499
Views
20
CrossRef citations to date
0
Altmetric
Articles

Effects of flavanols on the enteroendocrine system: Repercussions on food intake

, , &

References

  • Aron, P. M. and Kennedy, J. A. (2008). Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res. 52:79–104.
  • Aura, A.-M. (2008). Microbial metabolism of dietary phenolic compounds in the colon. Phytochem. Rev. 7:407–429.
  • Beecher, G. R. (1999). Phytonutrients' role in metabolism: Effects on resistance to degenerative processes. Nutr. Rev. 57:S3–S6.
  • Beecher, G. R. (2003). Overview of dietary flavonoids: Nomenclature, occurrence and intake. J. Nutr. 133:3248S–3254S.
  • Belza, A., Frandsen, E. and Kondrup, J. (2007). Body fat loss achieved by stimulation of thermogenesis by a combination of bioactive food ingredients: A placebo-controlled, double-blind 8-week intervention in obese subjects. Int. J. Obes. 31:121–130.
  • Bentivegna, S. S. and Whitney, K. M. (2002). Subchronic 3-month oral toxicity study of grape seed and grape skin extracts. Food Chem. Toxicol. 40:1731–1743.
  • Bladé, C., Arola, L. and Salvadó, M.-J. (2010). Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms. Mol. Nutr. Food Res. 54:37–59.
  • Boqué, N., Campión, J., de la Iglesia, R., de la Garza, A. L., Milagro, F. I., San Román, B., Bañuelos, Ó. and Martínez, J. A. (2013). Screening of polyphenolic plant extracts for anti-obesity properties in Wistar rats. J. Sci. Food Agric. 93:1226–1232.
  • Bose, M., Lambert, J. D., Ju, J., Reuhl, K. R., Shapses, S. A. and Yang, C. S. (2008). The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J. Nutr. 138:1677–1683.
  • Brown, A. L., Lane, J., Holyoak, C., Nicol, B., Mayes, A. E. and Dadd, T. (2011). Health effects of green tea catechins in overweight and obese men: A randomised controlled cross-over trial. Brit. J. Nutr. 106:1880–1889.
  • Caimari, A., del Bas, J. M., Crescenti, A. and Arola, L. (2013). Low doses of grape seed procyanidins reduce adiposity and improve the plasma lipid profile in hamsters. Int. J. Obes. 37:576–583.
  • Carter, B. E. and Drewnowski, A. (2012). Beverages containing soluble fiber, caffeine, and green tea catechins suppress hunger and lead to less energy consumption at the next meal. Appetite. 59:755–761.
  • Chen, Y.-K., Cheung, C., Reuhl, K. R., Liu, A. B., Lee, M.-J., Lu, Y.-P. and Yang, C. S. (2011). Effects of green tea polyphenol (−)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. J. Agric. Food Chem. 59:11862–11871.
  • Choo, J. J. (2003). Green tea reduces body fat accretion caused by high-fat diet in rats through beta-adrenoceptor activation of thermogenesis in brown adipose tissue. J. Nutr. Biochem. 14:671–676.
  • Clifford, M. N. (2004). Diet-derived phenols in plasma and tissues and their implications for health. Planta Medica. 70:1103–1114.
  • Crozier, A., Jaganath, I. B. and Clifford, M. N. (2009). Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 26:1001–1043.
  • D'Archivio, M., Filesi, C., Di Benedetto, R., Gargiulo, R., Giovannini, C. and Masella, R. (2007). Polyphenols, dietary sources and bioavailability. Annali DellIstituto Superiore di sanita. 43:348–361.
  • Dao, T.-M. A., Waget, A., Klopp, P., Serino, M., Vachoux, C., Pechere, L., Drucker, D. J., Champion, S., Barthélemy, S., Barra, Y., Burcelin, R. and Sérée, E. (2011). Resveratrol increases glucose induced GLP-1 secretion in mice: A mechanism which contributes to the glycemic control. PloS One. 6:e20700.
  • Déprez, S., Brezillon, C., Rabot, S., Philippe, C., Mila, I., Lapierre, C. and Scalbert, A. (2000). Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J. Nutr. 130:2733–2738.
  • Diepvens, K., Kovacs, E. M. R., Nijs, I. M. T., Vogels, N. and Westerterp-Plantenga, M. S. (2005). Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females. Brit. J. Nutr. 94:1026–1034.
