2,035
Views
82
CrossRef citations to date
0
Altmetric
Articles

Use of ultrasounds in the food industry–Methods and effects on quality, safety, and organoleptic characteristics of foods: A review

, &

References

  • Adekunte, A., Valdramidis, V. P., Tiwari, B. K., Slone, N., Cullen, P. J., O'Donnell, C. P. and Scannell, A. (2010). Resistance of Cronobacter sakazakii in reconstituted powdered infant formula during ultrasound at controlled temperatures: A quantitative approach on microbial responses. Int. J. Food Microbiol. 142:53–59.
  • Ananta, E., Voigt, D., Zenker, M., Heinz, V. and Knorr, D. (2005). Cellular injuries upon exposure of Escherichia coli and Lactobacillus rhamnosus to high-intensity ultrasound. J. Appl. Microbiol. 99:271–278.
  • Arroyo, C., Cebrián, G., Pagán, R. and Condón, S. (2011a). Inactivation of Cronobacter sakazakii by manothermosonication in buffer and milk. Int. J. Food Microbiol. 151:21–28.
  • Arroyo, C., Cebrián, G., Pagán, R. and Condón, S. (2011b). Inactivation of Cronobacter sakazakii by ultrasonic waves under pressure in buffer and foods. Int. J. Food Microbiol. 144:446–454.
  • Arroyo, C., Cebrián, G., Pagán, R. and Condón, S. (2012). Synergistic combination of heat and ultrasonic waves under pressure for Cronobacter sakazakii inactivation in apple juice. Food Control. 25:342–348.
  • Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D. and Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 48:410–427.
  • Bantle, M. and Eikevik, T. M. (2011). Parametric study of high-intensity ultrasound in the atmospheric freeze drying of peas. Drying Technol. 29:1230–1239.
  • Bauman, A. R., Martin, S. E. and Feng, H. (2005). Power ultrasound treatment of Listeria monocytogenes in apple cider. J. Food Protect. 68(11):2333–2340.
  • Benedito, J., Carcel, J. A., Rossello, C. and Mulet, A. (2001). Composition assessment of raw meat mixtures using ultrasonics. Meat Sci. 57:365–370.
  • Bermúdez-Aguirre, D., Corradini, M. G., Mawson, R. and Barbosa-Cánovas, G. V. (2009). Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innovat. Food Sci. Emer. Technol. 10:172–178.
  • Bermúdez-Aguirre, D., Mawson, R. and Barbosa-Cánovas, G. B. (2011). Study of possible mechanisms of inactivation of Listaeria Innocua in thermo-sonicated milk using scanning electron microscopy and trasmission electron microscopy. J. Food Process. Preservat. 35:767–777.
  • Bevilacqua, A., Sinigaglia, M. and Corbo, M. R. (2012). Ultrasound and antimicrobial compounds: A suitable way to control Fusarium Oxysporum in juices. Food Bioprocess Tech. doi:10.1007/s11947-012-0782-0.
  • Bevilacqua, A., Sinigaglia, M., and Corbo, M.R. (2013). Ultrasound and Antimicrobial Compounds: A Suitable Way to Control Fusarium oxysporum in Juices. Food and Bioprocess Technology. 6:1153–1163.
  • Bosworth, B. G., Holland, M. and Brazil, B. L. (2001). Evaluation of ultrasound imagery and body shape to predict carcass and fillet yield in farm-raised catfish. J. Anim. Sci. 79:1483–1490.
  • Broda, D. M. (2007). The effect of peroxyacetic acid-based sanitizer, heat and ultrasonic waves on the survival of Clostridium estertheticum spores in vitro. Lett. Appl. Microbiol. 45:336–341.
  • Brøndum, J., Egebo, M., Agerskov, C. and Busk, H. (1998). On-line pork carcass grading with the Autofom ultrasound system. J. Anim. Sci. 76:1859–1868.
  • Butz, P. and Tauscher, B. (2002). Emerging technologies: Chemical aspects. Food Res. Int. 35:279–284.
