1,134
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

Natural Origin Lycopene and Its “Green” Downstream Processing

, &

REFERENCES

  • Abdalla, A. E. M., Darwish, S. M., Ayad, E. H. E. and El-Hamahmy, R. M. (2007). Egyptian mango by-product 2: Antioxidant and antimicrobial activities of extract and oil from mango seed kernel. Food Chem. 103:1141–1152.
  • Ajila, C. M., Naidu, K. A., Bhat, S. G. and Prasada Rao, U. J. S. (2007). Bioactive compounds and antioxidant potential of mango peel extract. Food Chem. 105:982–988.
  • Amarowicz, R. (2011). Lycopene as a natural antioxidant. Eur. J. Lipid Sci. Technol. 113:675–677.
  • Anese, M., Mirolo, G., Beraldo, P. and Lippe, G. (2013). Effect of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility. Food Chem. 136:458–463.
  • Babler, J. H. and Harvey, W. (2000). Patent WO0031086, C-15 Phosphonate for the manufacture of lycopene.
  • Bao, Y., Yan, H., Liu, L. and Xu, Q. (2010). Efficient extraction of lycopene from Rhodopseudomonas palustris with n-hexane and methanol after alkaline wash. Chem. Eng. Technol. 33:1665–1671.
  • Bart, H. J. and Pilz, S. (2011). Industrial Scale Natural Products Extraction, Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany.
  • Bautista-Ortín, A. B., Martínez-Cutillas, A., Ros-Garcia, J. M., López-Roca, J. M. and Gómez-Plaza, E. (2005). Improving colour extraction and stability in red wines: the use of maceration enzymes and enological tannins. Int. J. Food Sci. Technol. 40:867–878.
  • Bhataya, A., Schmidt-Dannert, C. and Lee, P. C. (2009). Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochem. 44:1095–1102.
  • Borguini, R. G. and Torres, E. A. F. D. (2009). Tomatoes and tomato products as dietary sources of antioxidants. Food Rev. Int. 25:313–25.
  • Brian, G. (1998). Doing what comes naturally in the dyehouse. J. Soc. Dyers Color. 114:4–7.
  • Britton, G., Liaaen-Jensen, S. and Pfander, H. (2004). Carotenoids Handbook. Birkhäuser, Basel, Switzerland.
  • Calvo, M. M., Dado, D. and Santa-Maria, G. (2006). Influence of extraction with ethanol or ethyl acetate on the yield of lycopene, b-carotene, phytoene and phytofluene from tomato peel powder. Eur. Food. Res. Technol. 224:567–571.
  • Champagne, C. P. and Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Curr. Opin. Biotechnol. 18:184–190.
  • Chan, C. H., Yusoff, R., Ngoh, G. C. and Kung, F. W. L. (2011). Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 1218:6213–6225.
  • Chemat, F., Zill-E-Huma,  , Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 18:813–835.
  • Chen, Y., Gu, X., Huang, S. Q., Li, J., Wang, X. and Tang, J. (2010). Optimization of ultrasonic/microwave assisted extraction (UMAE) of polysaccharides from Inonotus obliquus and evaluation of its anti-tumor activities. Int. J. Biol. Macromol. 46:429–435.
  • Choe, E. and Min, D. B. (2009). Mechanisms of antioxidants in the oxidation of foods. Compreh. Rev. Food Sci. Food Saf. 8:345–358.
  • Choksi, P. M. and Joshi, V. Y. (2007). A Review on lycopene - extraction, purification, stability and applications. Int. J. Food Proper. 10:289–298.
  • Choudhari, S. M. and Ananthanarayan, L., Singhal, R. S. (2008). Use of metabolic stimulators and inhibitors for enhanced production of beta-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresour. Technol. 99:3166–3173.
  • Choudhari, S. M. and Singhal, R. S. (2008). Supercritical carbon dioxide extraction of lycopene from mated cultures of Blakeslea trispora NRRL 2895 and 2896. J. Food. Engineer. 89:349–354.
  • Choudhari, S. M. and Ananthanarayan, L. (2007). Enzyme aided extraction of lycopene from tomato tissues. Food Chem. 102:77–81.