  • González-Abuín N, Martínez-Micaelo N, Blay M, Ardévol A, Pinent M. (2014). Grape-seed procyanidins prevent the cafeteria-diet-induced decrease of glucagon-like peptide-1 production. J. Agric. Food Chem. 5;62(5):1066–1072.
  • Gregersen, N. T., Bitz, C., Krog-Mikkelsen, I., Hels, O., Kovacs, E. M. R., Rycroft, J. A., Frandsen, E., Mela, D. J. and Astrup, A. (2009). Effect of moderate intakes of different tea catechins and caffeine on acute measures of energy metabolism under sedentary conditions. Brit. J. Nutr. 102:1187–1194.
  • Gruendel, S., Garcia, A. L., Otto, B., Wagner, K., Bidlingmaier, M., Burget, L., Weickert, M. O., Dongowski, G., Speth, M., Katz, N. and Koebnick, C. (2007). Increased acylated plasma ghrelin, but improved lipid profiles 24-h after consumption of carob pulp preparation rich in dietary fibre and polyphenols. Brit. J. Nutr. 98:1170–1177.
  • Gruendel, S., Garcia Trinidad, A. L., Otto, B., Mueller, C., Steiniger, J., Weickert, M. O., Speth, M., Katz, N. and Koebnick, C. (2006). Carob pulp preparation rich in insoluble dietary fiber and polyphenols enhances lipid oxidation and lowers postprandial acylated ghrelin in humans. J. Nutr. 136:1533–1538.
  • Gu, L., Kelm, M. A., Hammerstone, J. F., Beecher, G., Holden, J., Haytowitz, D., Gebhardt, S. and Prior, R. L. (2004). Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J. Am. Coll. Nutr. 134:613–617.
  • Hollis, J. H., Houchins, J. A., Blumberg, J. B. and Mattes, R. D. (2009). Effects of concord grape juice on appetite, diet, body weight, lipid profile, and antioxidant status of adults. Journal of the. American. College of. Nutrition. 28:574–582.
  • Holt, R. R., Lazarus, S. A., Sullards, M. C., Zhu, Q. Y., Schramm, D. D., Hammerstone, J. F., Fraga, C. G., Schmitz, H. H. and Keen, C. L. (2002). Procyanidin dimer B2 [epicatechin-(4beta-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am. J. Clin. Nutr. 76:798–804.
  • Hsu, C.-H., Liao, Y.-L., Lin, S.-C., Tsai, T.-H., Huang, C.-J. and Chou, P. (2011). Does supplementation with green tea extract improve insulin resistance in obese type 2 diabetics? A randomized, double-blind, and placebo-controlled clinical trial. Altern. Med. Rev. J. Clin. Therapeutic. 16:157–163.
  • Hursel, R. and Westerterp-Plantenga, M. S. (2009). Green tea catechin plus caffeine supplementation to a high-protein diet has no additional effect on body weight maintenance after weight loss. Am. J. Clin Nutr. 89:822–830.
  • Hwang, I. K., Kim, D. W., Park, J. H., Lim, S. S., Yoo, K.-Y., Kwon, D. Y., Kim, D.-W., Moon, W.-K. and Won, M.-H. (2009). Effects of grape seed extract and its ethylacetate/ethanol fraction on blood glucose levels in a model of type 2 diabetes. Phytother. Res. 23:1182–1185.
  • Ikarashi, N., Toda, T., Okaniwa, T., Ito, K., Ochiai, W. and Sugiyama, K. (2011). Anti-obesity and anti-diabetic effects of acacia polyphenol in obese diabetic kkay mice fed high-fat diet. Evid. Based Complementary Altern. Med. 2011:952031.
  • Janssen, S. and Depoortere, I. (2012). Nutrient sensing in the gut: New roads to therapeutics? Trends Endocrinol. Metab. TEM. 24:92–100.
  • Johnston, K. L., Clifford, M. N. and Morgan, L. M. (2003). Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: Glycemic effects of chlorogenic acid and caffeine.
  • Kao, Y. H., Hiipakka, R. A. and Liao, S. (2000). Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology. 141:980–987.
  • Klaus, S., Pültz, S., Thöne-Reineke, C. and Wolfram, S. (2005). Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int. J. Obes. 29:615–623.
  • Kwon, D. Y., Hong, S. M., Ahn, I. S., Kim, M. J., Yang, H. J. and Park, S. (2011). Isoflavonoids and peptides from meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutrition Burbank Los Angeles County Calif. 27:244–252.