  • Cabredo-Pinillos, S., Cedrón-Fernández, T., González-Briongos, M., Puente-Pascual, L. and Sáenz-Barrio, C. (2006). Ultrasound-assisted extraction of volatile compounds from wine samples: Optimisation of the method. Talanta. 69:1123–1129.
  • Cameron, M., McMaster, L. D. and Britz, T. J. (2009). Impact of ultrasound on dairy spoilage microbes and milk components. Dairy Sci. Technol. 89:83–98.
  • Carcel, J. A., Garcνa-Pirez, J. V., Benedito, J. and Mulet, A. (2012). Food process innovation through new technologies: Use of ultrasound. J. Food Eng. 110:200–207.
  • Char, C. D., Mitilinaki, E., Guerrero, S. N. and Alzamora, S. M. (2010). Use of high-intensity ultrasound and UV-C light to inactivate some microorganisms in fruit juices. Food Bioprocess Technol. 3:797–803.
  • Chemat, F., Zill-e-Huma,   and Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 18:813–835. ( Acta Scientiarum Polonorum. 6(3):89—99)
  • Corona, E., Garcia-Perez, J. V., Gomez Alvarez-Arenas, T. E., Watson, N., Povey, M. J. W. and Benedito, J. (2013). Advances in the ultrasound characterization of dry-cured meat products. J. Food Eng. 119:464–470.
  • Damez, J. L. and Clerjon, S. (2008). Meat quality assessment using biophysical methods related to meat structure. Meat Sci. 80:132–149.
  • Delgado, A. E., Zheng, L. and Sun, D-W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food Bioprocess Tech. 2:263–270.
  • Demirdöven, A. and Baysal, T. (2009). The use of ultrasound and combined technologies in food preservation. Food Rev. Int. 25:1–11.
  • Dolatowski, Z. J., Stadnik, J., Stasiak, D. (2007). Appl. Ultrasound Food Technol. Springer, US.
  • Dolatowski, Z.J., Stadnik, J., and Stasiak, D. (2007). Applications of Ultrasound in Food Technology. Agricultural Acta Scientiarum Polonorum Technologia Alimentaria. 6:88–99.
  • Earnshaw, R. G. (1998). Ultrasound: A new opportunity for food preservation. In: Ultrasound in Food Processing, pp. 183–192. Porey, M. J. W. and Mason, T. J., Eds., London.
  • Elizaquível, P., Sánchez, G., Selma, M. V. and Aznar, R. (2012). Application of propidium monoazide-qPCR to evaluate the ultrasonic inactivation of Escherichia coli O157:H7 in fresh-cut vegetable wash water. Food Microbiol. 30:316–320.
  • Elmehdi, H. M., Page, J. H. and Scanlon, M. G. (2003). Using ultrasound to investigate the cellular structure of bread crumb. J. Cereal Sci. 38:33–42.
  • FDA. (2000). Kinetics of Microbial Inactivation for Alternative Food Processing Technologies -- Ultrasound. US Food and Drug Administration, Silver Spring. Available from http://foodsafetyinfo.net/food_board/data/food_board9/ultrasound.pdf.. Accessed July 1, 2013.
  • Feng, H. and Yade, W. (2011). Ultrasonic processing. In: Nonthermal Processing Technologies for Food, pp. 135–154. Zhang, H. Q., Barbosa-Cánovas, G. V., Balasubramaniam, V. M., Dunne, C. P., Farkas, D. F. and Yung, J. T. C., Eds., Wiley, London.
  • Ferrante, S., Guerrero, S. and Alzamora, S. M. (2007). Combined use of ultrasound and natural antimicrobials to inactivate Listeria monocytogenes in orange juice. J. Food Protect. 70(8):1850–1856.
  • Fortin, A., Tong, A. K. W. and Robertson, W. M. (2004). Evaluation of three ultrasound instruments, CVT-2, UltraFom 300 and AutoFom for predicting salable meat yield and weight of lean in the primals of pork carcasses. Meat Sci. 68:537–549.
  • Gabriel, A. A. (2012). Microbial inactivation in cloudy apple juice by multi-frequency Dynashock power ultrasound. Ultrasonics Sonochem. 19:346–351.
