5,164
Views
211
CrossRef citations to date
0
Altmetric
Articles

Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health

, , &

References

  • Abdel-Aal, E.-S. M., Choo, T.-M., Dhillon, S. and Rabalski, I. (2012). Free and bound phenolic acids and total phenolics in black, blue, and yellow barley and their contribution to free radical scavenging capacity. Cereal Chem. J. 89:198–204.
  • Abdel-Rahman, I. E. and Osman, M. A. W. (2011). Effect of sorghum type (Sorghum bicolor) and traditional fermentation on tannins and phytic acid contents and trypsin inhibitor activity. Food Agr. Environ. 9:163–166.
  • Afify, A. E.-M. M. R., El-Beltagi, H. S., Abd El-Salam, S. M. and Omran, A. A. (2011). Bioavailability of iron, zinc, phytate and phytase activity during soaking and germination of white sorghum varieties. PLoS ONE 6:255–212.
  • Afify, A. E.-M. M. R., El-Beltagi, H. S., Abd El-Salam, S. M. and Omran, A. A. (2012a). Oil and fatty acid contents of white sorghum varieties under soaking, cooking, germination and fermentation processing for improving cereal quality. Not. Bot. Horti. Agrobo. 40:86–92.
  • Afify, A. E.-M. M. R., El-Beltagi, H. S., Abd El-Salam, S. M. and Omran, A. A. (2012b). Protein solubility, digestibility and fractionation after germination of sorghum varieties. PLoS ONE 7:e31154.
  • Afify, A. E.-M. M. R., El-Beltagi, H. S., El-Salam, S. M. A. and Omran, A. A. (2012c). Biochemical changes in phenols, flavonoids, tannins, vitamin E, β–carotene and antioxidant activity during soaking of three white sorghum varieties. Asian Pac. J. Trop. Biomed. 2:203–209.
  • Al-Mamary, M., Molham, A.-H., Abdulwali, A.-A. and Al-Obeidi, A. (2001). In vivo effects of dietary sorghum tannins on rabbit digestive enzymes and mineral absorption. Nutrit. Res. 21:1393–1401.
  • Ali, N. M. M., El Tinay, A. H., Elkhalifa, A. E. O., Salih, O. A. and Yousif, N. E. (2009). Effect of alkaline pretreatment and cooking on protein fractions of a high-tannin sorghum cultivar. Food Chem. 114:646–648.
  • Amiot, M. J., Knol, D., Cardinault, N., Nowicki, M., Bott, R., Antona, C., Borel, P., Bernard, J.-P., Duchateau, G. and Lairon, D. (2011). Phytosterol ester processing in the small intestine: impact on cholesterol availability for absorption and chylomicron cholesterol incorporation in healthy humans. J. Lipid Res. 52:1256–1264.
  • Amiot, M. J., Knol, D., Cardinault, N., Nowicki, M., Bott, R., Antona, C., Borel, P., Bernard, J.-P., Duchateau, G. and Lairon, D. (2013). Comparable reduction in cholesterol absorption after two different ways of phytosterol administration in humans. Eur. J. Nutrit. 55:1–8.
  • Ashok Kumar, A., Reddy, B. V. S., Ramaiah, B., Sahrawat, K. L. and Pfeiffer, W. H. (2013). Gene effects and heterosis for grain iron and zinc concentration in sorghum [Sorghum bicolor (L.) Moench]. Field Crop. Res. 146:86–95.
  • Awika, J. M. (2003). Antioxidant Properties of Sorghum. Texas A&M University, College Station, Texas.
  • Awika, J. M. (2008). Behavior of 3-deoxyanthocyanidins in the presence of phenolic copigments. Food Res. Int. 41:532–538.
  • Awika, J. M., Dykes, L., Gu, L., Rooney, L. W. and Prior, R. L. (2003). Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. J. Agr. Food Chem. 51:5516–5521.
  • Awika, J. M., McDonough, C. M. and Rooney, L. W. (2005). Decorticating sorghum to concentrate healthy phytochemicals. J. Agr. Food Chem. 53:6230–6234.
  • Awika, J. M. and Rooney, L. W. (2004). Sorghum phytochemicals and their potential impact on human health. PhytoChem. 65:1199–1221.
  • Awika, J. M., Rooney, L. W. and Waniska, R. D. (2004). Properties of 3-deoxyanthocyanins from sorghum. J. Agr. Food Chem. 52:4388–4394.
  • Awika, J. M., Yang, L., Browning, J. D. and Faraj, A. (2009). Comparative antioxidant, antiproliferative and phase II enzyme inducing potential of sorghum (Sorghum bicolor) varieties. LWT - Food Sci. Technol. 42:1041–1046.
  • Barros, F., Awika, J. and Rooney, L. W. (2013). Effect of molecular weight profile of sorghum proanthocyanidins on resistant starch formation. J. Sci. Food Agr. n/a-n/a.
  • Barros, F., Awika, J. M. and Rooney, L. W. (2012). Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. J. Agric. Food Chem. 60:11609–11617.
  • Beecher, G. R. (2004). Proanthocyanidins: Biological activities associated with human health. Pharm. Biol. 42:2–20.
