1,080
Views
61
CrossRef citations to date
0
Altmetric
Original Articles

Amino Acid Degradations Produced by Lipid Oxidation Products

&

REFERENCES

  • Adams, A., Hamdani, S., Van Lancker, F., Mejri, S. and De Kimpe, N. (2010). Stability of acrylamide in model systems and its reactivity with selected nucleophiles. Food Res. Int. 43:1517–1522.
  • Ardö, Y. (2006). Flavour formation by amino acid catabolism. Biotechnol. Adv. 24:238–242.
  • Aurelio, L., Box, J. S., Brownlee, R. T. C., Hughes, A. B. and Sleebs, M. M. (2003). An efficient synthesis of N-methyl amino acids by way of intermediate 5-oxazolidinones. J. Org. Chem. 68:2652–2667.
  • Capuano, E. and Fogliano, V. (2011). Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT-Food Sci. Technol. 44:793–810.
  • Capuano, E., Oliviero, T., Acar, O. C., Gokmen, V. and Fogliano, V. (2010). Lipid oxidation promotes acrylamide formation in fat-rich model systems. Food Res. Int. 43:1021–1026.
  • Cheng, H. F. (2010). Volatile flavor compounds in yogurt: A review. Crit. Rev. Food Sci. Nutr. 50:938–950.
  • Choe, E. and Min, D. B. (2006). Chemistry and reactions of reactive oxygen species in foods. Crit. Rev. Food Sci. Nutr. 46:1–22.
  • Chu, F. L. and Yaylayan, V. A. (2008). Model studies on the oxygen-induced formation of benzaldehyde from phenylacetaldehyde using pyrolysis GC-MS and FTIR. J. Agric. Food Chem. 56:10697–10704.
  • Chu, F. L. and Yaylayan, V. A. (2009). FTIR monitoring of oxazolidin-5-one formation and decomposition in a glycolaldehyde-phenylalanine model system by isotope labeling techniques. Carbohydr. Res. 344:229–236.
  • Claeys, W. L., De Vleeschouwer, K. and Hendrickx, M. E. (2005). Effect of amino acids on acrylamide formation and elimination kinetics. Biotechnol. Prog. 21:1525–1530.
  • Fernández, M. and Zúñiga, M. (2006). Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 32:155–183.
  • Fürmeier, S. and Metzger, J. O. (2003). Synthesis of new heterocyclic fatty compounds. Eur. J. Org. Chem. 885–893.
  • Gardner, H. W. (1989). Oxygen radical chemistry of polyunsaturated fatty acids. Free Radical Biol. Med. 7:65–86.
  • Gardner, H. W., Hou, C. T., Weisleder, D. and Brown, W. (2000). Biotransformation of linoleic acid by Clavibacter sp ALA2: Heterocyclic and heterobicyclic fatty acids. Lipids 35:1055–1060.
  • Girotti, A. W. (1998). Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 39:1529–1542.
  • Granvogl, M., Beksan, E. and Schieberle, P. (2012). New insights into the formation of aroma-active Strecker aldehydes from 3-oxazolines as transient intermediates. J. Agric. Food Chem. 60:6312–6322.
  • Granvogl, M., Bugan, S. and Schieberle, P. (2006). Formation of amines and aldehydes from parent amino acids during thermal processing of cocoa and model systems: New insights into pathways of the Strecker reaction. J. Agric. Food Chem. 54:1730–1739.
  • Grosch, W. (1976). Degradation of linoleic acid hydroperoxides to volatile carbonyl compounds. Z. Lebensm. Unters. Forsch. 160:371–375.
  • Hidalgo, F. J., Delgado, R. M., Navarro, J. L. and Zamora, R. (2010a). Asparagine decarboxylation by lipid oxidation products in model systems. J. Agric. Food Chem. 58:10512–10517.
  • Hidalgo, F. J., Delgado, R. M. and Zamora, R. (2009). Degradation of asparagine to acrylamide by carbonyl–amine reactions initiated by alkadienals. Food Chem. 116:779–784.
  • Hidalgo, F. J., Delgado, R. M. and Zamora, R. (2010b). Role of mercaptans on acrylamide elimination. Food Chem. 122:596–601.
  • Hidalgo, F. J., Gallardo, E. and Zamora, R. (2005). Strecker type degradation of phenylalanine by 4-hydroxy-2-nonenal in model systems. J. Agric. Food Chem. 54:10254–10259.
