2,181
Views
42
CrossRef citations to date
0
Altmetric
Articles

Edible lipids modification processes: A review

&

References

  • Alain, H., Kademi, A. and Leblanc, D. (2004). Lipases and their industrial applications. Applied Biochemistry and Biotechnology 118(1):155–170.
  • Alain H., Ali, K. and Danielle, L. (2004) Lipases and their Industrial Applications. Appl Biochem Biotechnol 118:155–170.
  • Alejandro, M. and Dérick, R. (2008). Chemical interesterification of food lipids. Food Lipids, CRC Press.
  • Alfin-Slater, R., Aftergood, L., et al. (1966). Nutritional evaluation of inter-esterified fats. J Am Oil Chem Soc 43(2):110–112.
  • Andrikopoulos, N. K. (2002). Triglyceride species compositions of common edible vegetable oils and methods used for their identification and quantification. Food Rev Int 18(1):71–102.
  • Baillargeon, M. W., Bistline, R. G., et al. (1989). Evaluation of strains of Geotrichum candidum for lipase production and fatty acid specificity. Appl Microbiol Biotechnol 30(1):92–96.
  • Bajaj, A., Lohan, P., et al. (2010). Biodiesel production through lipase catalyzed transesterification: An overview. J Mol Catal B: Enzymatic 62(1):9–14.
  • Barter, P. J. and Rye, K. A. (1996). High density lipoproteins and coronary heart disease. Atherosclerosis 121(1):1–12.
  • Bernas, A., Myllyoja, J., et al. (2009). Kinetics of linoleic acid hydrogenation on Pd/C catalyst. Appl Catal A: Gen 353(2):166–180.
  • Bernas, A., Simakova, I. L., Eränen, K., Myllyoja, J., Salmi, T. and Murzin, D. Y. (2010).Continuous mode linoleic acid hydrogenation on Pd/sibunit catalyst. Catal Indust. 2(2):95–100
  • Berry, S. E. E. (2009). Triacylglycerol structure and interesterification of palmitic and stearic acid-rich fats: an overview and implications for cardiovascular disease. Nutrit Res Rev 22(01):3–17.
  • Bloomer, S., Adlercreutz, P., et al. (1990). Triglyceride interesterification by lipases. 1. Cocoa butter equivalents from a fraction of palm oil. J Am Oil Chem Soc 67(8):519–524.
  • Briand, D., Dubreucq, E., et al. (1994). Enzymatic fatty esters synthesis in aqueous medium with lipase from Candida parapsilosis (Ashford) Langeron and Talice. Biotechnol Lett 16(8):813–818.
  • Briel, M., Ferreira-Gonzalez, I., et al. (2009). Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ 338:b92.
  • Brouwer, I. A., Wanders, A. J., et al. (2010). Effect of animal and industrial trans fatty acids on HDL and LDL cholesterol levels in humans – A quantitative review. PLoS ONE 5(3): e9434.
  • Carrere, F., Gargouri, Y., et al. (1994). Gastric Lipases: Cellular, biochemical and kinetic aspects, p. 181 Woolley, L.. P. and Petersen, S. B., Cambridge University Press, Cambridge.
  • ĈErvenÝ, L. (1989). Palladium catalysts in hydrogenation reactions. Chem Eng Commun 83(1):31–63.
  • De Schrijver, R., Vermeulen, D., et al. (1991). Lipid metabolism responses in rats fed beef tallow, native or randomized fish oil and native or randomized peanut oil. J Nutrit 121(7):948–955.
  • Derick, R. and Alejandro, M.(2002). Chemical interesterification of food lipids. Food Lipids, CRC Press.
  • Desnuelle, P. (1972). The Lipases. The Enzymes, Vol. 7, pp. 575–616. Academic Press, New York.
  • Dijkstra, A. J. (1997). Hydrogenation revisited. Inform 8: 1150–1158.
  • Dijkstra, A. J. (2004). The interesterification mechanism revisited. The 3rd EuroFedLipid Congress. Edinburgh: 86 in the book of abstracts.
  • Dijkstra, A. J. (2006). Revisiting the formation of trans isomers during partial hydrogenation of triacylglycerol oils. Eur J Lip Sci Technol 108(3):249–264.