  • Belton, P. S., Delgadillo, I., Halford, N. G. and Shewry, P. R. (2006). Kafirin structure and functionality. J. Cereal Sci. 44:272–286.
  • Bralley, E., Greenspan, P., Hargrove, J. L. and Hartle, D. K. (2008). Inhibition of hyaluronidase activity by select sorghum brans. J. Med. Med. Food 11:307–312.
  • Bröhan, M., Jerkovic, V. and Collin, S. (2011). Potentiality of red sorghum for producing stilbenoid-enriched beers with high antioxidant activity. J. Agric. Food Chem. 59:4088–4094.
  • Burdette, A., Garner, P. L., Mayer, E. P., Hargrove, J. L., Hartle, D. K. and Greenspan, P. (2010). Anti-inflammatory activity of select sorghum (Sorghum bicolor) brans. J. Med. Food 13:1–9.
  • Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F. J. and Queipo-Ortuño, M. I. (2013). Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 24:1415–1422.
  • Cardoso, L. d. M., Montini, T. A., Pinheiro, S. S., Pinheiro Sant'Ana, H. M., Martino, H. S. D. and Moreira, A. V. B. (2014). Effects of processing with dry heat and wet heat on the antioxidant profile of sorghum (Sorghum bicolor L.). Food Chem. 152:201–217.
  • Carr, T. P., Weller, C. L., Schlegel, V. L., Cuppett, S. L., Guderian, D. M. and Johnson, K. R. (2005). Grain sorghum lipid extract reduces cholesterol absorption and plasma non-HDL cholesterol concentration in hamsters. J. Nutrit. 135:2236–2240.
  • Chiremba, C., Taylor, J. R. N., Rooney, L. W. and Beta, T. (2012). Phenolic acid content of sorghum and maize cultivars varying in hardness. Food Chem. 134:81–88.
  • Cho, S. H., Choi, Y. and Ha, T. Y. (2000). In vitro and in vivo effects of prosomillet, buckwheat and sorghum on cholesterol metabolism. FASEB J. 14:249–249.
  • Chong, J., Poutaraud, A. and Hugueney, P. (2009). Metabolism and roles of stilbenes in plants. Plant Sci. 177:143–155.
  • Chung, I.-M., Kim, E.-H., Yeo, M.-A., Kim, S.-J., Seo, M. C. and Moon, H.-I. (2011a). Antidiabetic effects of three Korean sorghum phenolic extracts in normal and streptozotocin-induced diabetic rats. Food Res. Int. 44:127–132.
  • Chung, I.-M., Yeo, M.-A., Kim, S.-J., Kim, M.-J., Park, D.-S. and Moon, H.-I. (2011b). Antilipidemic activity of organic solvent extract from Sorghum bicolor on rats with diet-induced obesity. Human Exp. Toxicol. 30:1865–1868.
  • Chung, I.-M., Yong, S.-J., Lee, J. and Kim, S.-H. (2013). Effect of genotype and cultivation location on β-sitosterol and α-, β-, γ-, and δ-tocopherols in sorghum. Food Res. Int. 51:971–976.
  • Ciacci, C., Maiuri, L., Caporaso, N., Bucci, C., Del Giudice, L., Rita Massardo, D., Pontieri, P., Di Fonzo, N., Bean, S. R., Ioerger, B. and Londei, M. (2007). Celiac disease: In vitro and in vivo safety and palatability of wheat-free sorghum food products. Clin. Nutr. 26:799–805.
  • Clemente, Jose.C., Ursell, Luke.K., Parfrey, Laura.W. and Knight, R. (2012). The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270.
  • Correia, I., Nunes, A., Barros, A. S. and Delgadillo, I. (2008). Protein profile and malt activity during sorghum germination. J. Sci. Food Agr. 88:2598–2605.
  • Crozier, A., Del Rio, D. and Clifford, M. N. (2010). Bioavailability of dietary flavonoids and phenolic compounds. Mol. Aspect Med. 31:446–467.
  • Crozier, A., Jaganath, I. B. and Clifford, M. N. (2009). Dietary phenolics: chemistry, bioavailability and effects on health. Nat. Prod. Rep. 26:1001–1043.
  • D'Archivio, M., Filesi, C., Varì, R., Scazzocchio, B. and Masella, R. (2010). Bioavailability of the polyphenols: status and controversies. Int. J. Mol. Sci. 11:1321–1342.
  • da Silva, L. S., Jung, R., Zhao, Z.-y., Glassman, K., Taylor, J. and Taylor, J. R. N. (2011a). Effect of suppressing the synthesis of different kafirin sub-classes on grain endosperm texture, protein body structure and protein nutritional quality in improved sorghum lines. J. Cereal Sci. 54:160–167.
  • da Silva, L. S., Taylor, J. and Taylor, J. R. (2011b). Transgenic sorghum with altered kafirin synthesis: kafirin solubility, polymerization, and protein digestion. J. Agric. Food Chem. 59:9265–9270.
  • De Mesa-Stonestreet, N. J., Alavi, S. and Bean, S. R. (2010). Sorghum proteins: the concentration, isolation, modification, and food applications of kafirins. J. Food Sci. 75:90–104.
