4,136
Views
47
CrossRef citations to date
0
Altmetric
Original Articles

Protein engineering and its applications in food industry

, &

References

  • Abdelmajeed, N. A., Khelil, O. A. and Danial, E. N. (2012). Immobilization technology for enhancing bio-products industry. Afr. J. Biotechnol. 11(71):13528–13539.
  • Altamirano, M. M., Blackburn, J. M., Aguayo, C. and Fersht, A. R. (2000). Directed evolution of a new catalytic activity using the α/β-barrel scaffold. Nature. 403:617–622.
  • Amara, A. F. (2013). Pharmaceutical and industrial protein engineering: Where we are? Pak. J. Pharm. Sci. 26(1):217–232.
  • Anthea, M., Hopkins, J., McLaughlin, C. W., Maryanna, S. J., Warner, Q., LaHart, D., and Wright, J. D. (1993). Human Biology and Health, Prentice Hall, Englewood Cliffs, New Jersey, USA.
  • Anthonsen, H. W., Baptista, A., Drablos, F., Martel, P. and Petersen, S. B. (1994). The blind watchmaker and rational protein engineering. J. Biotechnol. 36(3):185–220.
  • Antikainen, N. M. and Martin, S. F. (2005). Altering protein specificity: Techniques and applications. Bioorg. Med. Chem. 13(8):2701–2716.
  • Banta, S., Wheeldon, I. R. and Blenner, M. (2010). Protein engineering in the development of functional hydrogels. Ann. Rev. Biomed. Eng. 12:167–186.
  • Bessette, P. H., Rice, J. J. and Daugherty, P. S. (2004). Rapid isolation of high affinity protein binding peptides using bacterial display. Protein Eng. Des. Sel. 17:731–739.
  • Bhandari, P. and Gowrishankar, J. (1997). An Escherichia coli host strain useful for efficient overproduction of cloned gene products with Nacl as the inducer. J. Bacteriol. 179:4403–4406.
  • Bommarius, A. S., Broering, J. M., Chaparro-Riggers, J. F. and Polizzi, K. M. (2006). High throughput screening for enhanced protein stability. Curr. Opin. Biotechnol. 17:606–610.
  • Brena, B. M. and Batista-Viera, F. (2006). Immobilization of enzymes. In: Immobilization of Enzymes and Cells, 2nd ed., J. M. Guisan, Ed., Humana Press Inc., New Jersey, ISBN 1-59745-053-7.
  • Brode, P. F., Erwin, C. R., Rauch, D. S., Barnett, B. L., Armpriester, J. M., Wang, E. S. F. and Rubingh, D. N. (1966). Subtilisin BPN' variants: Increased hydrolytic activity on surface-bound substrates via decreased surface activity. Biochem. 36:3162–3169.
  • Brussels. (2009) Amfep Fact Sheet on Protein Engineered Enzymes, article published by Association of manufactures and formulators of enzyme products. [email protected]
  • Chaput, J. C., Woodbury, N. W., Stearns, L. A. and Williams, B. A. R. (2008). Creating protein biocatalysts as tools for future industrial applications. Expert Opin. Biol. Ther. 8(8):1087–1098.
  • Chen, H., Li, Y., Panda, T., Buehler, F. U., Ford, C. and Reilly, P. J. (1996). Effect of replacing helical glycine residues with alanines on reversible and irreversible stability and production of Aspergillus ewamori glucoamylase. Protein Eng. 9:499–505.
  • Chen, L., Coutinho, P. M., Nikolov, Z. and Ford, C. (1995). Deletion analysis of the starch-binding domain of Aspergiffus glucoamylase. Protein Fng. 8:1049–l055.
  • Chen, R. (2001). Enzyme engineering: Rational redesign versus directed evolution. Trends Biotechnol. 19(1):13–14.
  • Damborsky, J. (2007). Meeting report: protein design and evolution for biocatalysis Greifswald, Germany. Biotechnol. J. 2(2):176–179.
  • Dariush, N. R. (2003). Enzyme immobilization: The state of art in biotechnology. J. Biotechnol. 1(4):197–206.
