr. 49:463–473.
  • Calado, V. and Montgomery, D. C. Planejamento de experimentos usando o Statistica. Berkeley, 2003.
  • Callegari-Jacques, S. M. (2003). Bioestatística: Princípios e Aplicações. Taylor & Francis, Porto Alegre.
  • Carloni, P., Tiano, L., Padella, L., Bacchetti, T., Customu, C. and Kay, A., Damiani, E. (2013). Antioxidant activity of white, green and black tea obtained from the same tea cultivar. Food Res. Int. 53(2):900–908.
  • Carter, O., Wang, R., Dashwood, W. M., Orner, G. A., Fischer, K. A., Loumlhr, C. V., Pereira, C. B., Bailey, G. S., Williams, D. E. and Dashwood, R. H. (2007). Comparison of white tea, green tea, epigallocatechin-3-gallate, and caffeine as inhibitors of PhIP-Induced colonic aberrant crypts. Nutr. Cancer. 58:60–65.
  • Carvalho, M., Jerónimo, C., Valentão, P., Andrade, P. B. and Silva, B. M. (2010). Green tea: A promising anticancer agent for renal cell carcinoma. Food Chem. 122:49–54.
  • Chan, E. W. C., Lim, Y. Y. and Chen, Y. L. (2007). Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chem. 102:1214–1222.
  • Chen, H. L., Yang, M. H. and Wang, C. H. (2001). Green, oolong and black tea extracts modulate lipid metabolism in hyperlipidemia rats fed high-sucrose diet. J. Nutr. Biochem. 12:14–20.
  • Cheng, T. O. (2006). Review. All teas are not created equal: The Chinese green tea and cardiovascular health. Int. J. Cardiol. 108:301–308.
  • de Mejia, E. G., Song, Y. S., Ramirez-Mares, M. V. and Kobayashi, H. (2005). Effect of Yerba mate (Ilex paraguariensis) tea on topoisomerase inhibition and oral carcinoma cell proliferation. J. Agr. Food Chem. 53:1966–73.
  • Chen, H., Zhang, M. and Xie, B. (2005). Components and antioxidant activity of polysaccharide conjugate from green tea. Food Chem. 90:17–21.
  • Deetae, A., Parichanon, P., Trakunleewatthana, P., Chanseetis, C. and Lertsiri, S. (2012). Antioxidant and anti-glycation properties of Thai herbal teas in comparison with conventional teas. Food Chem. 133:953–959.
  • Deutscher Teeverband. (2011). The German tea market in 2010. Available from www.teeverband.de. Accessed June 27, 2012.
  • Dominguez-Perles, R., Moreno, D. A., Carvajal, M. and Garcia-Viguera, C. (2011). Composition and antioxidant capacity of a novel beverage produced with green tea and minimally-processed byproducts of broccoli. Innovat. Food Sci. Emerg. Technol. 12:361–368.
  • Dudonné, S., Vitrac, X., Coutiere, P., Woillez, M. and Mérillon, J. M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD and ORAC assays. J. Agr. Food Chem. 57:1768–1774.
  • Ellison, S. L. R., Barwick, V. J. and Farrant, T. J. D. (2009). Practical Statistics for the Analytical Scientist—A Bench Guide. Taylor & Francis, Cambridge.
  • Filip, R., Lotito, S. B., Ferraro, G. and Fraga, C. (2000). Antioxidant activity of Ilex paraguariensis and related species. Nutr. Res. 20:1437–144.
  • Formann, A. K. (1984). Die Latent-Class-Analyse: Einführungin die Theorie und Anwendung. Taylor & Francis: Beltz.
  • Granato, D., Calado, V. M. A., & Jarvis, B. (2014). Observations on the use of statistical methods in food science and technology. Food Res. Int., 55:137–149.