  • Delgado-Zamarreño, M., Bustamante-Rangel, M., Martínez-Pelarda, D. and Carabías-Martínez, R. (2009). Analysis of β-sitosterol in seeds and nuts using pressurized liquid extraction and liquid chromatography. Anal. Sci. 25:765–768.
  • Dicko, M. H., Gruppen, H., Barro, C., Traore, A. S., van Berkel, W. J. and Voragen, A. G. (2005). Impact of phenolic compounds and related enzymes in sorghum varieties for resistance and susceptibility to biotic and abiotic stresses. J. Chem. Ecol. 31:2671–2688.
  • Dillon, S. L., Shapter, F. M., Henry, R. J., Cordeiro, G., Izquierdo, L. and Lee, L. S. (2007). Domestication to crop improvement: genetic resources for sorghum and saccharum (Andropogoneae). Ann. Bot. 100:975–989.
  • Dixon, R. A., Xie, D.-Y. and Sharma, S. B. (2005). Proanthocyanidins—a final frontier in flavonoid research? New Phytol. 165:9–28.
  • Dolara, P., Luceri, C., Filippo, C. D., Femia, A. P., Giovannelli, L., Caderni, G., Cecchini, C., Silvi, S., Orpianesi, C. and Cresci, A. (2005). Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutation Res./λατνϵμαδνυΦ σισϵνϵγατυμ φο σμσιναηχϵμ ραλυχϵλομ δνα 195:642–732.
  • Donovan, J. L., Manach, C., Faulks, R. M. and Kroon, P. A. (2007). Absorption and metabolism of dietary plant secondary metabolites. In: Plant Secondary Metabolites, pp. 303–351. Blackwell Publishing Ltd.
  • Dowsett, M., Cuzick, J., Ingle, J., Coates, A., Forbes, J., Bliss, J., Buyse, M., Baum, M., Buzdar, A. and Colleoni, M. (2010). Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J. Clin. Oncol. 28:509–518.
  • Duarte, S., Gregoire, S., Singh, A. P., Vorsa, N., Schaich, K., Bowen, W. H. and Koo, H. (2006). Inhibitory effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans biofilms. FEMS Microbiol. Lett. 257:50–56.
  • Duodu, K. G., Nunes, A., Delgadillo, I., Parker, M. L., Mills, E. N. C., Belton, P. S. and Taylor, J. R. N. (2002). Effect of grain structure and cooking on sorghum and maize in vitro protein digestibility. J. Cereal Sci. 35:161–174.
  • Duodu, K. G., Taylor, J. R. N., Belton, P. S. and Hamaker, B. R. (2003). Factors affecting sorghum protein digestibility. J. Cereal Sci. 38:117–131.
  • Dykes, L., Peterson, G. C., Rooney, W. L. and Rooney, L. W. (2011). Flavonoid composition of lemon-yellow sorghum genotypes. Food Chem. 128:173–179.
  • Dykes, L. and Rooney, L. W. (2006). Sorghum and millet phenols and antioxidants. J. Cereal Sci. 44:236–251.
  • Dykes, L., Rooney, L. W., Waniska, R. D. and Rooney, W. L. (2005). Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. J. Agric. Food Chem. 53:6813–6818.
  • Dykes, L., Rooney, W. L. and Rooney, L. W. (2013). Evaluation of phenolics and antioxidant activity of black sorghum hybrids. J. Cereal Sci. 58:278–283.
  • Dykes, L., Seitz, L. M., Rooney, W. L. and Rooney, L. W. (2009). Flavonoid composition of red sorghum genotypes. Food Chem. 116:313–317.
  • Earp, C. F., McDonough, C. M. and Rooney, L. W. (2004). Microscopy of pericarp development in the caryopsis of Sorghum bicolor (L.) Moench. J. Cereal Sci. 39:21–27.
  • Elkhalifa, A. E. O., Schiffler, B. and Bernhardt, R. (2005). Effect of fermentation on the functional properties of sorghum flour. Food Chem. 92:1–5.
  • ELKhier, M. K. S. and Abd-ALRaheem, A. A. (2011). Effect of fermentation period on the chemical composition, in vitro protein digestibility and tannin content in two Sorghum cultivars (Dabar and Tabat) in Sudan. J. Appl. Biosci. 39:2602–2606.
  • Ezeogu, L. I., Duodu, K. G., Emmambux, M. N. and Taylor, J. R. N. (2008). Influence of cooking conditions on the protein matrix of sorghum and maize endosperm flours. Cereal Chem. J. 85:397–402.
  • Ezeogu, L. I., Duodu, K. G. and Taylor, J. R. N. (2005). Effects of endosperm texture and cooking conditions on the in vitro starch digestibility of sorghum and maize flours. J. Cereal Sci. 42:33–44.
  • Faria, A., Fernandes, I., Mateus, N. and Calhau, C. (2013). Bioavailability of Anthocyanins. In: Natural Products, pp. 2465–2487. Ramawat, K. G. and Mérillon, J.-M., Eds., Springer, Berlin Heidelberg.
