1,425
Views
41
CrossRef citations to date
0
Altmetric
Reviews

Applications of Hyperspectral Imaging in Chicken Meat Safety and Quality Detection and Evaluation: A Review

, , , &

REFERENCES

  • Ariana, D. P. and Lu, R. (2010). Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. J. Food Eng. 96(4):583–590.
  • Barbin, D., Elmasry, G., Sun, D. W. and Allen, P. (2012). Near-infrared hyperspectral imaging for grading and classification of pork. Meat Sci. 90(1):259–268.
  • Barbin, D. F., Elmasry, G., Sun, D. W. and Allen, P. (2013a). Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. Food Chem. 138(2–3):1162–1171.
  • Barbin, D. F., Elmasry, G., Sun, D.-W., Allen, P. and Morsy, N. (2013b). Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging. Innovative Food Sci. Emerg. Technol. 17:180–191.
  • Brosnan, T. and Sun, D.-W. (2002). Inspection and grading of agricultural and food products by computer vision systems-a review. Comput. Electron. Agr. 36(2):193–213.
  • Burger, J. and Gowen, A. (2011). Data handling in hyperspectral image analysis. Chemometr. Intell. Lab. 108(1):13–22.
  • Casasent, D. P. (2008). Hyperspectral waveband selection for contaminant detection on poultry carcasses. Opt. Eng. 47(8): 087202–087202-9.
  • Chao, K., Chen, Y. and Chan, D. (2003). Analysis of Vis/NIR spectral variations of wholesome, septicemia, and cadaver chicken samples. Appl. Eng. Agric. 19(4):453–460.
  • Chao, K., Chen, Y.-R., Hruschka, W. R. and Gwozdz, F. B. (2002). On-line inspection of poultry carcasses by a dual-camera system. J. Food Eng. 51(3):185–192.
  • Chao, K., Kim, M. S. and Chan, D. E. (2014). Control interface and tracking control system for automated poultry inspection. Comp. Stand. Inter. 36:271–277.
  • Chao, K., Mehl, P. M. and Chen, Y. R. (2002). Use of Hyper–and Multi–Spectral Imaging for Detection of Chicken Skin Tumors. ASAE Meeting Paper No. 3084. Appl. Eng. Agric. 18(1):113–120.
  • Chao, K., Yang, C. C., Chen, Y. R., Kim, M. S. and Chan, D. E. (2007). Hyperspectral-multispectral line-scan imaging system for automated poultry carcass inspection applications for food safety. Poultry Sci. 86(11):2450–2460.
  • Chao, K., Yang, C., Kim, M. and Chan, D. (2008). High throughput spectral imaging system for wholesomeness inspection of chicken. Appl. Eng. Agric. 24(4):475–485.
  • Chao, K., Yang, C.-C. and Kim, M. S. (2010). Spectral line-scan imaging system for high-speed non-destructive wholesomeness inspection of broilers. Trends Food Sci. Technol. 21(3):129–137.
  • Chen, Y.-R., Chao, K. and Kim, M. S. (2002). Machine vision technology for agricultural applications. Comput. Electron. Agr. 36(2–3):173–191.
  • Cho, B.-K., Chen, Y.-R. and Kim, M. S. (2007). Multispectral detection of organic residues on poultry processing plant equipment based on hyperspectral reflectance imaging technique. Comput. Electron. Agr. 57(2):177–189.
  • Choudhary, R., Mahesh, S., Paliwal, J. and Jayas, D. S. (2009). Identification of wheat classes using wavelet features from near infrared hyperspectral images of bulk samples. Biosyst. Eng. 102(2):115–127.
  • Delgado, A. E.; Sun, D.-W. (2002). Desorption isotherms for cooked and cured beef and pork Journal of Food Engineering. 51(2):163–170.
  • Delgado, A. E.; Zheng, L.; Sun, D.-W. (2009). Influence of Ultrasound on Freezing Rate of Immersion-frozen Apples. Food and Bioprocess Technology. 2(3):263–270.
  • Du, C.-J. and Sun, D.-W. (2004). Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci. Technol. 15(5):230–249.
  • Du, C.J.; Sun, D.-W. (2005). Comparison of three methods for classification of pizza topping using different colour space transformations. Journal of Food Engineering. 68(3):277–287.