  • Hidalgo, F. J. and Zamora, R. (1995). In vitro production of long chain pyrrole fatty esters from carbonyl–amine reactions. J. Lipid Res. 36:725–735.
  • Hidalgo, F. J. and Zamora, R. (2004). Strecker-type degradation produced by the lipid oxidation products 4,5-epoxy-2-alkenals. J. Agric. Food Chem. 52:7126–7131.
  • Hidalgo, F. J. and Zamora, R. (2007). Conversion of phenylalanine into styrene by 2,4-decadienal in model systems. J. Agric. Food Chem. 55:4902–4906.
  • Jackson, L. S. (2009). Chemical food safety issues in the United States: Past, present, and future. J. Agric. Food Chem. 57:8161–8170.
  • Kaneda, K., Itoh, T., Kii, N., Jitsukawa, K. and Teranishi, S. (1982). Oxygenation of enamines using copper catalysts. J. Mol. Catal. 15:349–365.
  • Kasaikina, O. T., Kansheva, V. D., Maximova, T. V., Kartasheva, Z. S., Yanishlieva, N. V., Kondratovich, V. G. and Totseva, I. R. (2006). Catalytic effect of amphiphilic components of the lipid oxidation and lipid hydroperoxide decomposition. Oxid. Commun. 29:574–584.
  • Katrizky, A. R. and El-Mouafy, M. A. (1982). Pyrylium-mediated conversion of primary amines into olefins via tetrahydrobenzoacrydiniums: A mild alternative to Hofmann elimination. J. Org. Chem. 47:3506–3511.
  • Kim, C. T., Hwang, E.-S. and Lee, H. J. (2005). Reducing acrylamide in fried snack products by adding amino acids. J. Food Sci. 70:C354–C358.
  • Marcobal, A., de las Rivas, B., Landete, J. M., Tabera, L. and Muñoz, R. (2012). Tyramine and phenylethylamine biosynthesis by food bacteria. Crit. Rev. Food Sci. Nutr. 52:448–467.
  • Pazos, M., Andersen, M. L. and Skibsted, L. H. (2008). Heme-mediated production of free radicals via performed lipid hydroperoxide fragmentation. J. Agric. Food Chem. 56:11478–11484.
  • Reis, A. and Spickett, C. M. (2012). Chemistry of phospholipid oxidation. Biochim. Biophis. Acta 1818:2374–2387.
  • Rydberg, P., Eriksson, S., Tareke, E., Karlsson, P., Ehrenberg, L. and Törnqvist, M. (2003). Investigations of factors that influence the acrylamide content of heated foodstuffs. J. Agric. Food Chem. 51:7012–7018.
  • Salazar, R., Arámbula-Villa, G., Vázquez-Landaverde, P. A., Hidalgo, F. J. and Zamora, R. (2012). Mitigating effect of amaranth (Amarantus hypochondriacus) protein on acrylamide formation in foods. Food Chem. 135:2293–2298.
  • Saunders, W. H. and Cockerill, A. F. (1973). Mechanisms of Elimination Reactions. Wiley, New York.
  • Shalaby, A. R. (1996). Significance of biogenic amines to food safety and human health. Food Res. Int. 29:675–690.
  • Smit, B. A., Engels, W. J. M., Alewijm, M., Lommerse, G. T. C. A., Kippersluijs, E. A. H., Wouters, J. T. M. and Smit, G. (2004). Chemical conversion of α-keto acids in relation to flavor formation in fermented foods. J. Agric. Food Chem. 52:1263–1268.
  • Taeymans, D., Wood, J., Ashby, P., Blank, I., Studer, A., Stadler, R. H., Gonde, P., Van Eijck, P., Lalljie, S., Lingnert, H., Lindblom, M., Matissek, R., Muller, D., Tallmadge, D., O'Brien, J., Thompson, S., Silvani, D. and Whitmore, T. (2004). A review of acrylamide: An industry perspective on research, analysis, formation and control. Crit. Rev. Food Sci. Nutr. 44:323–347.
  • Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S. and Törnqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food Chem. 50:4998–5006.
  • Tokunaga, M., Shirogane, Y., Aoyama, H., Obora, Y. and Tsuji, Y. (2005). Copper-catalyzed oxidative cleavage of carbon-carbon double bond of enol ethers with molecular oxygen. J. Organomet. Chem. 690:5378–5382.