  • Farrar, J. L., Hartle, D. K., Hargrove, J. L. and Greenspan, P. (2008). A novel nutraceutical property of select sorghum (Sorghum bicolor) brans: inhibition of protein glycation. Phytotherapy Res. 22:1052–1056.
  • Fernandes, I., Faria, A., Calhau, C., de Freitas, V. and Mateus, N. (2014). Bioavailability of anthocyanins and derivatives. J. Funct. Foods. 7:54–66.
  • Ferreira, S. M. R., Luparelli, P. C., Schieferdecker, M. E. M. and Vilela, R. M. (2009). Cookies sem glúten a partir da farinha de sorgo. Archivos Latinoamericanos Nutr. 59:433–440.
  • Floegel, A., Kim, D.-O., Chung, S.-J., Song, W. O., Fernandez, M. L., Bruno, R. S., Koo, S. I. and Chun, O. K. (2010). Development and validation of an algorithm to establish a total antioxidant capacity database of the US diet. Int. J. Food Sci.s Nutr. 61:600–623.
  • Food and Agricultural Organization. (2010). FAOSTAT. In). Rome, Italy.
  • Food Security Department. (1999). Sorghum: Post-harvest Operations. United Kingdom: Natural Resources Institute, United Kingdom.
  • Frazier, R. A., Deaville, E. R., Green, R. J., Stringano, E., Willoughby, I., Plant, J. and Mueller-Harvey, I. (2010). Interactions of tea tannins and condensed tannins with proteins. J. Pharm. Biomed. Anal. 51:490–495.
  • Fuentes-Zaragoza, E., Riquelme-Navarrete, M. J., Sánchez-Zapata, E. and Pérez-Álvarez, J. A. (2010). Resistant starch as functional ingredient: A review. Food Res. Int. 43:931–942.
  • González-Montilla, F. M., Chávez-Santoscoy, R. A., Gutiérrez-Uribe, J. A. and Serna-Saldivar, S. O. (2012). Isolation and identification of phase II enzyme inductors obtained from black Shawaya sorghum [Sorghum bicolor (L.) Moench] bran. J. Cereal Sci. 55:126–131.
  • Goodall, M. A., Campanella, O. H., Ejeta, G. and Hamaker, B. R. (2012). Grain of high digestible, high lysine (HDHL) sorghum contains kafirins which enhance the protein network of composite dough and bread. J. Cereal Sci. 56:352–357.
  • Greenberg, A. S. and Obin, M. S. (2006). Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 83:461–465.
  • Gregor, M. F. and Hotamisligil, G. S. (2011). Inflammatory mechanisms in obesity. Ann. Rev. Immunol. 29:415–445.
  • Hadbaoui, Z., Djeridane, A., Yousfi, M., Saidi, M. and Nadjemi, B. (2010). Fatty acid, tocopherol composition and the antioxidant activity of the lipid extract from the sorghum grains growing in Algeria. Mediterr. J. Nutr. Met. 3:215–220.
  • Hagerman, A. E., Riedl, K. M., Jones, G. A., Sovik, K. N., Ritchard, N. T., Hartzfeld, P. W. and Riechel, T. L. (1998). High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 46:1887–1892.
  • Hahn, D. and Rooney, L. (1986). Effect of genotype on tannins and phenols of sorghum. Cereal Chem. 63:4–8.
  • Hahn, D. H. and Rooney, L. W. (1986). Effect of genotype on tannins and phenols of sorghum. Cereal Chem. J. 63:4–8.
  • Hargrove, J. L., Greenspan, P., Hartle, D. K. and Dowd, C. (2011). Inhibition of aromatase and α-amylase by flavonoids and proanthocyanidins from Sorghum bicolor bran extracts. J. Med. Food 14:799–807.
  • Henley, E. C., Taylor, J. R. N. and Obukosia, S. D. (2010). The importance of dietary protein in human health: combating protein deficiency in sub-saharan africa through transgenic biofortified sorghum. In: Advances in Food and Nutrition Research, Vol. 60, pp. 21–52. Steve, L. T. ed., Academic Press.
  • Hidalgo, M., Oruna-Concha, M. J., Kolida, S., Walton, G. E., Kallithraka, S., Spencer, J. P. E., Gibson, G. R. and de Pascual-Teresa, S. (2012). Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J. Agric. Food Chem. 60:3882–3890.
  • Hill, H., Slade Lee, L. and Henry, R. J. (2012). Variation in sorghum starch synthesis genes associated with differences in starch phenotype. Food Chem. 131:175–183.
  • Hoi, J. T., Weller, C. L., Schlegel, V. L., Cuppett, S. L., Lee, J.-Y. and Carr, T. P. (2009). Sorghum distillers dried grain lipid extract increases cholesterol excretion and decreases plasma and liver cholesterol concentration in hamsters. J. Funct. Foods 1:381–386.
  • Hole, A. S., Rud, I., Grimmer, S., Sigl, S., Narvhus, J. and Sahlstrøm, S. (2012). Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. J. Agric. Food Chem. 60:6369–6375.