  • Granato, D., Castro, I. A., Ellendersen, L. S. N. and Masson, M. L. (2010a). Physical stability assessment and sensory optimization of a dairy-free emulsion using response surface methodology. J. Food Sci. 75:149–155.
  • Granato, D., Grevink, R., Zielinski, A. A. F., Nunes, D. S., van Ruth, S. M. (2014a). Analytical strategy coupled with response surface methodology to maximize the extraction of antioxidants from green, yellow, and red teas (Camlia sinensis var sinensis). J. Agric. Food Chem., 62(42):10283–10296.
  • Granato, D., Katayama, F. C. U. and Castro, I. A. (2010b). Assessing the association between phenolic compounds and the antioxidant activity of Brazilian red wines using chemometrics. LWT Food Sci. Technol. 43:1542–1549.
  • Granato, D., Katayama, F. C. U. and Castro, I. A. (2011). Phenolic composition of South American red wines classified according to their antioxidant activity, retail price and sensory quality. Food Chem. 129:366–373.
  • Grevink, R., Zielinski, A. A. F., Nunes, D. S., van Ruth, S. M. (2014a). Analytical strategy coupled with response surface methodology to maximize the extraction of antioxidants from green, yellow, and red teas (Camellia sinensis var sinensis). J. Agric. Food Chem., 62(42):10283–10296.
  • Grujic, N., Lepojevic, Z., Srdjenovic, B., Vladic, J. and Sudji, J. (2012). Effects of different extraction methods and conditions on the phenolic composition of mate tea extracts. Molecules. 17:2518–2528.
  • Halliwell, B. and Gutteridge, J. M. C. (2006). Free Radicals in Biology and Medicine. Taylor & Francis: Oxford.
  • Hara, Y. (2001). Green Tea: Health Benefits and Applications. Taylor & Francis, New York.
  • Hartwig, V. G., Brumovsky, L. A., Fretes, R. M. and Boado, L. S. (2012). A novel procedure to measure the antioxidant capacity of Yerba maté extracts. Ciên. Tec. Alim. 32:126–133.
  • Heck, C. I. and de Mejia, E. G. (2007). Yerba mate tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations. J. Food Sci. 72:R138–R151.
  • Heck, C. I., Schmalko, M. and Gonzalez de Mejia, E. (2008). Effect of growing and drying Conditions on the phenolic composition of mate teas (Ilex paraguariensis). J. Agr. Food Chem. 56:8394–8403.
  • Higdon, J. V. and Frei, B. (2003). Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Cri. Rev. Food Sci. Nutr. 43:89–143.
  • Hilal, Y. and Engelhardt, U. (2007). Characterization of white tea – Comparison to green and black tea. J. Verbr. Lebensm. 2:414–421.
  • Huang, D., Ou, B. and Prior, R. L. (2005). The chemistry behind antioxidant capacity assay. J. Agr. Food Chem. 53:1841–1856.
  • Huang, W. Y., Davidge, S. T. and Wu, J. (2013). Bioactive natural constituents from food sources—potential use in hypertension prevention and treatment. Cri. Rev. Food Sci. Nutr. 53(6):615–630.
  • Huang, D. J., Ou, B. X., Hampsch-Woodill, M., Flanagan, J. A. and Prior, R. L. (2002). High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agr. Food Chem. 50:4437–4444.
  • Jacobsen, T. and Gunderson, R. W. (1986). Applied cluster analysis. In: Statistical Procedures in Food Research, pp. 361–408. Taylor & Francis: New York.
  • Jayasekera, S., Molan, A. L., Garg, M. and Moughan, P. J. (2011). Variation in antioxidant potential and total polyphenol content of fresh and fully-fermented Sri Lankan tea. Food Chem. 125:536–541.
  • Johnson, R. A. and Wichern, D. W. (1988). Applied Multivariate Statistical Analysis. Prentice—Hall, Englewood Cliffs, New Jersey.