  • Çinar, I. (2004). Carotenoid pigment loss of freeze-dried plant samples under different storage conditions. LWT - Food Sci. Technol. 37:363–367.
  • Colle, I. J. P., Lemmens, L., Van Buggenhout, S., Met, K., Van Loey, A. M. and Hendrickx, M. E. (2013). Processing tomato pulp in the presence of lipids: The impact on lycopene bioaccessibility. Food Res. Int. 51:32–38.
  • Collins, J. K., Perkins-Veazie, P. and Roberts, W. (2006). Lycopene: From plants to humans. HortScience 41:1135–1144.
  • Craft, N. E. and Soares, J. H. (1992). Relative solubility, stability, and absorptivity of lutein and β-carotene in organic solvents. J. Agric. Food Chem. 40:431–434.
  • Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M. and Cintas, P. (2008). Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason. Sonochem. 15:898–902.
  • De la Fuente, J. C., Oyarzun, B., Quezada, N. and Del Valle, J. M. (2006). Solubility of carotenoid pigments (lycopene and astaxanthin) in supercritical carbon dioxide. Fluid Phase Equilib. 247:90–95.
  • de Lorenzo, V. (2008). Systems biology approaches to bioremediation. Curr. Opin. Biotechnol. 19:579–589.
  • Dehghan-Shoar, Z., Hardacre, A. K., Meerdink, G. and Brennan, C. S. (2011). Lycopene extraction from extruded products containing tomato skin. Int. J. Food Sci. Technol. 46:365–371.
  • Dolatowski, Z. J., Stadnik, J. and Stasiak, D. (2007). Applications of ultrasound in food technology. Acta Sci. Pol. Technol. Aliment. 6:89–99.
  • dos Anjos Ferreira, A. L., Yeum, K. J., Russell, R. M., Krinsky, N. I. and Tang, G. (2004). Enzymatic and oxidative metabolites of lycopene. J. Nutr. Biochem. 15:493–502.
  • Echaverri-Erasum, C., Johnson, E. A. (2002). Fungal carotenoids. In: Applied mycology and biotechnology. Khachatourians G. G., Arora D. K., eds., pp. 45–87. Elsevier, Amsterdam.
  • Edge, R., McGarvey, D. J. and Truscott, T. G. (1997). The carotenoids as anti-oxidants—A review. J. Photochem. Photobiol. B 41:189–200.
  • Eh, A. L. S. and Teoh, S. G. (2012). Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrason. Sonochem. 19:151–159.
  • Ernst, H. (2002). Recent advances in industrial carotenoid synthesis. Pure Appl. Chem. 74:1369–1382.
  • Farmer, W. R. and Liao, J. C. (2000). Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 18:533–537.
  • Fish, W. W., Perkins-Veazie, P. and Collins, J. K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Comp. Anal. 15:309–317.
  • Fish, W. W. (2006). Interaction of sodium dodecyl sulfate with watermelon chromoplasts and examination of the organization of lycopene within the chromoplasts. J. Agric. Food Chem. 54:8294–8300.
  • Garrido, M., Gonzalez-Flores, D., Marchena, A. M., Prior, E., Garcıa-Parra, J., Barriga, C. and Rodrıguez Moratinos, A. B. (2013). A lycopene-enriched virgin olive oil enhances antioxidant status in humans. J. Sci. Food Agric.. 93:1820–1826.
  • Garrido, M., González-Flores, D., Marchena, A. M., Prior, E., García-Parra, J., Barriga, C. and Rodríguez Moratinos, A. B. (2012). A lycopene-enriched virgin olive oil enhances antioxidant status in humans. J. Sci. Food Agric. Article in Press
  • Gomez-Prieto, M. S., Caja, M. M., Herraiz, M. and Santa-Maria, G. (2003). Supercritical fluid extraction of all-trans-lycopene from tomato. J. Agric. Food Chem. 51:3–7.
  • Gomez-Prieto, M. S., Caja, M. M. and Santa-Maria, G. (2002). Solubility in supercritical carbon dioxide of the predominant carotenes of tomato skin. J. Am. Oil Chem. Soc. 79:897–902.
  • Haber, D. and Lu, Q. Y. (2002). Overview of mechanism of action of lycopene. Exp. Biol. Med. 227:920–923.