  • Dijkstra, A. J. (2007). Modification process and food uses. The Lipid Handbook, pp. 263–333. Gunstone, F. D., Harwood, J. L. and Dijkstra, A. J. CRC Press Taylor and Francis group, USA.
  • Dijkstra, A. J. (2008). Revisiting the mechanisms of low-temperature, base-catalysed ester interchange reactions. Oléagineux Corps Gras Lipides/OCL 15:208–212.
  • Dijkstra A. J. (2010). Selectivities in Partial Hydrogenation. J Am Oil Chem Soc 87(1):115–117.
  • Dijkstra, A. J. (2011) Hydrogenation Mechanism. Edible Oil Processing.
  • Dijkstra, A. J., Tőke, E. R., et al. (2005). The base-catalyzed, low-temperature interesterification mechanism revisited. Eur J Lip Sci Technol 107(12):912–921.
  • Doyle, A. M., Shaikhutdinov, S. K., et al. (2003). Hydrogenation on metal surfaces: Why are nanoparticles more active than single crystals. Angew Chem Int Edit 42(42):5240–5243.
  • Ergan, F., Trani, M., et al. (1991). Use of lipases in multiphasic systems solely composed of substrates. J Am Oil Chem Soc 68(6):412–417.
  • Foubert, I., Dewettinck, K., et al. (2007). Physical Properties. The lipid Handbook,pp. 471–509. Gunstone, F. D., Harwood, J. L. and Dijkstra, A. J.. CRC Press Taylor and Francis group, USA.
  • Francisco, J. D. C., Gough, S. P., et al. (2007). Use of lipases in Synthesis Of Structured Lipids. Industrial Enzymes: Structure, Function and Applications, Vol. 20, p. 343. Polaina, J. and MacCabe, A. P. Springer, Dordrecht, The Netherlands.
  • Frankel, E. and Little, F. (1969). Homogeneous catalytic hydrogenation of unsaturated fats: Group VIB metal carbonyl complexes. J Am Oil Chem Soc 46(5):256–261.
  • Gabriela M. Tonetto, Jhon F., Sanchez M., Maria L., Ferreira,  , Daniel D. Damiani (2005). Partial hydrogenation of sunflower oil: use of edible modifiers of the cis/trans-selectivity. J Mol Catal A 237(2):67–79.
  • Gandhi, N. (1997). Applications of lipase. J Am Oil Chem Soc 74(6):621–634.
  • Gemma, B., Canela, M. A., Rafeca, M. (2008). Phytosterols: physiologic and metabolic aspects related to cholesterol-lowering properties. Nutrit Res 28(4):217–225.
  • Ghazali H. M., Hamidah, S., Che, Y. B. (1995). Man Enzymatic transesterification of palm olein with nonspecific and 1,3-specific lipases. J Am Oil Chem Soc 72(6):633–639.
  • Gotor-Fernández, V. and G. Vicente (2007). Use of lipases in organic synthesis industrial enzymes. Industrial Enzymes: Structure, Function And Applications, pp. 301–315. Polaina, J. and MacCabe, A. P. Springer Netherlands.
  • Gray, J. and Russell, L. (1979). Hydrogenation catalysts—Their effect on selectivity. J Am Oil Chem Soc 56(1):36–44.
  • Gunstone, F. D. (2004). Chemical properties related to the carboxyl group. The Chemistry of Oils and Fats,Vol. 8, pp. 189–210. Blackwell Publishing Ltd, USA and Canada.
  • Haumann, B. F. (1994). Tools: hydrogenation, interesterification. INFORM 5:668–678.
  • Horiuti, I. and Polanyi, M., (1934). Exchange reactions of hydrogen on metallic catalysts. Transact Faraday Soc 30:1164–1172.
  • Hou, C. and Johnston, T. (1992). Screening of lipase activities with cultures from the agricultural research service culture collection. J Am Oil Chem Soc 69(11):1088–1097.
  • Huang, A., Lin, Y.-H., et al. (1988). Characteristics and biosynthesis of seed lipases in maize and other plant species. J Am Oil Chem Soc 65(6):897–899.