  • Kawai, Y., Tanaka, H., Murota, K., Naito, M. and Terao, J. (2008). Epicatechin gallate accumulates in foamy macrophages in human atherosclerotic aorta: Implication in the anti-atherosclerotic actions of tea catechins. Biochem. Biophys. Res. Commun. 374:527–532.
  • Kerio, L. C., Wachira, F. N., Wanyoko, J. K. and Rotich, M. K. (2013). Total polyphenols, catechin profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars. Food Chem. 136:1405–1413.
  • Kim, Y., Goodner, K. L., Park, J. D., Choi, J. and Talcott, S. T. (2011). Changes in antioxidant phytochemicals and volatile composition of Camellia sinensis by oxidation during tea fermentation. Food Chem. 129:1331–1342.
  • Kiselova, Y., Ivanova, D., Chervenkov, T., Gerova, D., Galunska, B. and Yankova, T. (2006). Correlation between the in vitro antioxidant activity and polyphenol content of aqueous extracts from Bulgarian herbs. Phytotherapy Res. 20:961–5.
  • Kodama, D. H., Gonçalves, A. E. S., Lajolo, F. M. and Genovese, M. I. (2010). Flavonoids, total phenolics and antioxidant capacity: Comparison between commercial green tea preparations. Ciên. Tec. Alim.. 30:1077–1082.
  • Kuroda, Y. and Hara, Y. (1999). Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat. Res./Rev. Mutat. Res. 436:69–97.
  • Leung, L. K., Su, Y., Chen, R., Zhang, Z., Huang, Y. and Chen, Z. Y. (2001). Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr. 131:2248–2251.
  • Li, H., Wang, X., Li, Y., Li, P. and Wang, H. (2009). Polyphenolic compounds and antioxidant properties of selected China wines. Food Chem. 112:454–460.
  • Luximon-Ramma, A., Bahorun, T., Crozier, A., Zbarsky, V., Datla, K. P., Dexter, D. T. and Aruoma, O. I. (2005). Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Res. Int. 38:357–367.
  • Macedo, L. F. L., Rogero, M. M., Guimarães, J. P., Granato, D., Lobato, L. P., Castro, I. A. (2013). Effect of red wines with different in vitro antioxidant activity on oxidative stress of high-fat diet rats. Food Chemistry. 137:122–129.
  • Manzocco, L., Anese, M. and Nicoli, M. C. (1998). Antioxidant properties of tea extracts as affected by processing. LWT - Food Sci. Technol. 31:694–698.
  • Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. Taylor & Francis, New York.
  • Meja, E. G., Song, Y. S., Heck, C. I. and Ramírez-Moraes, M. V. (2010). Yerba mate tea (Ilex paraguariensis): Phenolics, antioxidant capacity and in vitro inhibition of colon cancer cell proliferation. J. Funct. Foods. 2:23–34.
  • Miller, A. R., Scheerens, J. C., Tulio Jr., A. Z., Reese, R. N. and Ozgen, M. (2006) Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (frap) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agr. Food Chem. 54:1151–1157.
  • Moderno, P. M., Carvalho, M. and Silva, B. M. (2009). Recent patents on Camellia sinensis: Source of health promoting compounds. Recent Patents Food, Nutr. Agr. 1:182–192.
  • Mooi, E. and Sarstedt, M. (2011). A Concise Guide to Market Research. 1st ed, p. 308, Taylor & Francis, Berlin Heidelberg,
  • Næs, T., Brockhoff, P. B. and Tomic, O. (2010). Statistics for Sensory and Consumer Science. Taylor & Francis, Chichester.
  • Naithani, V., Nair, S. and Kakkar, P. (2006). Decline in antioxidant capacity of Indian herbal teas during storage and its relation to phenolic content. Food Res. Int. 39:176–181.
  • Nakamura, K. L., Cardozo Junior, E. L. Donaduzzi, C. M., Schuster, I. (2009) Genetic variation of phytochemical compounds in progenies of Ilex paraguariensis St. Hil. Crop Breeding Applied Biotech 9, 116–123.