  • Hathcock, J. and Kriengsinyos, W. (2011). Highest Observed Intake: Definition, regulatory uses and provisional values. Regulat. Toxicol. Pharmacol. 61:115–118.
  • Huang, W., Li, Z., Niu, H., Li, D. and Zhang, J. (2008). Optimization of operating parameters for supercritical carbon dioxide extraction of lycopene by response surface methodology. J. Food Eng. 89:298–302.
  • Ishida, B. K. and Bartley, G. E. (2005). Carotenoids: chemistry, sources, and physiology. In: Encyclopedia of Human Nutrition, pp 330–338. Caballero, B., Allen, L., Prentice, A., 2nd ed., Eds., Elsevier, Oxford, U.K.
  • Ishida, B. K. and Chapman, M. H. (2009). Carotenoid extraction from plants using a novel, environmentally friendly solvent. J. Agric. Food Chem. 57:1051–1059.
  • Ishida, B. K. and Chapman, M. H. (2012). Effects of a hydrodynamic process on extraction of carotenoids from tomato. Food Chem. 132:1156–1160.
  • Isler, O. (1971). Carotenoids. Birkhauserverlag, Basel, Switzerland.
  • Jaswir, I., Noviendri, D., Hasrini, R. F. and Octavianti, F. (2011). Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plants Res. 5:7119–7131.
  • Jin, Y. S. and Stephanopoulos, G. (2007). Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metab. Eng. 9:337–347.
  • Jonker, D., Kuper, C., Fraile, N., Estrella, A. and Rodriguez, O. (2003). Ninety-day oral toxicity study of lycopene from Blakeslea trispora in rats. Regul. Toxicol. Pharmacol. 37:396–406.
  • Kanjilal, P. B. and Singh, R. S. (1995). Agronomic evaluation of annatto (Bixa orellana L.). J. Herbs Spices Medic. Plants 3:13–17.
  • Kaur, A., Dhari, J., Sharma, O. P., Gupta, G. D. and Kharb, V. (2011). Lycopene. Inter. J. Pharm. Technol. 3:1605–1622.
  • Kaur, D., Wani, A. A., Oberoi, D. P. S. and Sogi, D. S. (2008). Effect of extraction conditions on lycopene extractions from tomato processing waste skin using response surface methodology. Food Chem. 108:711–718.
  • Kelkel, M., Schumacher, M., Dicato, M. and Diederich, M. (2011). Antioxidant and anti-proliferative properties of lycopene. Free Rad. Res. 45:925–940.
  • Khachik, F., Carvallo, L., Bernstein, P. S., Muir, G. J., Zhao, D. Y. and Katz, N. B. (2002). Chemistry, distribution and metabolism of tomato carotenoids and their impact on human health. Exp. Biol. Med. (Maywood) 227:845–851.
  • Khatoon, S. and Shome, U. (1993). Analysis of commercial ‘Ratanj’ of by TLC fluorescence fingerprinting. Int. J. Pharmacogn. 31:269–277.
  • Kim, S. W., Kim, J. B., Ryu, J. M., Jung, J. K. and Kim, J. H. (2009). High-level production of lycopene in metabolically engineered E. coli. Process Biochem. 44:899–905.
  • Kim, Y. S., Lee, J. H., Kim, N. H., Yeom, S. J., Kim, S. W. and Oh, D. K. (2011). Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 90:489–497.
  • Klein-Marcuschamer, D., Ajikumar, P. K. and Stephanopoulos, G. (2007). Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trend Biotechnol. 25:417–424.
  • Kong, K. W., Khoo, H. E., Prasad, K. N., Ismail, A., Tan, C. P. and Rajab, N. F. (2010). Revealing the power of the natural red pigment lycopene. Molecules 15:959–987.
  • Konwarh, R., Pramanik, S., Kalita, D., Mahanta, C. L. and Karak, N. (2012). Ultrasonication—A complementary ‘green chemistry’ tool to biocatalysis: A laboratory-scale study of lycopene extraction. Ultrason. Sonochem. 19:292–299.
  • Kubola, J. and Siriamornpun, S. (2011). Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng). Food Chem. 127:1138–1145
  • Kumcuoglu, S., Yilmaz, T. and Tavman, S. (2014). Ultrasound assisted extraction of lycopene from tomato processing wastes, J. Food Sci. Technol. 51:4102–4107.