  • Du, Z., Jeong, M. K. and Kong, S. G. (2007). Band selection of hyperspectral images for automatic detection of poultry skin tumors. IEEE Trans. Autom. Sci. Eng. 4(3):332–339.
  • Elmasry, G., Barbin, D. F., Sun, D. W. and Allen, P. (2012a). Meat quality evaluation by hyperspectral imaging technique: An overview. Crit. Rev. Food Sci. Nutr. 52(8):689–711.
  • Elmasry, G., Kamruzzaman, M., Sun, D. W. and Allen, P. (2012b). Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review. Crit. Rev. Food Sci. Nutr. 52(11):999–1023.
  • ElMasry, G. and Sun, D.-W. (2010). Meat quality assessment using a hyperspectral imaging system. In: Hyperspectral Imaging for Food Quality Analysis and Control, Sun, D. -W., ed. Hyperspectral imaging for food quality analysis and control, Elsevier, Holland, pp. 175–240.
  • ElMasry, G.; Sun, D.-W.; Allen, P. (2011). Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Research International. 44(9): 2624–2633.
  • ElMasry, G.; Sun, D.-W.; Allen, P. (2012). Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. Journal of Food Engineering. 110:127–140.
  • Elmasry, G., Sun, D.-W. and Allen, P. (2012). Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. J. Food Eng. 110(1):127–140.
  • Elmasry, G., Sun, D.-W. and Allen, P. (2013). Chemical-free assessment and mapping of major constituents in beef using hyperspectral imaging. J. Food Eng. 117(2):235–246.
  • Elmasry, G., Wang, N., ElSayed, A. and Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. J. Food Eng. 81(1):98–107.
  • Elmasry, G., Wang, N. and Vigneault, C. (2009). Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest. Biol. Tec. 52(1):1–8.
  • Feng, Y. Z., Elmasry, G., Sun, D. -W., Scannell, A. G., Walsh, D. and Morcy, N. (2013). Near-infrared hyperspectral imaging and partial least squares regression for rapid and reagentless determination of Enterobacteriaceae on chicken fillets. Food Chem. 138(2–3):1829–1836.
  • Feng, Y. Z. and Sun, D. -W. (2012). Application of hyperspectral imaging in food safety inspection and control: A review. Crit. Rev. Food Sci. Nutr. 52(11):1039–1058.
  • Feng, Y. Z. and Sun, D. -W. (2013a). Determination of total viable count (TVC) in chicken breast fillets by near-infrared hyperspectral imaging and spectroscopic transforms. Talanta. 105:244–249.
  • Feng, Y.-Z. and Sun, D.-W. (2013b). Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets. Talanta. 109:74–83.
  • Fletcher, J. and Kong, S. (2003). Principal component analysis for poultry tumor inspection using hyperspectral fluorescence imaging. In: Fletcher, J. and Kong, S. (eds). Proceedings of the International Joint Conference on Neural Networks, New York, pp. 149–153. IEEE.
  • Fletcher, J. and Kong, S. (2003). Principal component analysis for poultry tumor inspection using hyperspectral fluorescence imaging. In: Proceedings of the International Joint Conference on Neural Networks, pp. 149–153. IEEE.
  • Goodacre, R., Burton, R., Kaderbhai, N., Woodward, A. M., Kell, D. B. and Rooney, P. J. (1998). Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology. 144(5):1157–1170.
  • Gowen, A., Odonnell, C., Cullen, P., Downey, G. and Frias, J. (2007). Hyperspectral imaging – An emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 18(12):590–598.
  • Heitschmidt, G. W., Lawrence, K. C., Windham, W. R., Park, B. and Smith, D. P. (2004). Improved imaging system for fecal detection. Proc. SPIE. 5587:112–142.
  • Hu, Z. H., Sun, D.-W. (2000). CFD simulation of heat and moisture transfer for predicting cooling rate and weight loss of cooked ham during air-blast chilling process. Journal of Food Engineering. 46(3):189–1970.
  • Jackman, P., Sun, D.-W. and Allen, P. (2011). Recent advances in the use of computer vision technology in the quality assessment of fresh meats. Trends Food Sci. Technol. 22(4):185–197.
  • Kamruzzaman, M., Barbin, D., ElMasry, G., Sun, D.-W. and Allen, P. (2012a). Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat. Innovative Food Sci. Emerg. Technol. 16:316–325.