  • NationMaster. (2012). Tea consumption. Available from http://www.nationmaster.com/graph/foo_tea_con-food-tea-consumption. Assessed June 27, 2012).
  • Oxfam. (2002). The tea market: A background study. Available from http://www.maketradefair.com/assets/english/TeaMarket.pdf. Assessed July 11, 2012.
  • Pękal, A., Dróżdż, P., Biesaga, M. and Pyrzynska, K. (2012). Polyphenolic content and comparative antioxidant capacity of flavoured black teas. Int. J. Food Sci. Nutr. 63(6):742–748.
  • Piggott, J. R. and Sharman, K. (1986). Methods to aid interpretation of multidimensional data. In: Statistical Procedures in Food Research, pp. 181–232. Taylor & Francis, New York.
  • Prakash, K. M. and Tan, E. K. (2011). Clinical evidence linking coffee and tea intake with Parkinson's disease. Basal Ganglia. 1:127–130.
  • Prior, R. L., Wu, X. and Schaich, K. (2005). Standard methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agr. Food Chem. 53:4290–4302.
  • Ramirez-Mares, M. V., Chandra, S. and de Mejia, E. G. (2004). In vitro chemopreventive activity of Camellia sinensis, Ilex paraguariensis and Ardisia compressa tea extracts and selected polyphenols. Mut. Res. 554:53–65.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26:1231–1237.
  • Rencher, A. C. (1998). Multivariate Statistical Inference and Applications. Taylor & Francis, New York.
  • Rufino, M. S. M., Alves, R. E., Brito, E. S. Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J. and Saura-Calixto, F. D. (2006). Metodologia científica: Determinação da atividade antioxidante total em frutas pelo método de redução do ferro. Fortaleza: Embrapa Agroindústria Tropical. (Embrapa Agroindústria Tropical. Comunicado Técnico, 125:1–4.
  • Rufino, M. S. M., Alves, R. E., Brito, E. S. Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J. and Saura-Calixto, F. D. (2007a). Metodologia científica: Determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Fortaleza: Embrapa Agroindústria Tropical. (Embrapa Agroindústria Tropical. Comunicado Técnico, 127:1–4.
  • Rufino, M. S. M., Alves, R. E., Brito, E. S. Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J. and Saura-Calixto, F. D. (2007b). Metodologia científica: Determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS+. Fortaleza: Embrapa Agroindústria Tropical. (Embrapa Agroindústria Tropical. Comunicado Técnico, 128:1–4.
  • Samaniego-Sánchez, C., Inurreta-Salinas, Y., Quesada-Granados, J. J., Blanca-Herrera, R., Villalón-Mir, M., López-García de la Serrana, H. and López Martínez, M. C. (2011). The influence of domestic culinary processes on the Trolox equivalent antioxidant capacity of green tea infusions. J. Food Composit. Anal. 24:79–86.
  • Schinella, G., Fantinelli, J. C., Tournier, H., Prieto, J. M., Spegazzini, E., Debenedetti, S. and Mosca, S. M. (2009). Antioxidant and cardioprotective effects of Ilex brasiliensis: A comparative study with Ilex paraguariensis (Yerba mate). Food Res. Int. 42:1403–1409.
  • Sharma, O. P. and Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chem. 113:1202–1205.
  • Silva, E. L., Neiva, T. J. C., Shirai, M., Terao, J. and Abdalla, D. S. P. (2008). Acute ingestion of Yerba mate infusion (Ilex paraguariensis) inhibits plasma and lipoprotein oxidation. Food Res. Int. 41:973–979.
  • Singleton, V. L. and Rossi Jr, J. A. (1965). Colourimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagent. Amer. J. Enol. Viticult. 16:144–158.
  • Snedecor, G. W. and Cochran, W. G. (1980). Statistical Methods. Taylor & Francis, Ames, Iowa.