  • Kumar, J. K. and Sinha, A. K. (2004). Resurgence of natural colourants: a holistic view. Nat. Prod. Res. 18:59–84.
  • Kumcuoglu, S., Yilmaz, T. and Tavman, S. (2013). Ultrasound assisted extraction of lycopene from tomato processing wastes, J. Food Sci. Technol. Article in Press, 1–6. DOI: 10.1007/s13197-013-0926-x.
  • Landbo, A. K. and Meyer, A. S. (2001). Enzyme-assisted extraction of antioxidative phenols from black currant juice press residues (Ribes nigrum). J. Agric. Food Chem. 49:3169–3177.
  • Laufenberg, G., Kunz, B. and Nystroem, M. (2003). Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Biores. Technol. 87:167–198.
  • Lee, J. W., Kim, T. Y., Jang, Y. S., Choi, S. and Lee, S. Y. (2011). Systems metabolic engineering for chemicals and materials. Trend Biotechnol. 29:370–378.
  • Lenucci, M. S., Caccioppola, A., Durante, M., Serrone, L., Leonardo, R., Piro, G. and Dalessandro, G. (2010). Optimisation of biological and physical parameters for lycopene supercritical CO2 extraction from ordinary and high-pigment tomato cultivars. J. Sci. Food Agric. 90:1709–1718.
  • Lianfu, Z. and Zelong, L. (2008). Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason. Sonochem. 15:731–737.
  • Lin, C. H. and Chen, B. H. (2003). Determination of carotenoids in tomato juice by liquid chromatography. J. Chromatogr. A 1012:103–109.
  • Liu, Y., Liu, J., Chen, X., Liu, Y. and Di, D. (2010). Preparative separation and purification of lycopene from tomato skins extracts by macroporous adsorption resins. Food Chem. 123:1027–1034.
  • Lopez-Nieto, M., Costa, J., Peiro, E., Méndez, E., Rodriguez-Sálz, M., de la Fuente, J. L., Cabri, W. and Barredo, J. L. (2004). Biotechnological lycopene production by mated fermentation of Blakeslea trispora. Appl. Microbiol. Biotechnol. 66:153–159.
  • Machmudah, S., Zakaria  , Winardi, S., Sasaki, M., Goto, M., Kusumoto, N. and Hayakawa, K. (2012). Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J. Food Eng. 108:290–296.
  • Maiani, G., Castón, M. J. P., Catasta, G., Toti, E., Cambrodón, I. G., Bysted, A., Granado-Lorencio, F., Olmedilla-Alonso, B., Knuthsen, P., Valoti, M., Böhm, V., Mayer-Miebach, E., Behsnilian, D. and Schlemmer, U. (2009). Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 53:S194–S218.
  • Matulka, R., Hood, A. and Griffths, J. (2004). Safety evaluation of a natural tomato oleoresin extract derived from food-processing tomatoes. Regul. Toxicol. Pharmacol. 39:390–402.
  • McClain, R. and Bausch, J. (2003). Summary of safety studies conducted with synthetic lycopene. Regul. Pharmacol. Toxicol. 37:274–285.
  • Mein, J. R., Lian, F. and Wang, X. D. (2008). Biological activity of lycopene metabolites: Implications for cancer prevention. Nutr. Rev. 66:667–683.
  • Mellert, W., Deckardt, K., Gembardt, C., Schulte, S. and Van Ravenzwaay, B. (2002). Thirteen-week oral toxicity study of synthetic lycopene products in rats. Food Chem. Toxicol. 40:1581–1588.
  • Montesano, D., Fallarino, F., Cossignani, L., Bosi, A., Simonetti, M. S., Puccetti, P. and Damiani, P. (2008). Innovative extraction procedure for obtaining high pure lycopene from tomato. Europ. Food Res. Technol. 226:327–335.
  • Nagao, A. (2004). Oxidative conversion of carotenoids to retinoids and other products. J. Nutr. 134:S237–S240.
  • Namitha, K. K. and Negi, P. S. (2010). Chemistry and Biotechnology of Carotenoids. Crit. Rev. Food. Sci. Nutr. 50:728–760.