  • Declerck, N., Joyet, P., Trosset, J. Y., Garnier, J. and Gaillardin, C. (1995). Hyperthermostable mutants of Bacillus licheniformis pamylase: Multiple amino acid replacements and molecular modelling. Protein Fng. 8:1029–l037.
  • Deperthes, D. (2002). Phage display substrate: A blind method for determining protease specificity. Biol. Chem. 383(7–8):1107–1112.
  • Elnashar, M. M., Yassin, A. M. and Kahil, T. (2008). Novel thermally and mechanically stable hydrogel for enzyme immobilization of penicillin G acylase via covalent technique. J. Appl. Polym. Sci. 109:4105–4111.
  • Fujii, R., Utsunomiya, Y., Hiratake, J., Sogabe, A., Sakata, K. (2003). Highly sensitive active-site titration of lipase in microscale culture media using fluorescent organophosphorus ester. Biochim. Biophys. Acta 1631:197–205.
  • G. J., Szardenings, M., Rouvinen, J., Jones, T. A. and Teeri, T. (1996). The active site of Trichoderma reesei cellobiohydrolase II: the role of tyrosine 169. Protein Eng. 9:691–699.
  • Gai, S. A. and Wittrup, K. D. (2007). Yeast surface display for protein engineering and characterization. Curr. Opin. Struct. Biol. 17(4):467–473.
  • Golynskiy, M. V. and Seelig, B. (2010). De novo enzymes: From computational design to mRNA display. Trends Biotechnol. 28(7):340–345.
  • Hanefeld, U., Gardossi, L. and Magner, E. (2009). Understanding enzyme immobilisation. Chem. Soc. Rev. 38:453–468.
  • Hasan, N. and Szybalski, W. (1995). Construction of lacits and lacI(q)TS expression plasmids and evaluation of the thermosensitive lac repressor. Gene. 163:35–40.
  • Jackson, S. E., Craggs, D. T. and Huang, J. R. (2006). Understanding the folding of GFP using biophysical techniques. Expert Rev. Proteomics. 3(5):545–559.
  • Jones, A., Lamsa, M., Frandsen, T. P., Spendler, T., Harris, P., Sloma, A., et al. (2008). Directed evolution of a maltogenic alpha-amylase from Bacillus sp. TS-25. J. Biotechnol. 134, 325–333.
  • Kirk, O., Borchert, T. V. and Fuglsang, C. C. (2002). Industrial enzyme applications. Curr. Opin. Biotechnol. 13:345–351.
  • Koivula, A., Reinikainen, T., Ruohonen, L., Valkeajawi, A., Claeyssens, M., Teleman, O., Kleywegt Labrou, N. E. (2010). Random mutagenesis methods for in vitro directed enzyme evolution. Curr. Protein. Pept. Sci. 11(1):91–100.
  • Koivula, A., Ruohonen, L., Reinikainen, T., Claeyssens, M., Jones, T. A. and Teeri, T. T. (1996). Catalytic mechanism of Trichoderma reesei cellobiohydrolase II (CBHII). In: Maijanen, A and Hasw, A. (Eds). New catalysts for clean environment. VTT symposium 163. Technical Research Centre of Finland, Espoo. 223–227.
  • Kumar, A., Dutt, S., Bagler, G., Ahuja, P. S. and Kumar, S. (2012). Engineering a thermo-stable superoxide dismutase functional at sub-zero to >50 °C, which also tolerates autoclaving. Sci Rep. 2:387.
  • Labrou, N. E. (2010). Random mutagenesis methods for in vitro directed enzyme evolution. Current Protein & Peptide Science. 11(1):1389–2037.
  • Lawson, S. L., Wakarchuk, W. W. and Withers, S. G. (1996). Effects of both shortening and lengthening the active site nucleophile of Bacillus circu/ans xylanase on catalytic activity. Biochemistry. 35:11–16.
  • Lee, S. H., Kim, Y. W., Lee, S., Auh, J. H., Yoo, S. S., Kim, T. J., Kim, J. W., Kim, S. T., Rho, H. J., Choi, J. H., Kim, Y. B. and Park, K. H. (2002). Modulation of cyclizing activity and thermostability of cyclodextrin glucanotransferase and its application as an antistaling enzyme. J. Agric. Food Chem. 50:1411–1415.