  • Hubaut, R., Bonnelle, J. P., et al. (1989). Selective hydrogenation of heavy polyunsaturated molecules on copper-chromium catalysts. J Mol Catal 55(1):170–183.
  • Husum, T. L., Pedersen, L. S., et al. (2004). Enzymatic interesterification: process advantages and product benefits. Palm Oil Developments 39(December 2003):7–10.
  • Islam, M., Mondal, P., et al. (2010). Catalytic hydrogenation of various organic substrates using a reusable polymer-anchored palladium(II) complex. J Mat Sci 45(9):2484–2493.
  • Jackson et. al. (2003). Catalyst in Application, Advancing the Chemical Sciences, pg. 153. University of Glasgow.
  • Jaeger, K.-E., Ransac, S., et al. (1994). Bacterial lipases. FEMS Microbiol Rev 15(1):29–63.
  • Jandacek, R., Whiteside, J., et al. (1987). The rapid hydrolysis and efficient absorption of triglycerides with octanoic acid in the 1 and 3 positions and long-chain fatty acid in the 2 position. Am J Clin Nutrit 45(5):940–945.
  • Jensen, R. (1983). Detection and determination of lipase (acylglycerol hydrolase) activity from various sources. Lipids 18(9):650–657.
  • Jensen, R., F. Dejong, et al. (1982). Stereospecificity of premature human infant lingual lipase. Lipids 17(8):570–572.
  • Jowett, P. (1991). Raney catalyst composition. U. S. Patent. U.S. 5,063,189.
  • Kaneko, F. (2001). Polymorphism and phase transitions of fatty acids and acylglycerols. Crystallization Process in Fats and Lipid systems. pp. 53–98. Garti, N. and Sato, K.. Marcel Dekker, Inc, USA.
  • Karabulut, I., Turan, S., et al. (2007). Human milk fat substitute produced by enzymatic interesterification of vegetable oil blend. Food Technol Biotechnol 45:434–438.
  • Knothe, G. (2010) Giants of the Past: Wilhelm Normann (1870–1939).”
  • Koga, T., Yamato, T., et al. (1995). Effects of randomization of partially hydrogenated corn oil on fatty acid and cholesterol absorption, and tissue lipid levels in rats. Lipids 30(10):935–940.
  • Kritchevsky, D. (1988). Effects of triglyceride structure on lipid metabolism. Nutrition Reviews 46(5):177–181.
  • Kubow, S. (1996). The influence of positional distribution of fatty acids in native, interesterified and structure-specific lipids on lipoprotein metabolism and atherogenesis. J Nutrit Biochem. 7(10):530–541.
  • Laning, S. (1985). Chemical interesterification of palm, palm kernel and coconut oils. J Am Oil Chem Soc 62(2):400–407.
  • Lavayre, J., Verrier, J., et al. (1982). Stereospecific hydrolysis by soluble and immobilized lipases. Biotechnol Bioeng 24(10):2175–2188.
  • Li, D., Tianwei, T., et al. (2003). Enzymatic production of fatty acid alkyl esters with a lipase preparation from Candida sp. 99–125. Eur J Lipid Sci Technol 105(12):727–734.
  • Liaw, B. J. and Chen, Y. Z. (2000). Catalysis of ultrafine CuB catalyst for hydrogenation of olefinic and carbonyl groups. Appl Catal A: Gen 196(2):199–207.
  • Ling, P., Istfan, N., et al. (1991). Structured lipid made from fish oil and medium-chain triglycerides alters tumor and host metabolism in Yoshida-sarcoma-bearing rats. Am J Clin Nutrit 53(5):1177–1184.
  • Liu, L. (2004). How is chemical interesterification initiated: Nucleophilic substitution or α-proton abstraction. J Am Oil Chem Soc 81(4):331–337.
  • Lloyd, L. (2011). Fundamental and Applied Catalyst, Handbook of Industrial Catalyst, Chap. 3, pg. 73. Springer.
  • Lung, M. Y. and Min, D. B. (2005). Novel hydrogenation for low trans fatty acids in vegetable oils. Healthful Lipids, AOCS Publishing.