  • Kamruzzaman, M., ElMasry, G., Sun, D.-W. and Allen, P. (2011). Application of NIR hyperspectral imaging for discrimination of lamb muscles. J. Food Eng. 104(3):332–340.
  • Kamruzzaman, M., ElMasry, G., Sun, D.-W. and Allen, P. (2012b). Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innovative Food Sci. Emerg. Technol. 16:218–226.
  • Kamruzzaman, M., ElMasry, G., Sun, D.-W. and Allen, P. (2013). Non-destructive assessment of instrumental and sensory tenderness of lamb meat using NIR hyperspectral imaging. Food Chem. 141(1):389–396.
  • Kamruzzaman, M.; ElMasry, G.; Sun, D.-W.; Allen, P. (2012). Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis Analytical Cmimica ACTA. 714:57–67.
  • Kamruzzaman, M.; ElMasry, G.; Sun, D.-W.; Allen, P. (2011). Application of NIR hyperspectral imaging for discrimination of lamb muscles. Journal of Food Engineering. 104(3):332–340.
  • Kang, S., Lee, K., Son, J. and Kim, M. S. (2011). Detection of fecal contamination on leafy greens by hyperspectral imaging. Procedia Food Sci. 1:953–959.
  • Kim, I., Kim, M., Chen, Y. and Kong, S. (2004). Detection of skin tumors on chicken carcasses using hyperspectral fluorescence imaging. Trans. ASAE. 47(5):1785–1792.
  • Kim, M. S., Chen, Y. and Mehl, P. (2001). Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Trans. ASAE. 44(3):721–730.
  • Kim, M. S., Lefcourt, A. M., Chen, Y.-R. and Tao, Y. (2005). Automated detection of fecal contamination of apples based on multispectral fluorescence image fusion. J. Food Eng. 71(1):85–91.
  • Kim, M. S., Park, B., Yoon, S.-C., Windham, W. R., Lawrence, K. C., Heitschmidt, G. W., Chao, K. and Tu, S.-I. (2010). Line-scan hyperspectral imaging for real-time poultry fecal detection. In: Proc. SPIE 7676, Sensing for Agriculture and Food Quality and Safety II, pp. 76760I–76760I-10.
  • Kim, M. S., Park, B., Yoon, S.-C., Windham, W. R., Lawrence, K. C., Heitschmidt, G. W., Chao, K. and Tu, S.-I. (2010). Line-scan hyperspectral iamging for real-time poultry fecal detection. In: Kim, M. S., Tu, S.-I. and Chao, K. (eds). Proc. SPIE 7676, Sensing for Agriculture and Food Quality and Safety II, Florida, pp. 76760I-76760I-10.
  • Kong, S.-G. (2003). Inspection of poultry skin tumor using hyperspectral fluorescence imaging. In: Tobin, K. W. and Meriaudeau, F. Proc. SPIE 5132, Sixth International Conference on Quality Control by Artificial Vision, Bellingham, pp. 455–463.
  • Kong, S.-G. (2003). Inspection of poultry skin tumor using hyperspectral fluorescence imaging. In: Proc. SPIE 5132, Sixth International Conference on Quality Control by Artificial Vision, pp. 455–463.
  • Kong, S. G., Chen, Y.-R., Kim, I. and Kim, M. S. (2004). Analysis of hyperspectral fluorescence images for poultry skin tumor inspection. Appl. Opt. 43(4):824–833.
  • Kumar, S. and Mittal, G. S. (2010). Rapid detection of microorganisms using image processing parameters and neural network. Food Bioprocess Technol. 3(5):741–751.
  • Lawrence, K., Windham, W., Smith, D., Park, B. and Feldner, P. (2006). Effect of broiler carcass washing on fecal contaminant imaging. Trans. ASAE. 49(1):133–140.
  • Lawrence, K. C., Windham, W. R., Park, B. and Buhr, R. J. (2004). A hyperspectral imaging system for identification of faecal and ingesta contamination on poultry carcasses. J. Near Infrared Spectrosc. 11(4):269–281.
  • Lawrence, K. C., Windham, W. R., Park, B., Smith, D. P. and Poole, G. H. (2004). Comparison between visible/NIR spectroscopy and hyperspectral imaging for detecting surface contaminants on poultry carcasses. Opt. Technol. Indus., Environ. Biol. Sensing. 5271:35–42.