  • Naviglio, D., Pizzolongo, F., Ferrara, L., Aragòn, A. and Santini, A. (2008). Extraction of pure lycopene from industrial tomato by-products in water using a new high-pressure process. J. Sci. Food Agricult. 88:2414–2420.
  • Nhung, D. T. T., Bung, P. N., Ha, N. T. and Phong, T. K. (2010). Changes in lycopene and beta carotene contents in aril and oil of gac fruit during storage. Food Chem 121:326–331.
  • Nobre, B. P., Gouveia, L., Matos, P. G. S., Cristino, A. F., Palavra, A. F. and Mendes, R. L. (2012). Supercritical extraction of lycopene from tomato industrial wastes with ethane. Molecules 17: 8397–8407.
  • Olives Barba, A. I., Cámara Hurtado, M., Sánchez Mata, M. C., Fernández Ruiz, V. and López Sáenz de Tejada, M. (2006). Application of a UV-Vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chem. 95:328–336.
  • Olson, J. A. (1994). Absorption, transport, and metabolism of carotenoids in humans. Pure Appl. Chem. 66:1011–1016.
  • Page, D., Van Stratum, E., Degrou, A. and Renard, C. M. G. C. (2012). Kinetics of temperature increase during tomato processing modulate the bioaccessibility of lycopene. Food Chem. 135:2462–2469.
  • Papaioannou, E. H. and Liakopoulou-Kyriakides, M. (2012). Agro-food wastes utilization by Blakeslea trispora for carotenoids production. Acta Bioch. Polon. 59:151–153.
  • Papaioannou, E., Roukas, T. and Liakopoulou-Kyriakides, M. (2008). Effect of biomass pre-treatment and solvent extraction on β-carotene and lycopene recovery from Blakeslea trispora cells. Prepar. Biochem. Biotechn. 38:246–256.
  • Papaioannou, E. H. and Karabelas, A. J. (2012). Tomato peel lycopene recovery under mild conditions assisted by enzymatic pre-treatment and non-ionic surfactants. Acta Biochim. Polon. 59:71–74.
  • Papaioannou, E. H. and Liakopoulou- Kyriakides, M. (2010). Substrate contribution on carotenoids production in Blakeslea trispora cultivations. Food Bioprod. Proces. 88:305–311.
  • Papaioannou, E. H., Stoforos, N. and Liakopoulou-Kyriakides, M. (2011). Substrate contribution on free radical scavenging capacity of carotenoid extracts produced from Blakeslea trispora cultures. World J. Microbiol. Biotechnol. 27:851–858.
  • Periago, M. J., Rincón, F., Agüera, M. D. and Ros, G. (2004). Mixture approach for optimizing lycopene extraction from tomato and tomato products. J. Agricult. Food Chem. 52:5796–5802.
  • Perkins-Veazie, P., Collins, J. K., Davis, A. R. and Roberts, W. (2006). Carotenoid content of 50 watermelon cultivars. Agric. Food Chem. 54:2593–2597.
  • Perkins-Veazie, P., Collins, J. K., Pair, S. D. and Roberts, W. (2001). Lycopene content differs among red-fleshed watermelon cultivars. J. Sci. Food. Agric. 81:983–987.
  • Preedy, V. R. and Watson, R. R. (2008). Lycopene Nutritional, Medicinal and Therapeutic Properties. Science Publishers, Enfield, NH, USA.
  • Puri, M., Sharma, D. and Barrow, C. J. (2012). Enzyme-assisted extraction of bioactives from plants. Trend Biotechnol. 30:37–44.
  • Qui, W., Jiang, H., Wang, H. and Gao, Y. (2006). Effect of high hydrostatic pressure on lycopene stability. Food Chem. 97:516–523.
  • Ranveer, R. C., Patil, S. N., Sahoo, A. K. (2013). Effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food Bioprod. Process. 91:370–375.
  • Ranveer, R. C., Patil, S. N. and Sahoo, A. K. (2013). Effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food Bioprod. Process. Article in Press, 1–6. DOI: 10.1016/j.fbp.2013.01.006
  • Rao, A. V., Raym, M. R. and Rao, L. G. (2006). Lycopene. Adv. Food Nutr. Res. 51:99–164.