  • Gallego-Juárez, J. A., Rodriguez, G., Acosta, V. and Riera, E. (2010). Power ultrasonic transducers with extensive radiators for industrial processing. Ultrasonics Sonochem. 17:953–964.
  • German, B. J., Zhang, H. and Berger, R. (1992). Role of lipoxygenases in lipid oxidation in foods. In: ACS Symposium Series, pp. 74–92.
  • German, J.B., Zhang, H., and Berger, R. (1992). Role of lipozygenases in lipid oxidation in foods. In: Lipid Oxidation in Foods, pp. 74–92. Angelo, A. J. St., Ed., American Chemical Society Symposium Series 500, Washington, D.C.
  • Ghaedian, R., Decker, E. A. and McClements, D. J. (1997). Use of ultrasound to determine cod fillet composition. J. Food Sci. 62(3):500–504.
  • Herceg, Z., Jambrak, A. R., Lelas, V. and Thagard, S. M. (2012). The effect of high intensity ultrasound treatment on the amount of Staphylococcus aureus and Escherichia coli in milk. Food Technol. Biotechnol. 50(1):46–52.
  • International Ozone Association. (2007). Combinations work best against E. coli. Ozone News, pp. 1–36. International Ozone Association/Editorial Office, Vol 35. Available from: http://www.ioa-pag.org/wp-content/uploads/Vol_35_No_1.pdf. Accessed July 23, 2016
  • IUFoST. (2010). Emerging and new technologies in food science and technology. Sci. Inform. Bull. (SIB). May, pp. 1–10. Available from: http://www.worldfoodscience.org/pdf/IUF.SIB.%20Emerging%20Technologies.pdf. Accessed February 8, 2013.
  • Jambrak, A. R., Lelas, V., Herceg, Z., Badanjak, M., Batur, V. and Muža, M. (2009). Prednosti i nedostaci primjene ultrazvuka visoke snage u mljekarskoj industriji. Mljekarstvo. 59(4):267–281.
  • Jayasooriya, S. D., Torley, P. J., D'Arcy, B. R. and Bhandari, B. R. (2007). Effect of high power ultrasound and ageing on the physical properties of bovine Semitendinosus and Longissimus muscles. Meat Sci. 75:628–639.
  • Joyce, E., Al-Hashimi, A. and Mason, T. J. (2011). Assessing the effect of different ultrasonic frequencies on bacterial viability using flow cytometry. J. Appl. Microbiol. 110:862–870.
  • Kiang, W-S., Bhat, R., Rosma, A. and Cheng, L-H. (2012). Effects of thermosonication on the fate of Escherichia coli O157:H7 and Salmonella Enteritidis in mango juice. Lett. Appl. Microbiol. 56:251–257.
  • Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O. and Schoessler, K. (2011). Emerging technologies in food processing. Ann. Rev. Food Sci. Technol. 2:203–235.
  • Kwak, T-Y., Kim, N-H., Rhee, M-S. (2011). Response surface methodology-based optimization of decontamination conditions for Escherichia coli O157:H7 and Salmonella Typhimurium on fresh-cut celery using thermoultrasound and calcium propionate. Int. J. Food Microbiol. 150:128–135.
  • Lagrain, B., Boeckx, L., Wilderjans, E., Delcour, J. A. and Lauriks, W. (2006). Non-contact ultrasound characterization of bread crumb: Application of the Biot–Allard model. Food Res. Int. 39:1067–1075.
  • Lavilla, I., Vilas, P. and Bendicho, C. (2008). Fast determination of arsenic, selenium, nickel and vanadium in fish and shellfish by electrothermal atomic absorption spectrometry following ultrasound-assisted extraction. Food Chem. 106:403–409.
  • Leadley, C. E. and Williams, A. (2006). Pulsed electric field processing, power ultrasound and other emerging technologies. In: Food Processing Handbook, pp. 201–236. Brennan, J. G., Eds., Wiley-VCH Verlag GmbH, KGaA, Weinheim, Germany.
  • Li, B. and Sun, D-W. (2002). Effect of power ultrasound on freezing rate during immersion freezing of potatoes. J. Food Eng. 55:277–282.