  • Lu, S.-S., Yu, Y.-L., Zhu, H.-J., Liu, X.-D., Liu, L., Liu, Y.-W., Wang, P., Xie, L. and Wang, G.-J. (2009). Berberine promotes glucagon-like peptide-1 (7–36) amide secretion in streptozotocin-induced diabetic rats. J. Endocrinol. 200:159–165.
  • Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 79:727–747.
  • Mane, C., Loonis, M., Juhel, C., Dufour, C. and Malien-Aubert, C. (2011). Food grade lingonberry extract: Polyphenolic composition and in vivo protective effect against oxidative stress. J. Agric. Food Chem. 59:3330–3339.
  • Mangine, G. T., Gonzalez, A. M., Wells, A. J., McCormack, W. P., Fragala, M. S., Stout, J. R. and Hoffman, J. R. (2012). The effect of a dietary supplement (N-oleyl-phosphatidyl-ethanolamine and epigallocatechin gallate) on dietary compliance and body fat loss in adults who are overweight: A double-blind, randomized control trial. Lipids Health Dis. 11:127.
  • Matvienko, O. A., Alekel, D. L., Genschel, U., Ritland, L., Van Loan, M. D. and Koehler, K. J. (2010). Appetitive hormones, but not isoflavone tablets, influence overall and central adiposity in healthy postmenopausal women. Menopause (New York, N.Y.). 17:594–601.
  • Monagas, M., Urpi-Sarda, M., Sánchez-Patán, F., Llorach, R., Garrido, I., Gómez-Cordovés, C., Andres-Lacueva, C. and Bartolomé, B. (2010). Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct. 1:233–253.
  • Moran-Ramos, S., Tovar, A. R. and Torres, N. (2012). Diet: Friend or foe of enteroendocrine cells–-how it interacts with enteroendocrine cells. Adv Nutr. (Bethesda, Md.). 3:8–20.
  • Murase, T., Nagasawa, A., Suzuki, J., Hase, T. and Tokimitsu, I. (2002). Beneficial effects of tea catechins on diet-induced obesity: Stimulation of lipid catabolism in the liver. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 26:1459–1464.
  • Nagao, T., Hase, T. and Tokimitsu, I. (2007). A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity. 15:1473–1483.
  • Nandakumar, V., Singh, T. and Katiyar, S. K. (2008). Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett. 269:378–387.
  • Nikander, E., Tiitinen, A., Laitinen, K., Tikkanen, M. and Ylikorkala, O. (2004). Effects of isolated isoflavonoids on lipids, lipoproteins, insulin sensitivity, and ghrelin in postmenopausal women. J. Clin. Endocrinol. Metab. 89:3567–3572.
  • Ohyama, K., Furuta, C., Nogusa, Y., Nomura, K., Miwa, T. and Suzuki, K. (2011). Catechin-rich grape seed extract supplementation attenuates diet-induced obesity in C57BL/6J mice. Ann. Nutr. Metab. 58:250–258.
  • Ottaviani, J. I., Kwik-Uribe, C., Keen, C. L. and Schroeter, H. (2012). Intake of dietary procyanidins does not contribute to the pool of circulating flavanols in humans. Am. J. Clin. Nutr. 95:851–858.
  • Panickar, K. S. (2012). Effects of dietary polyphenols on neuroregulatory factors and pathways that mediate food intake and energy regulation in obesity. Mol Nutr. Food Res. 1–14.
  • Park, S., Ahn, I. S., Kim, J. H., Lee, M. R., Kim, J. S. and Kim, H. J. (2010). Glyceollins, one of the phytoalexins derived from soybeans under fungal stress, enhance insulin sensitivity and exert insulinotropic actions. J. Agric. Food Chem. 58:1551–1557.
  • Pinent, M., Cedó, L., Montagut, G., Blay, M. and Ardévol, A. (2012). Procyanidins improve some disrupted glucose homoeostatic situations: An analysis of doses and treatments according to different animal models. Crit. Rev. Food Sci. Nutr. 52:569–584.
  • Puiggros, F., Llópiz, N., Ardévol, A., Bladé, C., Arola, L. and Salvadó, M. J. (2005). Grape seed procyanidins prevent oxidative injury by modulating the expression of antioxidant enzyme systems. J. Agric. Food Chem. 53:6080–6086.