  • Rastogi, N. K. (2011). Opportunities and challenges in application of ultrasound in food processing. Crit. Rev. Food Sci. Nutr. 51:705–722.
  • Rozzi, N. L., Singh, R. K., Vierling, R. A. and Watkins, B. A. (2002). Supercritical fluid extraction of lycopene from tomato processing byproducts. J. Agric. Food Chem. 50:2638–2643.
  • Saldaña, M. D. A., Temelli, F., Guigard, S. E., Tomberli, B. and Gray, C. G. (2010). Apparent solubility of lycopene and b-carotene in supercritical CO2, CO2 + ethanol and CO2 + canola oil using dynamic extraction of tomatoes. J. Food Eng. 99:1–8.
  • Schmidt-Dannert, C. (2000). Engineering novel carotenoids in microorganisms. Curr. Opin. Biotechnol. 11:255–261.
  • Schweiggert, R. M., Mezger, D., Schimpf, F., Steingass, C. B. and Carle, R. (2012). Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato. Food Chem. 135:2736–2742.
  • Shah, N. C. (1997). Traditional uses of Turmeric (Curcuma longa) in India. J. Med. Arom. Plant Sci. 19:948–954.
  • Shen, R., Jiang, X., Ye, W., Song, X., Liu, L., Lao, X. and Wu, C. (2011). A novel and practical synthetic route for the total synthesis of lycopene. Tetrahedron 67:5610–5614.
  • Shi, J., Khatri, M., Xue, S. J., Mittal, G. S., Ma, Y. and Li, D. (2009a). Solubility of lycopene in supercritical CO2 fluid as affected by temperature and pressure. Sep. Purif. Technol. 66:322–328.
  • Shi, J. and Le Maguer, M. (2000). Lycopene in tomatoes: Chemical and physical properties affected by food processing. Crit. Rev. Food Sci. Nutr. 40:1–42.
  • Shi, J., Yi, C., Xue, S. J., Jiang, Y., Ma, Y. and Li, D. (2009b). Effects of modifiers on the profile of lycopene extracted from tomato skins by supercritical CO2. J. Food Eng. 93:431–436.
  • Shi, X., Xu, Y., Li, Y., Zeng, H. and Sun, Y. (2012a). Optimization of extraction process of lycopene from Watermelon (Citrullus lanatus) by response surface methodology. Appl. Mechan. Mater. 140:385–393.
  • Shi, Y. Q., Xin, X. L. and Yuan, Q. P. (2012b). Improved lycopene production by Blakeslea trispora with isopentenyl compounds and metabolic precursors. Biotechnol. Let. 34:849–852.
  • Spernath, A., Yaghmur, A., Aserin, A., Hoffman, R. E. and Garti, N. (2002). Food-grade microemulsions based on nonionic emulsifiers: Media to enhance lycopene solubilization. J. Agric. Food Chem. 50:6917–6922.
  • Strati, I. F. and Oreopoulou, V. (2011a). Effect of extraction parameters on the carotenoid recovery from tomato waste. Inter. J. Food Sci. Technol. 46:23–29.
  • Strati, I. F. and Oreopoulou, V. (2011b). Process optimisation for recovery of carotenoids from tomato waste. Food Chem. 129:747–752.
  • Tarazona-Díaz, M. P., Viegas, J., Moldao-Martinsc, M. and Aguayo, E. (2011). Bioactive compounds from flesh and by-product of fresh-cut watermelon cultivars. J. Sci. Food Agric. 91:805–812.
  • Tello, J., Viguera, M. and Calvo, L. (2011). Extraction of caffeine from Robusta coffee (Coffea canephora var. Robusta) husks using supercritical carbon dioxide. J. Supercr. Fluids 59:53–60.
  • Tereshina, V. M., Memorskaya, A. S. and Feofilova, E. P. (2010). Lipid composition of the mucoraceous fungus Blakeslea trispora under lycopene formation-stimulating conditions. Microbiology 79:34–39
  • Topal, U., Sasaki, M., Goto, M. and Hayakawa, K. (2006). Extraction of lycopene from tomato skin with supercritical carbon dioxide: effect of operating conditions and solubility analysis. J. Agric. Food Chem. 54:5604–5610.