  • Lefcourt, A. M., Kim, M. S. and Chen, Y.-R. (2005). A transportable fluorescence imagining system for detecting fecal contaminants. Comput. Electron. Agr. 48(1):63–74.
  • Li, J., Rao, X., and Ying, Y. (2011). Detection of common defects on oranges using hyperspectral reflectance imaging. Comput. Electron. Agr. 78(1):38–48.
  • Liu, Y. and Chen, Y.-R. (2001). Analysis of visible reflectance spectra of stored, cooked and diseased chicken meats. Meat Sci. 58(4):395–401.
  • Liu, Y., Chen, Y.-R., Kim, M. S., Chan, D. E. and Lefcourt, A. M. (2007). Development of simple algorithms for the detection of fecal contaminants on apples from visible/near infrared hyperspectral reflectance imaging. J. Food Eng. 81(2):412–418.
  • Liu, Y., Windham, W. R., Lawrence, K. C. and Park, B. (2003). Simple algorithms for the classification of visible/near-infrared and hyperspectral imaging spectra of chicken skins, feces, and fecal contaminated skins. Appl. Spectrosc. 57(12):1609–1612.
  • Liu, D., Ma, J., Sun, D.-W., Pu, H., Gao, W., Qu, J., Zeng, X.-A. (2014). Prediction of Color and pH of Salted Porcine Meats Using Visible and Near-Infrared Hyperspectral Imaging. Food and Bioprocess Technol., Article in press, DOI: 10.1007/s11947-014-1327-5.
  • Liu, D., Sun, D.-W., and Zeng, X.-A. (2014). Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry. Food and Bioprocess Technol. 7(2): 307–323.
  • Liu, L. and Ngadi, M. O. (2013). Detecting fertility and early embryo development of chicken eggs using near-infrared hyperspectral imaging. Food Bioprocess Technol. 6(9):2503–2513.
  • Lu, R. and Chen, Y.-R. (1999). Hyperspectral imaging for safety inspection of food and agricultural products. In: Chen, Y.-R. (eds). Photonics East (ISAM, VVDC, IEMB), SPIE, Boston, pp. 121–133.
  • Lu, R. and Chen, Y.-R. (1999). Hyperspectral imaging for safety inspection of food and agricultural products. In: Photonics East (ISAM, VVDC, IEMB), pp. 121–133.
  • Mahesh, S., Manickavasagan, A., Jayas, D., Paliwal, J. and White, N. (2008). Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes. Biosyst. Eng. 101(1):50–57.
  • Mehl, P. M., Chen, Y.-R., Kim, M. S. and Chan, D. E. (2004). Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. J. Food Eng. 61(1):67–81.
  • Mizrach, A., Lu, R. and Rubino, M. (2009). Gloss evaluation of curved-surface fruits and vegetables. Food Bioprocess Technol. 2(3):300–307.
  • Naganathan, G. K., Grimes, L. M., Subbiah, J., Calkins, C. R., Samal, A. and Meyer, G. E. (2008). Visible/near-infrared hyperspectral imaging for beef tenderness prediction. Comput. Electron. Agr. 64(2):225–233.
  • Nagata, M., Tallada, J. G. and Kobayashi, T. (2006). Bruise detection using NIR hyperspectral imaging for strawberry (Fragaria x ananassa Duch.). Environ. Control Biol. 44(2):133–142.
  • Nakariyakul, S. and Casasent, D. (2004). Hyperspectral feature selection and fusion for detection of chicken skin tumors. In: Optical Technologies for Industrial, Environmental, and Biological Sensing, pp. 128–139. International Society for Optics and Photonics.
  • Nakariyakul, S. and Casasent, D. P. (2007). Contaminant detection on poultry carcasses using hyperspectral data: Part II. Algorithms for selection of sets of ratio features. In: Optics East, pp. 67610S–67610S-12. International Society for Optics and Photonics.
  • Nakariyakul, S. and Casasent, D. P. (2008). Hyperspectral waveband selection for contaminant detection on poultry carcasses. Opt. Eng. 47(8): 087202–087202-9.
  • Nakariyakul, S. and Casasent, D. P. (2009). Fast feature selection algorithm for poultry skin tumor detection in hyperspectral data. J. Food Eng. 94(3):358–365.
  • Nakariyakul, S., Casasent, D. P., Meyer, G. E. and Tu, S.-I. (2007). Contaminant detection on poultry carcasses using hyperspectral data: Part I. Algorithms for selection of individual wavebands. In: Optics for Natural Resources, Agriculture, and Foods II, pp. 67610R–67610R-12.