  • Holt, R. R., Lazarus, S. A., Sullards, M. C., Zhu, Q. Y., Schramm, D. D., Hammerstone, J. F., Fraga, C. G., Schmitz, H. H. and Keen, C. L. (2002). Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am. J. Clin. Nutr. 76:798–804.
  • Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature 444:860–867.
  • Huang, W.-Y., Cai, Y.-Z. and Zhang, Y. (2009). Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr. Cancer 62:1–20.
  • Hwang, J.-M., Choi, K.-C., Bang, S.-J., Son, Y.-O., Kim, B.-T., Kim, D.-H., Choi, G., Kim, D., Shi, X. and Lee, J.-C. (2013). Anti-oxidant and anti-inflammatory properties of methanol extracts from various crops. Food Sci. Biotechnol. 22:265–272.
  • Hwang, K. T., Kim, J. E. and Weller, C. L. (2005). Policosanol contents and compositions in wax-like materials extracted from selected cereals of Korean origin. Cereal Chem. 82:242–245.
  • Hwang, K. T., Weller, C. L., Cuppett, S. L. and Hanna, M. (2004). Policosanol contents and composition of grain sorghum kernels and dried distillers grains. Biol. Syst. Eng.: Papers Publ. 81:345–349.
  • Isaacson, C. (2005). The change of the staple diet of black South Africans from sorghum to maize (corn) is the cause of the epidemic of squamous carcinoma of the oesophagus. Med. Hypotheses 64:658–660.
  • Jesch, E. D. and Carr, T. P. (2006). Sitosterol reduces micellar cholesterol solubility in model bile. Nutr. Res. 26:579–584.
  • Kamath, V., Niketh, S., Chandrashekar, A. and Rajini, P. S. (2007). Chymotryptic hydrolysates of α-kafirin, the storage protein of sorghum (Sorghum bicolor) exhibited angiotensin converting enzyme inhibitory activity. Food Chem. 100:306–311.
  • Kamath, V. G., Chandrashekar, A. and Rajini, P. S. (2004). Antiradical properties of sorghum (Sorghum bicolor L. Moench) flour extracts. J. Cereal Sci. 40:283–288.
  • Kangama, C. O. and Rumei, X. (2005). Introduction of sorghum (Sorghum bicolor (L.) Moench) into China. Afr. J. Biotechnol. 4:575–579.
  • Kaufman, R. C., Herald, T. J., Bean, S. R., Wilson, J. D. and Tuinstra, M. R. (2013). Variability in tannin content, chemistry and activity in a diverse group of tannin containing sorghum cultivars. J. Sci. Food Agric. 93:1233–1241.
  • Kim, J.-S., Hyun, T. K. and Kim, M.-J. (2011). The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on α-glucosidase and α-amylase activities. Food Chem. 124:1647–1651.
  • Kim, J. and Park, Y. (2012). Anti-diabetic effect of sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutr. Metabol. 9:1–7.
  • Kruger, J., Taylor, J. R. N., Du, X., De Moura, F. F., Lönnerdal, B. and Oelofse, A. (2013). Effect of phytate reduction of sorghum, through genetic modification, on iron and zinc availability as assessed by an in vitro dialysability bioaccessibility assay, Caco-2 cell uptake assay, and suckling rat pup absorption model. Food Chem. 141:1019–1025.
  • Kumar, T., Dweikat, I., Sato, S., Ge, Z., Nersesian, N., Chen, H., Elthon, T., Bean, S., Ioerger, B. P., Tilley, M. and Clemente, T. (2012). Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench). Plant Biotechnol. J. 10:533–544.
  • Lafay, S. and Gil-Izquierdo, A. (2008). Bioavailability of phenolic acids. PhytoChem. Rev. 7:301–311.
  • Laparra, J. M. and Sanz, Y. (2010). Interactions of gut microbiota with functional food components and nutraceuticals. Pharm. Res. 61:219–225.
  • Larrosa, M., Yañéz-Gascón, M. a. J., Selma, M. a. V., González-Sarrías, A., Toti, S., Cerón, J. J. n., Tomás-Barberán, F., Dolara, P. and Espín, J. C. (2009). Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. J. Agric. Food Chem. 57:2211–2220.
  • Lee, H. C., Jenner, A. M., Low, C. S. and Lee, Y. K. (2006). Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol. 157:876–884.
  • Lee, S., Park, Y., Zuidema, M. Y., Hannink, M. and Zhang, C. (2011). Effects of interventions on oxidative stress and inflammation of cardiovascular diseases. World J. Cardiol. 3:18–24.
  • Leguizamón, C., Weller, C., Schlegel, V. and Carr, T. (2009). Plant sterol and policosanol characterization of hexane extracts from grain sorghum, corn and their DDGS. J. Am. Oil Chem. Soc. 86:707–716.
  • Lewis, J. B. (2008). Effects of Bran from Sorghum Grains Containing Different Classes and Levels of Bioactive Compounds in Colon Carcinogenesis. Texas A&M University, USA.
  • Manach, C., Williamson, G., Morand, C., Scalbert, A. and Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 81:230S–242S.