  • Quiñones, M., Guerrero, L., Suarez, M., Pons, Z., Aleixandre, A., Arola, L. and Muguerza, B. (2013). Low-molecular procyanidin rich grape seed extract exerts antihypertensive effect in males spontaneously hypertensive rats. Food Res. Int. 51:587–595.
  • Raasmaja, A., Lecklin, A., Li, X. M., Zou, J., Zhu, G.-G., Laakso, I. and Hiltunen, R. (2013). A water-alcohol extract of Citrus grandis whole fruits has beneficial metabolic effects in the obese Zucker rats fed with high fat/high cholesterol diet. Food Chem. 138:1392–1399.
  • Rafferty, E. P., Wylie, A. R., Elliott, C. T., Chevallier, O. P., Grieve, D. J. and Green, B. D. (2011). In vitro and in vivo effects of natural putative secretagogues of glucagon-like peptide-1 (GLP-1). Sci. Pharm. 79:615–621.
  • Rains, T. M., Agarwal, S. and Maki, K. C. (2011). Antiobesity effects of green tea catechins: A mechanistic review. J. Nutr. Biochem. 22:1–7.
  • Rasmussen, S. E., Frederiksen, H., Struntze Krogholm, K. and Poulsen, L. (2005). Dietary proanthocyanidins: Occurrence, dietary intake, bioavailability, and protection against cardiovascular disease. Mol. Nutr. Food Res. 49:159–174.
  • Reinbach, H. C., Smeets, A., Martinussen, T., Möller, P. and Westerterp-Plantenga, M. S. (2009). Effects of capsaicin, green tea and CH-19 sweet pepper on appetite and energy intake in humans in negative and positive energy balance. Clin. Nutr. 28:260–265.
  • Rondanelli, M., Opizzi, A., Solerte, S. B., Trotti, R., Klersy, C. and Cazzola, R. (2009). Administration of a dietary supplement (N-oleyl-phosphatidylethanolamine and epigallocatechin-3-gallate formula) enhances compliance with diet in healthy overweight subjects: A randomized controlled trial. Brit. J. Nutr. 101:457–464.
  • Ryökkynen, A., Kukkonen, J. V. K. and Nieminen, P. (2006). Effects of dietary genistein on mouse reproduction, postnatal development and weight-regulation. Anim. Reprod. Sci. 93:337–348.
  • Sano, A., Yamakoshi, J., Tokutake, S., Tobe, K., Kubota, Y. and Kikuchi, M. (2003). Procyanidin B1 is detected in human serum after intake of proanthocyanidin-rich grape seed extract. Biosci. Biotechnol. Biochem. 67:1140–1143.
  • Sayama, K., Lin, S., Zheng, G. and Oguni, I. (2000). Effects of green tea on growth, food utilization and lipid metabolism in mice. In vivo. 14:481–484.
  • Scalbert, A. and Williamson, G. (2000). Dietary Intake and Bioavailability of Polyphenols. J. Nutr. 130:2073S–2085.
  • Serra, A., Maciá, A., Romero, M.-P., Valls, J., Bladé, C., Arola, L. and Motilva, M.-J. (2010). Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models. Brit. J. Nutr. 103:944–952.
  • Shoji, T., Masumoto, S., Moriichi, N., Akiyama, H., Kanda, T., Ohtake, Y. and Goda, Y. (2006). Apple procyanidin oligomers absorption in rats after oral administration: Analysis of procyanidins in plasma using the porter method and high-performance liquid chromatography/tandem mass spectrometry. J. Agric. Food Chem. 54:884–892.
  • Spencer, J. P., Chaudry, F., Pannala, A. S., Srai, S. K., Debnam, E. and Rice-Evans, C. (2000). Decomposition of cocoa procyanidins in the gastric milieu. Biochem. Biophys. Res. Commun. 272:236–241.
  • Sternini, C., Anselmi, L. and Rozengurt, E. (2008). Enteroendocrine cells: A site of “taste” in gastrointestinal chemosensing. Curr. Opin. Endocrinol. Diabetes and Obes. 15:73–78.
  • Takikawa, M., Kurimoto, Y. and Tsuda, T. (2013). Curcumin stimulates glucagon-like peptide-1 secretion in GLUTag cells via Ca2+/calmodulin-dependent kinase II activation. Biochem. Biophys. Res. Commun. 435:165–170.