  • Llull, P., Simal, S., Benedito, J. and Rosselló, C. (2002). Evaluation of textural properties of a meat-based product (sobrassada) using ultrasonic techniques. J. Food Eng. 53:279–285.
  • Manutsewee, N., Aeungmaitrepirom, W., Varanusupakul, P. and Imyim, A. (2007). Determination of Cd, Cu, and Zn in fish and mussel by AAS after ultrasound-assisted acid leaching extraction. Food Chem. 101:817–824.
  • Mason, T. J. and Lorimer, J. P. (2002). Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing. Wiley-VCH, Weinheim, Germany, 330 p.
  • McClements, D. J. (1994). Ultrasonic determination of depletion flocculation in oil-in-water emulsions containing a non-ionic surfactant. Physicochem. Eng. Asp. 90:25–35.
  • McClements, D. J. (1995). Advances in the application of ultrasound in food analysis and processing. Trends Food Sci. Technol. 6:293–299.
  • Meng, Χ., Zhang, M. and Adhikari, B. (2013). The effects of ultrasound treatment and nano-zinc oxide coating on the physiological activities of fresh-cut kiwifruit. Food Bioprocess Tech. doi:10.1007/s11947-013-1081-0.
  • Meng, X., Zhang, M. and Adhikari, B. (2014). The effects of ultrasound treatment and nano-zinc oxide coating on the physiological activities of fresh-cut kiwifruit. Food Bioprocess Tech. 7:126–132.
  • Mortazavi, A. and Tabatabaie, F. (2008). Study of ice cream freezing process after treatment with ultrasound. World Appl. Sci. J. 4(2):188–190.
  • Neves, R. C. F., Moraes, P. M., Saleh, MA. D., Loureiro, V. R., Silva, F. A., Barros, M. M., Padilha, C. C. F., Jorge, S. M. A. and Padilha, P. M. (2009). FAAS determination of metal nutrients in fish feed after ultrasound extraction. Food Chem. 113:679–683.
  • Ozuna, C., Puig, A., García-Pérez, J. V., Mulet, A. and Cárcel, J. A. (2013). Influence of high-intensity ultrasound application on mass transport, microstructure and textural properties of pork meat (Longissimus dorsi) brined at different NaCl concentrations. J. Food Eng. 119:84–93.
  • Pagán, R., Mañas, P., Alvarez, I. and Condón, S. (1999). Resistance of Listeria monocytogenes to ultrasonic waves under pressure at sublethal (manosonication) and lethal (manothermosonication) temperatures. Food Microbiol. 16:139–148.
  • Patil, S., Bourke, P., Cullen, B., Frias, J. M. and Cullen, P. J. (2009). The effects of acid adaptation on Escherichia coli inactivation using power ultrasound. Innov. Food Sci. Emerg. Technol. 10(4):486–490.
  • Patist, A. and Bates, D. (2008). Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov. Food Sci. Emer. Technol. 9:147–154.
  • Petzold, G. and Aguilera, J. M. (2009). Ice morphology: Fundamentals and technological applications in foods. Food Biophys. 4:378–396.
  • Piyasena, P., Mohareb, E. and McKellar, R. C. (2003). Inactivation of microbes using ultrasound: A review. Int. J. Food Microbiol. 87:207–216.
  • Pizarro, C., Sáenz-González, C., Pérez-del-Notario, N. and González-Sáiz, J. M. (2011). Ultrasound-assisted emulsification–microextraction for the sensitive determination of Brett character responsible compounds in wines. J. Chromatogr. A. 1218:8975–8981.
  • Pizarro, C., Sáenz-González, C., Pérez-del-Notario, N. and González-Sáiz, J. M. (2012). Simultaneous determination of cork taint and Brett character responsible compounds in wine using ultrasound-assisted emulsification microextraction with solidification of floating organic drop. J. Chromatogr. A. 1249:54–61.
  • Sabarez, H. T., Gallego-Juarez, J. A. and Riera, E. (2012). Ultrasonic-assisted convective drying of apple slices. Drying Technol. 30:989–997.