  • Margareta Leeman, A., Karlsson, M. E., Eliasson, A.-C. and Björck, I. M. (2006). Resistant starch formation in temperature treated potato starches varying in amylose/amylopectin ratio. Carbohyd. Polym. 65:306–313.
  • Marinangeli, C. P. F., Jones, P. J. H., Kassis, A. N. and Eskin, M. N. A. (2010). Policosanols as nutraceuticals: fact or fiction. Crit. Rev. Food Sci. Nutr. 50:259–267.
  • Martínez, I., Kim, J., Duffy, P. R., Schlegel, V. L. and Walter, J. (2010). Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS ONE 5:1–11.
  • Martínez, I., Wallace, G., Zhang, C., Legge, R., Benson, A. K., Carr, T. P., Moriyama, E. N. and Walter, J. (2009). Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl. Environ. Microbiol. 75:4175–4184.
  • Martino, H. S. D., Tomaz, P. A., Moraes, E. A., Conceição, L. L., Oliveira, D. S., Queiroz, V. A. V., Rodrigues, J. A. S., Pirozi, M. R., Pinheiro-Sant'Ana, H. M. and Ribeiro, M. R. (2012). Chemical characterization and size distribution of sorghum genotypes for human consumption. Rev. Inst. Adolfo. Lutz. 71:337–344.
  • Maunder, B. (2005). Sorghum: The global grain of the future. National Grain Sorghum Producers, Lubbock, TX.
  • McGhie, T. K., Ainge, G. D., Barnett, L. E., Cooney, J. M. and Jensen, D. J. (2003). Anthocyanin glycosides from berry fruit are absorbed and excreted unmetabolized by both humans and rats. J. Agric. Food Chem. 51:4539–4548.
  • Medugu, C., Kwari, I., Igwebuike, J., Nkama, I. and Mohammed, I. (2010). Performance and economics of production of broiler chickens fed sorghum or millet as replacement for maize in the semi-arid zone of Nigeria. Agric. Biol. J. North. Am. 1:321–325.
  • Mehlo, L., Mbambo, Z., Bado, S., Lin, J., Moagi, S. M., Buthelezi, S., Stoychev, S. and Chikwamba, R. (2013). Induced protein polymorphisms and nutritional quality of gamma irradiation mutants of sorghum. Mutation Res./λατνϵμαδνυΦ σισϵνϵγατυμ φο σμσιναηχϵμ ραλυχϵλομ δνα 195:642–732.
  • Mehmood, S., Orhan, I., Ahsan, Z., Aslan, S. and Gulfraz, M. (2008). Fatty acid composition of seed oil of different Sorghum bicolor varieties. Food Chem. 109:855–859.
  • Mkandawire, N. L., Kaufman, R. C., Bean, S. R., Weller, C. L., Jackson, D. S. and Rose, D. J. (2013). Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on α-amylase activity and in vitro digestibility of starch in raw and processed flours. J. Agric. Food Chem. 61:4448–4454.
  • Mokrane, H., Amoura, H., Belhaneche-Bensemra, N., Courtin, C. M., Delcour, J. A. and Nadjemi, B. (2010). Assessment of Algerian sorghum protein quality [Sorghum bicolor (L.) Moench] using amino acid analysis and in vitro pepsin digestibility. Food Chem. 121:719–723.
  • Moraes, É. A., Natal, D. I. G., Queiroz, V. A. V., Schaffert, R. E., Cecon, P. R., de Paula, S. O., Benjamim, L. d. A., Ribeiro, S. M. R. and Martino, H. S. D. (2012a). Sorghum genotype may reduce low-grade inflammatory response and oxidative stress and maintains jejunum morphology of rats fed a hyperlipidic diet. Food Res. Int. 49:553–559.
  • Moraes, É. A., Queiroz, V. A. V., Shaffert, R. E., Costa, N. M. B., Nelson, J. D., Ribeiro, S. M. R. and Martino, H. S. D. (2012b). In vivo protein quality of new sorghum genotypes for human consumption. Food Chem. 134:1549–1555.
  • Muriu, J. I., Njoka-Njiru, E. N., Tuitoek, J. K. and Nanua, J. N. (2002). Evaluation of sorghum (Sorghum bicolor) as replacement for maize in the diet of growing rabbits (Oryctolagus cuniculus). Asian-Aust. J. Animal Sci. 15:565–569.
  • N'Dri, D., Mazzeo, T., Zaupa, M., Ferracane, R., Fogliano, V. and Pellegrini, N. (2013). Effect of cooking on the total antioxidant capacity and phenolic profile of some whole-meal African cereals. J. Sci. Food Agr. 93:29–36.
  • Neucere, J. N. (1982). Lectins in grain sorghum [Sorghum bicolor (L.) Moench]. J. Agr. Food Chem. 30:603–604.
  • Nyamambi, B., Ndlovu, L. R., Read, J. S. and Reed, J. D. (2000). The effects of sorghum proanthocyanidins on digestive enzyme activity in vitro and in the digestive tract of chicken. J. Sci. Food Agric. 80:2223–2231.
  • Ochanda, S. O., Onyango, C., Mwasaru, A., Ochieng, J. and Mathooko, F. (2010). Effects of malting and fermentation treatments on group B-vitamins of red sorghum, white sorghum and pearl millets in Kenya. J. Appl. Biosci. 34:2128–2134.