  • Nakariyakul, S. and Casasent, D. (2004). Hyperspectral feature selection and fusion for detection of chicken skin tumors. In: Bennedsen, B. S., Chen, Y.-R., Meyer, G. E., Senecal, A. G. and Tu, S.-I. (eds). Optical Technologies for Industrial, Environmental, and Biological Sensing, SPIE, Bellingham, pp. 128–139. International Society for Optics and Photonics.
  • Nakariyakul, S. and Casasent, D. P. (2007). Contaminant detection on poultry carcasses using hyperspectral data: Part II. Algorithms for selection of sets of ratio features. In: Tu, S.-I. (eds). Optics East, SPIE, Boston, pp. 67610S-67610S-12. International Society for Optics and Photonics.
  • Nakariyakul, S., Casasent, D. P., Meyer, G. E. and Tu, S.-I. (2007). Contaminant detection on poultry carcasses using hyperspectral data: Part I. Algorithms for selection of individual wavebands. In: Tu, S.-I. (eds). Optics for Natural Resources, Agriculture, and Foods II, SPIE, Boston, pp. 67610R-67610R-12.
  • Pallottino, F., Menesatti, P., Costa, C., Paglia, G., De Salvador, F. R. and Lolletti, D. (2010). Image analysis techniques for automated hazelnut peeling determination. Food Bioprocess Technol. 3(1):155–159.
  • Park, B. and Chen, Y. R. (2001). Co-occurrence matrix texture features of multi-spectral images on poultry carcasses. J. Agr. Eng. Res. 78(2):127–139.
  • Park, B., Kise, M., Lawrence, K. C., Windham, W. R., Smith, D. P. and Thai, C. N. (2007a). Real-time multispectral imaging system for online poultry fecal inspection using unified modeling language. Sens. Instrum. Food Qual. Saf. 1(2):45–54.
  • Park, B., Lawrence, K., Windham, W. and Buhr, R. J. (2002). Hyperspectral imaging for detecting fecal and ingesta contaminants on poultry carcasses. Trans. ASAE. 45(6):2017–2026.
  • Park, B., Lawrence, K. C., Windham, W. R. and Smith, D. P. (2006). Performance of hyperspectral imaging system for poultry surface fecal contaminant detection. J. Food Eng. 75(3):340–348.
  • Park, B., Windham, W., Lawrence, K. and Smith, D. (2007b). Contaminant classification of poultry hyperspectral imagery using a spectral angle mapper algorithm. Biosyst. Eng. 96(3):323–333.
  • Park, B., Yoon, S.-C., Lawrence, K. and Windham, W. (2007c). Fisher linear discriminant analysis for improving fecal detection accuracy with hyperspectral images. Trans. ASABE. 50(6):2275–2283.
  • Park, B., Yoon, S.-C., Windham, W. and Lawrence, K. (2011). In-plant test of in-line multispectral imaging system for fecal detection during poultry processing. Appl. Eng. Agric. 27(4):623–630.
  • Park, B., Yoon, S.-C., Windham, W. R., Lawrence, K. C., Heitschmidt, G., Kim, M. S. and Chao, K. (2010). Line-scan hyperspectral imaging for real-time poultry fecal detection. In: SPIE Defense, Security, and Sensing, pp. 76760I–76760I-10. International Society for Optics and Photonics.
  • Park, B., Yoon, S.-C., Windham, W. R., Lawrence, K. C., Heitschmidt, G., Kim, M. S. and Chao, K. (2010). Line-scan hyperspectral imaging for real-time poultry fecal detection. In: Kim, Tu, S.-I. M. S., and Chao, K. (eds). SPIE Defense, Security, and Sensing, Orlando, pp. 76760I-76760I-10. International Society for Optics and Photonics.
  • Pu, H., Sun, D.-W., Ma, J., Liu, D., Cheng, J. (2014). Using wavelet textural features of visible and near infrared hyperspectral image to differentiate between fresh and frozen-thawed pork. Food and Bioprocess Technol. Article in press, DOI: 10.1007/s11947-014-1330-x.
  • Qiao, J., Ngadi, M. O., Wang, N., Gariépy, C. and Prasher, S. O. (2007). Pork quality and marbling level assessment using a hyperspectral imaging system. J. Food Eng. 83(1):10–16.