  • Lehmann, M. and Wyss, M. (2001). Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr. Opin. Biotechnol. 12:371–375.
  • Leuschner, C. and Antranikan, G. (1995). Heat stable enzymes from extremely thermophilic and hyperthermophilicmic microorganisms. World J. Microbiol. Biotechnol. 11:95–114.
  • Linder, M., Salovuori, I., Ruohonen, L. and Teeri, T. T. (1996). Characterization of a double cellulose-binding domain. I. Biol. Chem. 271:21266–21272.
  • Mattanovich, D. and Borth, N. (2006). Applications of cell sorting in biotechnology. Microb. Cell. Fact. 5(12).
  • May, O., Nguyen, P. T. and Arnold, F. H. (2000). Inverting enantioselectivity by directed evolution of hydnatoinase for improved production of L-methionine. Nat. Biotechnol. 18:317–320.
  • Ness, J. E., Welch, M., Giver, L., Bueno, M., Cherry, J. R., Borchert, T. V., Stemmer, W. P. C. and Minshull ,J. (1999). DNA shuffling of subgenomic sequences of subtilisin. Nat. Biotechnol. 17:893–896.
  • Okada, Y., Yoshigi, N., Sahara, H. and Koshino, S. (1995). Increase in thermostability of recombinant barley P-amylase by random mutagenesis. Biosci. Biotechnof. Biochem. 69:1152–l153.
  • Olempska-Beer, Z. S., Merker, R. I., Ditto, M. D. and DiNovi, M. J. (2006). Food-processing enzymes from recombinant microorganisms – A review. Regul. Toxicol. Pharmacol. 45:144–158.
  • Ordu, E. and Karaguler, N. G. (2012). Protein Engineering Applications on Industrially Important Enzymes: Candida methylica FDH as a Case Study. Protein Engineering, Prof. Pravin Kaumaya (Ed.), ISBN: 978-953-51-0037-9, InTech, Available from: http://www.intechopen.com/books/protein-engineering/proteinengineering-applications-on-industrially-important-enzymes-candida-methylica-fdh-as-a-case-s
  • Rao, M. B., Tanksale, A. M., Ghatge, M. S. and Deshpande, W. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews. 62(3):597–635.
  • Rubingh, D. N. (1997). Protein engineering from a bioindustrial point of view. Curr Op Biotech. 8:417–422.
  • Rubingh, D.N. (1996a). Engineering proteases with improved properties for detergents. In: Enzyme Technology for industrial Applications Edited by Savage L. South Borough MA: IBC Biomedical Library Series. 98–123.
  • Rubingh, D. N. and Grayling, R. A. (1996). Protein Engineering. In: Biotechnology, Vol. III. Encyclopedia of life support system (EOLSS) www.eolss.net/Sample-Chapters/C17/E6-58-03-06.pdf.
  • Sankaran, K., Godbole, S. S. and D'Souza, S. F. (1989). Preparation of spray-dried, sugar free egg powder using glucose oxidase and catalase co-immobilized on cotton cloth. Enzym. Microb. Tech. 11(9):617–619.
  • Sidhu, S. S. and Koide, S. (2007). Phage display for engineering and analysing protein interaction interfaces. Curr. Opin. Struct. Biol. 17(4):481–487.
  • Singh, R. K., Tiwari, M. K., Singh, R. and Lee, J. K. (2013). From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int. J. Mol. Sci. 14:1232–1277.
  • Singh, R. K., Zhang, Y. W., Nguyen, N. P., Jeya, M. and Lee, J. K. (2010). Covalent immobilization of β-1, 4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles. Appl. Microbiol. Biotechnol. 89:337–344.
  • Spadiut, O., Radakovits, K, Pisanelli, I., Salaheddin, C., Yamabhai, M, Tien-Chye Tan., Divne, C., Haltrich, D. (2009). A thermostable triple mutant of pyranose 2-oxidase from Trametes multicolor with improved properties for biotechnological applications. Biotechnol. J. 139(3):250–257.
  • Sriprapundh, D., C. Vieille and J. G. Zeikus (2003). Directed evolution of Thermotoga neapolitana xylose isomerase: high activity on glucose at low temperature and low pH. Protein Eng. 16: 683–690.