  • Oria, M. P., Hamaker, B. R., Axtell, J. D. and Huang, C.-P. (2000). A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. Proc. Natl. Acad. Sci. USA 97:5065–5070.
  • Osman, M. A. (2004). Changes in sorghum enzyme inhibitors, phytic acid, tannins and in vitro protein digestibility occurring during Khamir (local bread) fermentation. Food Chem. 88:129–134.
  • Park, J. H., Darvin, P., Lim, E. J., Joung, Y. H., Hong, D. Y., Park, E. U., Park, S. H., Choi, S. K., Moon, E.-S., Cho, B. W., Park, K. D., Lee, H. K., Kim, M.-J., Park, D.-S., Chung, I.-M. and Yang, Y. M. (2012). Hwanggeumchal sorghum induces cell cycle arrest, and suppresses tumor growth and metastasis through Jak2/STAT pathways in breast cancer xenografts. PLoS ONE 7:40531–40531.
  • Park, J. H., Lee, S. H., Chung, I.-M. and Park, Y. (2012). Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-γ in mice fed a high-fat diet. Nutr. Res. Pract. 6:322–327.
  • Pontieri, P., Mamone, G., De Caro, S., Tuinstra, M. R., Roemer, E., Okot, J., De Vita, P., Ficco, D. B. M., Alifano, P., Pignone, D., Massardo, D. R. and Del Giudice, L. (2013). Sorghum, a healthy and gluten-free food for celiac patients as demonstrated by genome, biochemical, and immunochemical analyses. J. Agric. Food Chem. 61:2565–2571.
  • Pranoto, Y., Anggrahini, S. and Efendi, Z. (2013). Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food BioSci. 2:46–52
  • Price, M. L., Van Scoyoc, S. and Butler, L. G. (1978). A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 26:1214–1218.
  • Prior, R. L. and Wu, X. (2006). Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Res. 40:1014–1028.
  • Ragaee, S., Abdel-Aal, E.-S. M. and Noaman, M. (2006). Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem. 98:32–38.
  • Rahman, I. E. A. and Osman, M. A. W. (2011). Effect of sorghum type (Sorghum bicolor) and traditional fermentation on tannins and phytic acid contents and trypsin inhibitor activity. J. Food Agric. Environ. 9:163–166.
  • Raimi, O., Olaitan, S., Fajana, O. and Sanni, J. (2012). Effect of germination time on fat and protein contents, and α-amylase activity of Guinea Corn (Sorghum vulgare). Pakistan J. Food Sci. 22:86–89.
  • Requena, T., Monagas, M., Pozo-Bayón, M. A., Martín-Álvarez, P. J., Bartolomé, B., del Campo, R., Ávila, M., Martínez-Cuesta, M. C., Peláez, C. and Moreno-Arribas, M. V. (2010). Perspectives of the potential implications of wine polyphenols on human oral and gut microbiota. Trend Food Sci. Technol. 21:332–344.
  • Rooney, L. and Pflugfelder, R. (1986). Factors affecting starch digestibility with special emphasis on sorghum and corn. J. Animal Sci. 63:1607–1623.
  • Sang, Y., Bean, S., Seib, P. A., Pedersen, J. and Shi, Y.-C. (2008). Structure and functional properties of sorghum starches differing in amylose content. J. Agric. Food Chem. 56:6680–6685.
  • Saura-Calixto, F. (2010). Dietary Fiber as a Carrier of Dietary Antioxidants: An Essential Physiological Function. J. Agric. Food Chem. 59:43–49.
  • Schober, T. J., Messerschmidt, M., Bean, S. R., Park, S.-H. and Arendt, E. K. (2005). Gluten-free bread from sorghum: quality differences among hybrids. Cereal Chem. J. 82:394–404.
  • Schons, P. F., Ries, E. F., Battestin, V. and Macedo, G. A. (2011). Effect of enzymatic treatment on tannins and phytate in sorghum (Sorghum bicolor) and its nutritional study in rats. Int. J. Food Sci. Technol. 46:1253–1258.
  • Scott, K. P., Duncan, S. H. and Flint, H. J. (2008). Dietary fibre and the gut microbiota. Nutr. Bull. 33:201–211.
  • Selma, M. a. V., Espín, J. C. and Tomás-Barberán, F. A. (2009). Interaction between phenolics and gut microbiota: role in human health. J. Agric. Food Chem. 57:6485–6501.
  • Serrano, J., Puupponen‐Pimiä, R., Dauer, A., Aura, A. M. and Saura-Calixto, F. (2009). Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol. Nutr. Food Res. 53:310–329.
  • Sharma, S., Kelly, T. K. and Jones, P. A. (2010). Epigenetics in cancer. Carcinogenesis 31:27–36.
  • Sharma, S. D., Meeran, S. M. and Katiyar, S. K. (2007). Dietary grape seed proanthocyanidins inhibit UVB-induced oxidative stress and activation of mitogen-activated protein kinases and nuclear factor-κB signaling in in vivo SKH-1 hairless mice. Mol. Cancer Ther. 6:995–1005.