  • Rajkumar, P., Wang, N., Eimasry, G., Raghavan, G. S. V. and Gariepy, Y. (2012). Studies on banana fruit quality and maturity stages using hyperspectral imaging. J. Food Eng. 108(1):194–200.
  • Shankar, T. J., Sokhansanj, S., Bandyopadhyay, S. and Bawa, A. (2010). A case study on optimization of biomass flow during single-screw extrusion cooking using genetic algorithm (GA) and response surface method (RSM). Food Bioprocess Technol. 3(4):498–510.
  • Singh, C. B., Choudhary, R., Jayas, D. S. and Paliwal, J. (2010). Wavelet analysis of signals in agriculture and food quality inspection. Food Bioprocess Technol. 3(1):2–12.
  • Siripatrawan, U., Makino, Y., Kawagoe, Y. and Oshita, S. (2011). Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. Talanta. 85(1):276–281.
  • Sone, I., Olsen, R. L., Sivertsen, A. H., Eilertsen, G. and Heia, K. (2012). Classification of fresh Atlantic salmon (Salmo salar L.) fillets stored under different atmospheres by hyperspectral imaging. J. Food Eng. 109(3):482–489.
  • Sun, D.-W. (2000). Inspecting pizza topping percentage and distribution by a computer vision method. J. Food Eng. 44(4):245–249.
  • Sun, D.-W. and Brosnan, T. (2003). Pizza quality evaluation using computer vision—Part 1: Pizza base and sauce spread. J. Food Eng. 57(1):81–89.
  • Sun, D.-W., Woods, J. L. (1993). The Moisture-Content Relative-Humidity Equilibrium Relationship of Wheat- A Review. Drying Technology. 11(7): 1523–1551.
  • Sun, D.-W. (1999). Comparison and selection of EMC ERH isotherm equations for rice Journal of Stored Products Research. 35(3):249–264.
  • Sun, D.-W., Byrne, C. (1998). Selection of EMC/ERH isotherm equations for rapeseed. Journal of Agricultural Engineering Research. 69(4):307–315.
  • Sun, D.-W., Woods, J. L. (1997). Simulation of the heat and moisture transfer process during drying in deep grain beds. Drying Technology. 15(10):2479–2508.
  • Sun, D.-W., Woods, J. L. (1994). Low-Temperature Moisture Transfer Characteristics of Barley-Thin-Layer Models and Equilibrium Isotherms. J. Agricultural Engineering Research. 59(4):273–283.
  • Taghizadeh, M., Gowen, A. A. and O’Donnell, C. P. (2011). The potential of visible-near infrared hyperspectral imaging to discriminate between casing soil, enzymatic browning and undamaged tissue on mushroom (Agaricus bisporus) surfaces. Comput. Electron. Agr. 77(1):74–80.
  • Valous, N. A., Mendoza, F. and Sun, D.-W. (2010). Emerging non-contact imaging, spectroscopic and colorimetric technologies for quality evaluation and control of hams: A review. Trends Food Sci. Technol. 21(1):26–43.
  • Valous, N. A.; Mendoza, F.; Sun, D.-W.; Allen, P. (2009). Colour calibration of a laboratory computer vision system for quality evaluation of pre-sliced hams. Meat Science. 81(1):132–141.
  • Wang, W., Li, C., Tollner, E. W., Gitaitis, R. D. and Rains, G. C. (2012). Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderia cepacia)-infected onions. J. Food Eng. 109(1):38–48.
  • Wang, L.J.; Sun, D.-W. (2001). Rapid cooling of porous and moisture foods by using vacuum cooling technology. Trends in Food Science and Technology 12(5-6):174–184.
  • Windham, W., Heitschmidt, G., Smith, D. and Berrang, M. (2005a). Detection of ingesta on pre-chilled broiler carcasses by hyperspectral imaging. Int. J. Poultry Sci. 4(12):959–964.
  • Windham, W., Smith, D., Berrang, M., Lawrence, K. and Feldner, P. (2005b). Effectiveness of hyperspectral imaging system for detecting cecal contaminated broiler carcasses. Int. J. Poult. Sci. 4(9):657–662.
  • Windham, W., Smith, D. P., Park, B., Lawrence, K. and Feldner, P. W. (2003). Algorithm development with visible/near-infrared spectra for detection of poultry feces and ingesta. Trans. ASAE. 46(6):1733–1738.