  • Sagong, H-G., Lee, S-Y., Chang, P-S., Heu, S., Ryu, S., Choi, Y-J. and Kang, D-H. (2011). Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int. J. Food Microbiol. 145:287–292.
  • Sala, F. J., Burgos, J., Condon, S., Lopez, P. and Raso, J. (1995). Effect of heat and ultrasound on microorganisms and enzymes. In: New Methods of Food Preservation, pp. 176–204. Gould, G. W., Ed., Chapman and Hall, London.
  • Santos, H. M., Lodeiro, C. and Capelo-MartRnez, J-L. (2009). The power of ultrasound. In: Ultrasound in Chemistry: Analytical Applications, pp. 1–16. Capelo-Martνnez, J.-L., Ed., Wiley-VCH Verlag GmbH, KGaA, Weinheim, Germany.
  • São José, J. F. B. and Vanetti, M. C. D. (2012). Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes. Food Control. 24:95–99.
  • Schössler, K., Jäger, H. and Knorr, D. (2012). Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innov. Food Sci. Emer. Technol. 16:113–120.
  • Seymour, I.J., Burfoot, D., Smith, R.L., Cox, L.A., and Lockwood, A. (2002). Ultrasound decontamination of minimally processed fruits and vegetables. International Journal of Food Science and Technology. 37:547–557.
  • Shannon, R. A., Probert-Smith, P. J., Lines, J. and Mayia, F. (2004). Ultrasound velocity measurement to determine lipid content in salmon muscle the effects of myosepta. Food Res. Int. 37:611–620.
  • Simal, S., Benedito, J., Clemente, G., Femenia, A. and Rosselló, C. (2003). Ultrasonic determination of the composition of a meat-based product. J. Food Eng. 58:253–257.
  • Siró, I., Vén, C., Balla, C., Jónás, G., Zeke, I. and Friedrich, L. (2009). Application of an ultrasonic-assisted curing technique for improving the diffusion of sodium chloride in porcine meat. J. Food Eng. 91:353–362.
  • Soria, A. C. and Villamiel, M. (2010). Effect of ultrasound on technological properties and bioactivity of food: A review. Trends Food Sci. Technol. 21:323–331.
  • Tao, Y., Wu, D., Zhang, Q-A. and Sun, D-W. (2013). Ultrasound-assisted extraction of phenolics from wine lees: Modeling, optimization and stability of extracts during storage. Ultrasonics Sonochem. xxx:xxx–xxx.
  • Tao, Y., Wu, D., Zhang, Q-A. and Sun, D-W. (2014). Ultrasound assisted extraction of phenolics from wine lees: Modeling, optimization and stability of extracts during storage. Ultrasonics Sonochemistry. 21:706–715.
  • Ugarte-Romero, E., Feng, H., Martin, S. E., Cadwallader, K. R. and Robinson, S. J. (2006). Inactivation of Escherichia coli with power ultrasound in apple cider. J. Food Sci. 71(2):102–108.
  • Vercet, A., Lopez, P. and Burgos, J. (1998). Free radical formation by manothermosonication. Ultrasonics. 36:615–618.
  • Vila, D.H., Mira, F.J.H., Lucena, R.B., and Recamales, M.F. (1999). Optimization of an extraction method of aroma compounds in white wine using ultrasound. Talanta. 50:413–421.
  • Villamiel, M. and De Jong, P. (2000a). Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. J. Agric. Food Chem. 48:472–478.
  • Villamiel, M. and De Jong, P. (2000b). Inactivation of Pseudomonas fluorescens and Streptococcus thermophilus in Trypticase Soy Broth and total bacteria in milk by continuous-flow ultrasonic treatment and conventional heating. J. Food Eng. 45:171–179.
  • Wong, E., Vaillant-Barka, F. and Chaves-Olarte, E. (2012). Synergistic effect of sonication and high osmotic pressure enhances membrane damage and viability loss of Salmonella in orange juice. Food Res. Int. 45:1072–1079.
  • Zheng, L. and Sun, D-W. (2006). Innovative applications of power ultrasound during food freezing processes – A review. Trends Food Sci. Technol. 17:16–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.