  • Tsuge, O., Kanemasa, S., Ohe, M. and Takenaka, S. (1987). Simple generation of nonstabilized azomethine ylides through decarboxylative condensation of α-amino acids with carbonyl-compounds via 5-oxazolidinone intermediates. Bull. Chem. Soc. Jpn. 60:4079–4089.
  • Ueda, J., Saito, N. and Ozawa, T. (1996). Detection of free radicals produced from reactions of lipid hydroperoxide model compounds with Cu(II) complexes by ESR spectroscopy. Arch. Biochem. Biophys. 325:65–76.
  • Urbach, G. (1993). Relations between cheese flavor and chemical composition. Int. Dairy J. 3:389–422.
  • Van Boekel, M., Fogliano, V., Pellegrini, N., Stanton, C., Scholz, G., Lalljie, S., Somoza, V., Knorr, D., Jasti, P. R. and Eisenbrand, G. (2010). A review on the beneficial aspects of food processing. Mol. Nutr. Food Res. 54:1215–1247.
  • Yaylayan, V. A. and Keyhani, A. (2001). Carbohydrate and amino acid degradation pathways in L-methionine/D-[13C]glucose model systems. J. Agric. Food Chem. 49:800–803.
  • Zamora, R., Delgado, R. M. and Hidalgo, F. J. (2009). Conversion of 3-aminopropionamide and 3-alkylaminopropionamides into acrylamide in model systems. Mol. Nutr. Food Res. 53:1512–1520.
  • Zamora, R., Delgado, R. M. and Hidalgo, F. J. (2010). Model reactions of acrylamide with selected amino compounds. J. Agric. Food Chem. 58:1708–1713.
  • Zamora, R., Delgado, R. M. and Hidalgo, F. J. (2011a). Amino phospholipids and lecithins as mitigating agents for acrylamide in asparagine/glucose and asparagine/2,4-decadienal model systems. Food Chem. 126:104–108.
  • Zamora, R., Delgado, R. M. and Hidalgo, F. J. (2011b). Strecker aldehydes and α-keto acids, produced by carbonyl–amine reactions, contribute to the formation of acrylamide. Food Chem. 128:465–470.
  • Zamora, R., Delgado, R. M. and Hidalgo, F. J. (2012a). Formation of β-phenylethylamine as a consequence of lipid oxidation. Food Res. Int. 46:321–325.
  • Zamora, R., Delgado, R. M. and Hidalgo, F. J. (2012b). Chemical conversion of phenylethylamine into phenylacetaldehyde by carbonyl–amine reactions in model systems. J. Agric. Food Chem. 60:5491–5496.
  • Zamora, R., Gallardo, E. and Hidalgo, F. J. (2006a). Amine degradation by 4,5-epoxy-2-decenal in model systems. J. Agric. Food Chem. 54:2398–2404.
  • Zamora, R., Gallardo, E. and Hidalgo, F. J. (2007). Strecker degradation of phenylalanine initiated by 2,4-decadienal or methyl 13-oxooctadeca-9,11-dienoate in model systems. J. Agric. Food Chem. 55:1308–1314.
  • Zamora, R., Gallardo, E. and Hidalgo, F. J. (2008). Model studies on the degradation of phenylalanine initiated by lipid hydroperoxides and their secondary and tertiary oxidation products. J. Agric. Food Chem. 56:7970–7975.
  • Zamora, R., Gallardo, E., Navarro, J. L. and Hidalgo, F. J. (2005). Strecker-type degradation of phenylalanine by methyl 9,10-epoxy-13-oxo-11-octadecenoate and methyl 12,13-epoxy-9-oxo-11-octadecenoate. J. Agric. Food Chem. 53:4583–4588.
  • Zamora, R. and Hidalgo, F. J. (2005). Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Crit. Rev. Food Sci. Nutr. 45:49–59.
  • Zamora, R. and Hidalgo, F. J. (2008). Contribution of lipid oxidation products to acrylamide formation in model systems. J. Agric. Food Chem. 56:6075–6080.
  • Zamora, R., Navarro, J. L., Gallardo, E. and Hidalgo, F. J. (2006b). Chemical conversion of α-amino acids into α-keto acids by 4,5-epoxy-2-decenal. J. Agric. Food Chem. 54:6101–6105.
  • Zhang, Y., Ren, Y. and Zhang, Y. (2009). New research developments on acrylamide: Analytical chemistry, formation mechanism, and mitigation recipes. Chem. Rev. 2009:4375–4397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.