  • Macrae, A. (1983). Lipase-catalyzed interesterification of oils and fats. J Am Oil Chem Soc 60(2):291–294.
  • Macrae, A. R. and How, P. (1988). Rearrangement process. U.S. 4,719,178.
  • Mäki-Arvela P., Kuusisto, J., Sevilla, E. M., Simakova, I., Mikkola, J.-P., Myllyoja, J., Salmi T., Murzin, D. Y. (2008). Catalytic hydrogenation of linoleic acid to stearic acid over different Pd- and Ru-supported catalysts Appl Catal A: Gen 345(2):201–212
  • Malcata, F. X., Reyes, H. R., et al. (1992). Kinetics and mechanisms of reactions catalysed by immobilized lipases. Enzyme Microbial Technol 14(6):426–446.
  • Mangos, T., Jones, K., et al. (1999). Lipase-catalyzed synthesis of structured low-calorie triacylglycerols. J Am Oil Chem Soc 76(10):1127–1132.
  • Marangoni, A. (2002). Lipases: Structure, function, and properties. Lipid Biotechnology, pp. 346–376. Kuo, T. M. and Gardner, H. W.. Marcel Dekker, Inc.
  • Marangoni, A. and Rousseau, D. (1995). Engineering triacylglycerols: The role of interesterification. Trend Food Sci & Technol 6(10):329–335.
  • Mase, T., Matsumiya, Y., et al. (1995). Purification and Characterization of Penicillium roqueforti IAM 7268 Lipase. Biosci, BiotechnolBiochem 59: 329–330.
  • Mendes M. J, Santos, O. A. A., Jordão, E., Silva, A. M. (2001). Hydrogenation of oleic acid over ruthenium catalysts. Appl Catal A: Gen 217(2):253–262.
  • Miller, D. A., Prausnitz, J. M., et al. (1991). Kinetics of lipase-catalysed interesterification of triglycerides in cyclohexane. Enzyme Microbial Technol 13(2):98–103.
  • Mukherjee, S. and Sengupta, S. (1981). Studies on lipid responses to interesterified soya oil-butterfat mixture in hypercholesterolemic rats and human subjects. J Am Oil Chem Soc 58(3):287–291.
  • Mutanen, M., Kleemola, P., et al. (1992). Lack of effect on blood pressure by polyunsaturated and monounsaturated fat diets. Eur J Clin Nutrit 46(1):1–6.
  • Namal Senanayake, S. and Shahidi, F. (1999). Enzymatic incorporation of docosahexaenoic acid into borage oil. J Am Oil Chem Soc 76(9):1009–1015.
  • Nichols, G. A., Vupputuri, S., et al. (2011). Change in high-density lipoprotein cholesterol and risk of subsequent hospitalization for coronary artery disease or stroke among patients with type 2 diabetes mellitus. Am J Cardiol 108(8):1124–1128.
  • Noureddini, H. and Harmeier, S. (1998). Enzymatic glycerolysis of soybean oil. J Am Oil Chem Soc 75(10):1359–1365.
  • O'Brien, R. D. (2009). Fats and Oils processing: Interesterification. Fats and Oils; Formulating and processing for applications, Vol. 9, pp. 122–132. CRC Press, USA.
  • O'Brien, R. D. (2009). Hydrogenation. Fats and Oils: Formulating and Processing for Applications, pp. 110–119. CRC Press, USA.
  • Oba, T. and Witholt, B. (1994). Interesterification of milk fat with oleic acid catalyzed by immobilized Rhizopus oryzae lipase. J Dairy Sci 77:1790–1797.
  • Onyeneke, E. and E. Alumanah (1991). The influence of cholesterol on plasma lecithin: cholesterol acyl transferase (LCAT) activity of rat. Nigerian J Nutrit Sci 12(1):14–17.
  • Quinlan, P. and Moore, S. (1993). Modification of triglycerides by lipases: Process technology and its application to the production of nutritionally improved fats. INFORM 4(5):580–585.
  • Rendón, X., López-Munguía, A., et al. (2001). Solvent engineering applied to lipase-catalyzed glycerolysis of triolein. J Am Oil Chem Soc 78(10):1061–1066.