  • Song, L., Wang, X., Zheng, X. and Huang, D. (2011). Polyphenolic antioxidant profiles of yellow camellia. Food Chem. 129:351–357.
  • Song, R., Kelman, D., Johns, K. L. and Wright, A. D. (2012). Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chem. 133:707–714.
  • Sousa, C. M. M., Silva, H. R., Vieira Jr., G.M., Ayres, M. C. C., Costa, C. L. S., Araújo, D. S., Cavalcante, L. C. D., Barros, E. D. S., Araújo, P. B. M., Brandão, M. S. and Chaves, M. H. (2007). Total phenolics and antioxidant activity of five medicinal plants. Química Nova. 30:351–355.
  • Steele, V. E., Kelloff, G. J., Balentine, D., Boone, C. W., Mehta, R., Bagheri, D., Sigman, C. C., Zhu, S. and Sharma, S. (2000). Comparative chemopreventive mechanisms of green tea, black tea and selected polyphenol extracts measured by in vitro bioassays. Mol. Epidemiol. Cancer Prev. 21:63–67.
  • Tan, P. N., Steinbach, M. and Kumar, V. (2005). Introduction to Data Mining. Taylor & Francis, Upper Saddle River, New Jersey.
  • Tijburg, L. B. M., Mattern, T., Folts, J. D., Weisgerber, U. M. and Jatan, M. B. (1997). Tea flavonoids and cardiovascular diseases: A review. Cri. Rev. Food Sci. Nutr. 37:771–785.
  • Vinson, J. A. (2000). Black and green tea and heart disease: A review. Biofactors. 13:127–132.
  • Wang, Y., Huang, S., Shao, S., Qian, L. and Xu, P. (2012). Studies on bioactivities of tea (Camellia sinensis L.) fruit peel extracts: Antioxidant activity and inhibitory potential against α-glucosidase and α-amylase in vitro. Ind. Crops Products. 37:520–526.
  • Wang, Y., Li, Q., Wang, Q., Li, Y., Ling, J, Liu, L., Chen, X. and Bi, K. (2011). Simultaneous determination of seven bioactive components in oolong tea Camellia sinensis: Quality control by chemical composition and HPLC fingerprints. J. Agr. Food Chem. 60:256–260.
  • Wu, C. D. and Wei, G. X. (2002). Tea as a functional food for oral health. Nutr. Oral Health. 18:443–444.
  • Xu, R., Sun, H. Y. Y., Tu, Y. and Zeng, X. (2012). Preparation, preliminary characterization, antioxidant, hepatoprotective and antitumor activities of polysaccharides from the flower of tea plant (Camellia sinensis). Food Chem. Toxicol. 50:2473–2480.
  • Yang, J. and Liu, R. H. (2013). The phenolic profiles and antioxidant activity in different types of tea. Int. J. Food Sci. Technol. 48(1):163–171.
  • Yen, G. C. and Chen, H. Y. (1994). Comparison of antimutagenic effect of various tea extracts (Green, Oolong, Pouchong, and Black Tea). J. Food Protect. 57:54–58.
  • Zenbio. (2008). Instruction manual: ORAC antioxidant assay kit. Available from http://www.zen-bio.com. Accessed: July 11, 2012).
  • Zielinski, A. A. F., Alberti, A., Braga, C. M., Silva, K. M., Canteri, M. H. G., Mafra, L. I., Granato, D., Nogueira, A., & Wosiacki, D. (2014b). Effect of mash maceration and ripening stage of apples on phenolic compounds and antioxidant power of cloudy juices: A study using chemometrics. LWT - Food Sci. Technol., 57(1):223–229.
  • Zielinski, A. A. F., Haminiuk, C. W. I., Alberti, A., Nogueira, A., Demiate, I. M., & Granato, D. (2014a). A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Res. Int. 60:246–254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.