  • Tebib, K., Besançon, P. and Rouanet, J.-M. (1996). Effects of dietary grape seed tannins on rat cecal fermentation and colonic bacterial enzymes. Nutr. Res. 16:105–110.
  • Terra, X., Montagut, G., Bustos, M., Llópiz, N., Ardévol, A., Bladé, C., Fernández-Larrea, J., Pujadas, G., Salvadó, J., Arola, L. and Blay, M. (2009). Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J. Nutr. Biochem. 20:210–218.
  • Terra, X., Pallarés, V., Ardévol, A., Bladé, C., Fernández-Larrea, J., Pujadas, G., Salvadó, J., Arola, L. and Blay, M. (2011). Modulatory effect of grape-seed procyanidins on local and systemic inflammation in diet-induced obesity rats. J. Nutr. Biochem. 22:380–387.
  • Törrönen, R., Sarkkinen, E., Niskanen, T., Tapola, N., Kilpi, K. and Niskanen, L. (2011). Postprandial glucose, insulin and glucagon-like peptide 1 responses to sucrose ingested with berries in healthy subjects. Brit. J. Nutr. 107:1445–1451.
  • Tsang, C., Auger, C., Mullen, W., Bornet, A., Rouanet, J.-M., Crozier, A. and Teissedre, P.-L. (2007). The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. Brit. J. Nutr. 94:170
  • Urpi-Sarda, M., Monagas, M., Khan, N., Lamuela-Raventos, R. M., Santos-Buelga, C., Sacanella, E., Castell, M., Permanyer, J. and Andres-Lacueva, C. (2009). Epicatechin, procyanidins, and phenolic microbial metabolites after cocoa intake in humans and rats. Anal. Bioanal. Chem. 394:1545–1556.
  • Vadillo, M., Ardévol, A., Fernández-Larrea, J., Pujadas, G., Bladé, C., Salvadó, M. J., Arola, L. and Blay, M. (2006). Moderate red-wine consumption partially prevents body weight gain in rats fed a hyperlipidic diet. J. Nutr. Biochem. 17:139–142.
  • Vogels, N., Nijs, I. M. T. and Westerterp-Plantenga, M. S. (2004). The effect of grape-seed extract on 24 h energy intake in humans. Eur. J. Clin. Nutr. 58:667–673.
  • Wang, H., Wen, Y., Du, Y., Yan, X., Guo, H., Rycroft, J. A., Boon, N., Kovacs, E. M. R. and Mela, D. J. (2010). Effects of catechin enriched green tea on body composition. Obesity. 18:773–779.
  • Weickert, M. O., Reimann, M., Otto, B., Hall, W. L., Vafeiadou, K., Hallund, J., Ferrari, M., Talbot, D., Branca, F., Bügel, S., Williams, C. M., Zunft, H.-J. and Koebnick, C. (2006). Soy isoflavones increase preprandial peptide YY (PYY), but have no effect on ghrelin and body weight in healthy postmenopausal women. J. Negat. Results Biomed. 5:11.
  • Yamashita, Y., Okabe, M., Natsume, M. and Ashida, H. (2013). Cinnamtannin A2, a Tetrameric Procyanidin, Increases GLP-1 and Insulin Secretion in Mice. Biosci. Biotechnol. Biochem. 77:888–891.
  • Yu, Y., Liu, L., Wang, X., Liu, X., Liu, X., Xie, L. and Wang, G. (2010). Modulation of glucagon-like peptide-1 release by berberine: In vivo and in vitro studies. Biochem. Pharm. 79:1000–1006.
  • Yui, K., Uematsu, H., Muroi, K., Ishii, K., Baba, M. and Osada, K. (2013). Effect of dietary polyphenols from hop (Humulus lupulus L.) pomace on adipose tissue mass, fasting blood glucose, hemoglobin A1c, and plasma monocyte chemotactic protein-1 levels in OLETF rats. J. Oleo Sci. 62:283–292.
  • Zhang, Y., Na, X., Zhang, Y., Li, L., Zhao, X. and Cui, H. (2009). Isoflavone reduces body weight by decreasing food intake in ovariectomized rats. Ann. Nutr. Metab. 54:163–170.
  • Zheng, G., Sayama, K., Okubo, T., Juneja, L. R. and Oguni, I. (2004). Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In vivo Athens Greece. 18:55–62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.