  • Wu, D. and Sun, D. -W. (2013). Potential of time series-hyperspectral imaging (TS-HSI) for non-invasive determination of microbial spoilage of salmon flesh. Talanta. 111:39–46.
  • Xing, J., Bravo, C., Jancsók, P. T., Ramon, H. and De Baerdemaeker, J. (2005). Detecting bruises on ‘Golden Delicious’ apples using hyperspectral imaging with multiple wavebands. Biosyst. Eng. 90(1):27–36.
  • Xu, C., Kim, I. and Kim, M. S. (2007). Poultry skin tumor detection in hyperspectral reflectance images by combining classifiers. In: Image Analysis and Recognition, pp. 1289–1296. Springer.
  • Xu, C., Kim, I. and Kim, M. S. (2007). Poultry skin tumor detection in hyperspectral reflectance images by combining classifiers. In: Kamel, M. and Campilho, A. (eds). Image Analysis and Recognition, pp. 1289–1296. Springer, Berlin.
  • Xu, S.Y.; Chen, X.F.; Sun, D.-W. (2001). Preservation of kiwifruit coated with an edible film at ambient temperature. Journal of Food Engineering. 50(4): 211–216.
  • Yang, C.-C., Chao, K. and Chen, Y.-R. (2005a). Development of multispectral image processing algorithms for identification of wholesome, septicemic, and inflammatory process chickens. J. Food Eng. 69(2):225–234.
  • Yang, C.-C., Chao, K., Chen, Y.-R. and Early, H. L. (2005b). Systemically diseased chicken identification using multispectral images and region of interest analysis. Comput. Electron. Agr. 49(2):255–271.
  • Yang, C. C., Chao, K., Chen, Y. R., Kim, M. S. and Chan, D. E. (2006). Development of fuzzy logic based differentiation algorithm and fast line-scan imaging system for chicken inspection. Biosyst. Eng. 95(4):483–496.
  • Yoon, S. C., Lawrence, K. C., Smith, D. P., Park, B. and Windham, W. R. (2006). Bone fragment detection in chicken breast fillets using diffuse scattering patterns of back-illuminated structured light. In: Optics East, pp. 63810G-63810G-10. International Society for Optics and Photonics.
  • Yoon, S. C., Lawrence, K. C., Smith, D. P., Park, B. and Windham, W. R. (2008). Embedded bone fragment detection in chicken fillets using transmittance image enhancement and hyperspectral reflectance imaging. Sens. Instrum. Food Qual. Saf. 2(3):197–207.
  • Yoon, S. C., Lawrence, K. C., Smith, D. P., Park, B. and Windham, W. R. (2006). Bone fragment detection in chicken breast fillets using diffuse scattering patterns of back-illuminated structured light. In: Chen, Y. R., Meyer, G. E. and Tu, S.-I. (eds). Optics East, Boston, pp. 63810G-63810G-10. International Society for Optics and Photonics.
  • Yoon, S. C., Park, B., Lawrence, K. C., Windham, W. R. and Heitschmidt, G. W. (2010). Development of real-time line-scan hyperspectral imaging system for online agricultural and food product inspection. In: Proc. SPIE Defense, Security, and Sensing, pp. 76760J–76760J-11.
  • Yoon, S. C., Park, B., Lawrence, K. C., Windham, W. R. and Heitschmidt, G. W. (2010). Development of real-time line-scan hyperspectral imaging system for online agricultural and food product inspection. In: Kim, M. S., Tu, S.-I. and Chao, K. (eds). Proc. SPIE Defense, Security, and Sensing, Bellingham, pp. 76760J-76760J-11.
  • Zheng, C., Sun, D.-W. and Zheng, L. (2006a). Recent applications of image texture for evaluation of food qualities—A review. Trends Food Sci. Technol. 17(3):113–128.
  • Zheng, C., Sun, D.-W. and Zheng, L. (2006b). Recent developments and applications of image features for food quality evaluation and inspection—A review. Trends Food Sci. Technol. 17(12):642–655.
  • Zhu, F., Zhang, D., He, Y., Liu, F. and Sun, D.-W. (2013). Application of visible and near infrared hyperspectral imaging to differentiate between fresh and frozen -thawed fish fillets. Food Bioprocess Technol. 6(10): 2931–2937.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.