  • Reyes, H. R. and Hill, C. G. (1994). Kinetic modeling of interesterification reactions catalyzed by immobilized lipase. Biotechnol Bioeng 43(2):171–182.
  • Riaublanc, A., Ratomahenina, R., et al. (1993). Peculiar properties of lipase from Candida parapsilosis (Ashford) langeron and talice. J Am Oil Chem Soc 70(5):497–500.
  • Ribeiro, A. P. B., Basso, R. C., et al. (2009). Influence of chemical interesterification on thermal behavior, microstructure, polymorphism and crystallization properties of canola oil and fully hydrogenated cottonseed oil blends. Food Res Inter 42(8):1153–1162.
  • Rogalska, E., Cudrey, C., et al. (1993). Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality 5(1):24–30.
  • Rousseau, D. and Marangoni, A. G. (1998). Food Lipids: Chemistry, Nutrition, and Biotechnology, p. 301. Akoh, C. C. and Min, D. B., Marcel Dekker, Inc., New York.
  • Savchenko, V. I. and Makaryan, I. A. (1999). Palladium catalyst for the production of pure margarine. Platinum Metal Rev 43(2):74–82.
  • Schneider, R. D. C. D. S., Lara, L. R. S., et al. (2010). An alternative process for hydrogenation of sunflower oil. Orbital: Elect J Chem 2(2).
  • Schoon, N. H. (1995). Is a low trans content attainable by conventional hydrogenation of vegatable oils? Oils-Fats-Lipids. pp. 155–158. (W. A. M. Castenmiller, P. J. Barnes, Eds.) The Hague, Barnes & Associates.
  • Senanayake, S. P. J. N. and F. Shahidi (2005). Modification of fats and oils via chemical and enzymatic methods. Bailey's Industrial Oil and Fat Products, John Wiley & Sons.
  • Sreenivasan, B. (1978). Interesterification of fats. J Am Oil Chem Soc 55(11):796–805.
  • Sundram, K., Karupaiah, T., et al. (2007). Stearic acid-rich interesterified fat and trans-rich fat raise the LDL/HDL ratio and plasma glucose relative to palm olein in humans. Nutr Metab 4(1):3.
  • Tan, K., Betteridge D. J., et al. (1993). Hypertriglyceridaemia and vascular risk. The Lancet 342:781–787.
  • Uzawa, H., Nishida, Y., et al. (1990). A new approach to determine the stereospecificity in lipase catalysed hydrolysis using circular dichroism (CD): Lipases produce optically active diglycerides from achiral triglycerides. Biochem Biophys Res Commun 168(2):506–511.
  • Veldsink, J. W., Bouma, M. J., et al. (1997). Heterogeneous hydrogenation of vegetable oils: A literature review. Catal Rev 39(3):253–318.
  • Villeneuve, P. and Foglia, T. A. (1997). Lipase specificity: Potential application in lipid bioconversions. INFORM 8: 640–650.
  • Vulfson, E. N. (1993). Enzymatic synthesis of food ingredients in low-water media. Trend Food Sci; Technol 4(7):209–215.
  • Christie W. W. (2013) Plasma Lipoproteins: Composition, Structure and Biochemistry. James Hutton Institute (and Mylnefield Lipid Analysis), Invergowrie, Dundee (DD2 5DA), Scotland.
  • Wang, T. (2011).Oil composition modification by processing and biotechnology. Vegetable Oils in Food Technology: Composition, Properties and Uses. F. Gunstone, Blackwell publishing Ltd, USA.
  • Wong, D. (1994). Structure and Mechanism. Food Enzymes, pp. 170–211, Chapman & Hall, New York.
  • Weiss, T. J., Jacobson, G. A., and Wieldermann, L. H. (1961). Reaction mechanics of sodium methoxide treatment of lard. J Am Oil Chem Soc 38:396–399.
  • Yamane, T., Suzuki, T., et al. (1992). Production of n-3 polyunsaturated fatty acid-enriched fish oil by lipase-catalyzed acidolysis without solvent. J Am Oil Chem Soc 69(11):1104–1107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.