  • Toprak Aktas, E. and Yildiz, H. (2011). Effects of electroplasmolysıs treatment on chlorophyll and carotenoıd extractıon yıeld from spinach and tomato. J. Food Eng. 106:339–346.
  • Tucker, G. (2003). Nutritional enhancement of plants. Curr. Opin. Biotechnol. 14:221–225
  • Vagi, E., Simandi, B., Vasarhelyine, K. P., Daood, H., Kery, A., Doleschall, F. and Nagy, B. (2007). Supercritical carbon dioxide extraction of carotenoids, tocopherols and sitosterols from industrial tomato by-products. J. Supercrit. Fluids. 40:218–226.
  • Varona, S., Braeuer, A., Leipertz, A., Martín, Á. and Cocero, M. J. (2013). Lycopene solubility in mixtures of carbon dioxide and ethyl acetate. J. Supercrit. Fluids 75:6–10.
  • Vasapollo, G., Longo, L., Rescio, L. and Ciurlia, L. (2004). Innovative supercritical CO2 extraction of lycopene from tomato in the presence of vegetable oil as co-solvent. J. Supercr. Fluids 29:87–96.
  • Vaughn Katherine, L. S., Clausen Edgar, C., King Jerry, W., Howard Luke, R. and Julie, C. D. (2008). Extraction conditions affecting supercritical fluid extraction (SFE) of lycopene from watermelon. Bioresour. Technol. 99:7835–7841.
  • Vogele, A. C. (1937). Effect of environmental factors upon the color of the tomato and the watermelon. Plant Physiol. 12:929–955.
  • Vuong, L. T., Franke, A. A., Custer, L. J. and Murphy, S. P. (2006). Momordica cochinchinensis Spreng. (gac) fruit carotenoids reevaluated. J. Food Comp. Anal. 19:664–668.
  • Wang, J. F., Liu, X. J., Liu, R. S., Li, H. M. and Tang, Y. J. (2011). Optimization of the mated fermentation process for the production of lycopene by Blakeslea trispora NRRL 2895 (+) and NRRL 2896 (−). Bioproc. Biosyst. Engin. 35:553–564.
  • Wang, Y., Zhang, M. and Hu, Y. (2010). Foam fractionation of lycopene: An undergraduate chemistry experiment. J. Chem. Educ. 87:510–511
  • Xi, J. (2006). Effect of high pressure processing on the extraction of lycopene in tomato paste waste. Chem. Eng. Technol. 29:736–739.
  • Xianquan, S., Shi, J., Kakuda, Y. and Yueming, J. (2005). Stability of lycopene during food processing and storage. J. Med. Food 8:413–422.
  • Yonekura, L. and Nagao, A. (2007). Intestinal absorption of dietary carotenoids. Mol. Nutr. Food Res. 51:107–115.
  • Zhang, L. and Liu, Z. (2008). Optimization and comparison of ultrasound/ microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason. Sonochem. 15:731–737.
  • Zhu, J., Zhang, M. and Liu, Q. (2010). Interdisciplinary chemistry experiment: An environmentally friendly extraction of lycopene. J. Chem. Educ. 85:256–257.
  • Zollinger, H. (1991). Color Chemistry: Synthetic, Properties and Applications of Organic Dyes and Pigments. 2nd Edn., VCH, Weinheim, Germany, p. 52.
  • Zuorro, A., Lavecchia, R., Medici, F. and Piga, L. (2013). Enzyme-Assisted production of tomato seed oil enriched with lycopene from tomato pomace. Food Bioprocess Technol. 6:3499–3509.
  • Zuorro, A. and Lavecchia, R. (2010). Mild enzymatic method for the extraction of lycopene from tomato paste. Biotechnol. Biotechnolog. Equipment. 24:1854–1857.
  • Zuorro, A., Fidaleo, M. and Lavecchia, R. (2011). Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme Microb. Technol. 49:567–573.
  • Zuorro, A., Lavecchia, R., Medici, F. and Piga, L. (2012). Enzyme-Assisted production of tomato seed oil enriched with lycopene from tomato pomace. Food Bioprocess Technol. Article in Press, 1–11. DOI: 10.1007/s11947-012-1003-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.