  • Stemmer, W. P. C., Crameri, A., Ha, K. D., Brennan, T. M. and Heynecker, H. L. (1995). Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonuleotides. Gene. 184:49–53.
  • Strausberg, S. L., Alexander, P. A., Gallagher, D. T., Gilliland, G. L., Barnett, B. L. and Bryan, P. N. (1995). Directed evolution of a subtilisin with calcium-independent stability. Bio. Technolg. 13:669–673.
  • Svensen, A. (1996). Protein engineering of microbial lipases with industrial interest. In: Enzyme Technology for industrial Applications, pp. 91–97. Savage, L., Eds., IBC Biomedical Library Series, Southbourough, MA.
  • Tamas, L. and Shewry, P. R. (2006). Heterologous expression and protein engineering of wheat gluten proteins. J. Cereal. Sci. 43:259–274.
  • Turner, N. J. (2003). Directed evolution of enzymes for applied biocatalysis. Trend Biotechnol. 21(11):474–478.
  • Van den Burg, B. (2003). Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6:213–218.
  • Van der Veen, B.A., Potocki-Véronèse, G., Albenne, C., Joucla, G., Monsan, P., Remaud-Simeon, M (2004). Combinatorial engineering to enhance amylosucrase performance: Construction, selection, and screening of variant libraries for increased activity. FEBS Lett. 560:91–97.
  • Vasina, J. A. and Baneyx, F. (1997). Expression of aggregation-prone recombi-nant proteins at low temperatures: A comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expr. Purif. 9:211–218.
  • Venkatesan, N. and Kim, B. H. (2002). Synthesis and enzyme inhibitory activities of novel peptide isosteres. Curr. Med. Chem. 9(24):2243–2270.
  • Visegrady, B., Than, N. G., Kilar, F., Sumegi, B., Than, G. N. and Bohn, H. (2001). Homology modelling and molecular dynamics studies of human placental tissue protein 13 (galectine-13). Protein Eng. 14(11):878–880.
  • Voigt, C. A., Kauffman, S. and Wang, Z. G. (2000). Rational evolutionary design: the theory of in vitro protein engineering evolution. Adv. Protein Chem. 55:79–160.
  • Wen, F., Nair, N. U. and Zhao, H. M. (2009). Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr. Opin. Biotechnol. 20:412–419
  • Whittingham, J. L., Havelund, S. and Jonassen, I. (1997). Crystal structure of a prolonged-acting insulin with albumin-binding properties. Biochem. 36:2826–2831.
  • Wilkinson, D., Akumanyi, N., Hurtado-Guerreiro, R., Dawkes, H., Knowles, P.F., Phillips, S.E.V., McPherson, M.J. (2004). Structural and kinetic studies of a series of mutants of galactose oxidase identified by directed evolution. Protein Eng. 17:141–147.
  • Willemsen, T., Hagemann, U. B., Jouaux, E. M., Stebel, S. C., Mason, J. M., Miller, K. M. and Arndt, K. M. (2008). Protein engineering. In: Molecular Biomethods, pp. 587–630. Walker, J. M. and Rapley, R., Ed., Humana Press, Totowa, USA.
  • Williams, G. J., Domann, S., Nelson, A. and Berry, A. (2003). Modifying the stereochemistry of an enzyme catalyzed reaction by directed evolution. 100(6): 3143–3148.
  • Wintrode, P. L., Miyazaki, K., and Arnold, F. H. 2000. Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution. J. Biol. Chem. 275:31635–31640.
  • Ye, X., Zhang, C. and Zhang, Y. P. (2012). Engineering a large protein by combined rational and random approaches: Stabilizing the Clostridium thermocellum cellobiose phosphorylase. Molecular BioSystems 8(6):1815–1823.
  • Zafir, L. I., Michaeli, Y., and Reiter, Y. (2007). Novel antibodies as anticancer agents. Oncogene. 26:3714–3733.
  • Zhang, N., Suen, W. C., Windsor, W., Xiao, L., Madison, V. and Zaks, A. (2003). Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng. 16(8):599–605.
  • Zhong, C., Song, S., Fang, N., Liang, X., Zhu, H. and Tang, X. F. (2009). Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis. Biotechnology and Bioengineering. 104(5): 862–870.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.