  • Shegro, A., Shargie, N., Biljon, A. and Labuschagne, M. (2012). Diversity in starch, protein and mineral composition of sorghum landrace accessions from Ethiopia. J. Crop Sci. Biotechnol. 15:275–280.
  • Shewry, P. R. (2007). Improving the protein content and composition of cereal grain. J. Cereal Sci. 46:239–250.
  • Shih, C.-H., Siu Ng, R., Wong, E., Chiu, L. C. M., Chu, I. K. and Lo, C. (2007). Quantitative analysis of anticancer 3-deoxyanthocyanidins in infected sorghum seedlings. J. Agric. Food Chem. 55:254–259.
  • Shih, P.-H., Yeh, C.-T. and Yen, G.-C. (2007). Anthocyanins induce the activation of phase ii enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J. Agric. Food Chem. 55:9427–9435.
  • Shim, T., Kim, T., Jang, K., Ko, J. and Kim, D. (2013). Toxicological evaluation and anti-inflammatory activity of a golden gelatinous sorghum bran extract. Biosci. Biotechnol. Biochem. 77:697–705.
  • Silva, C. S. d., Queiroz, V. A. V., Simeone, M. L. F., Guimarães, C. d. C., Schaffert, R. E., Rodrigues, J. A. S. and Miguel, R. d. A. (2012). Teores de minerais em linhagens de sorgo para uso na alimentação humana. In XXIX Congresso Nacional de Milho e Sorgo, (pp.2776–2782). Água de Lindóia.
  • Singh, H., Sodhi, N. S. and Singh, N. (2010). Characterisation of starches separated from sorghum cultivars grown in India. Food Chem. 119:95–100.
  • Singh, V., Moreau, R. A. and Hicks, K. B. (2003). Yield and phytosterol composition of oil extracted from grain sorghum and its wet-milled fractions. Cereal Chem. J. 80:126–129.
  • Slavin, J. (2004). Whole grains and human health. Nutr. Res. Rev. 17:99–110.
  • Spencer, J. P. and Crozier, A. (2012). Flavanoids and Related Compounds: Bioavailability and Function (Vol. 29): CRC Press, Boca Raton, FL, USA.
  • Suganyadevia, P., Saravanakumara, K. M. and Mohandasb, S. (2011a). Evaluation of antiproliferative activity of red sorghum bran anthocyanin on a human breast cancer cell line (MCF-7). Int. J. Breast Cancer 2011:1–6.
  • Suganyadevia, P., Saravanakumara, K. M. and Mohandasb, S. (2011b). Identification of 3- deoxyanthocyanins from red sorghum (Sorghum bicolor) bran and its biological properties. Afr. J. Pure Appl. Chem. 5:181–193.
  • Suganyadevia, P., Saravanakumara, K. M. and Mohandasb, S. (2013). The antiproliferative activity of 3-deoxyanthocyanins extracted from red sorghum (Sorghum bicolor) bran through P53-dependent and Bcl-2 gene expression in breast cancer cell line. Life Sci. 92:379–382.
  • Svensson, L., Sekwati-Monang, B., Lutz, D. L., Schieber, A. and Gänzle, M. G. (2010). Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). J. Agric. Food Chem. 58:9214–9220.
  • Takabe, W., Matsukawa, N., Kodama, T., Tanaka, K. and Noguchi, N. (2006). Chemical structure–dependent gene expression of proteasome subunits via regulation of the antioxidant response element. Free Radical Res. 40:21–30.
  • Taleon, V., Dykes, L., Rooney, W. L. and Rooney, L. W. (2012). Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. J. Cereal Sci. 56:470–475.
  • Taylor, J., Bean, S. R., Ioerger, B. P. and Taylor, J. R. N. (2007). Preferential binding of sorghum tannins with γ-kafirin and the influence of tannin binding on kafirin digestibility and biodegradation. J. Am. Coll. Nutr. 46:22–31.
  • Taylor, J. and Taylor, J. R. N. (2011). Protein biofortified sorghum: effect of processing into traditional African foods on their protein quality. J. Agric. Food Chem. 59:2386–2392.
  • Taylor, J. R. N., Belton, P. S., Beta, T. and Duodu, K. G. (2014). Increasing the utilisation of sorghum, millets and pseudocereals: Developments in the science of their phenolic phytochemicals, biofortification and protein functionality. J. Cereal Sci. 59:257–275.
  • Taylor, J. R. N. and Emmambux, M. (2010). Developments in our understanding of sorghum polysaccharides and their health benefits. Cereal Chem. 87:263–271.
  • Towo, E., Matuschek, E. and Svanberg, U. (2006). Fermentation and enzyme treatment of tannin sorghum gruels: effects on phenolic compounds, phytate and in vitro accessible iron. Food Chem. 94:369–376.
  • Tripathi, B., Chetana,   and Platel, K. (2010). Fortification of sorghum (Sorghum vulgare) and pearl millet (Pennisetum glaucum) flour with zinc. J. Trace Elem. Med. Biol. 24:257–262.
  • Tripathi, B. and Platel, K. (2013). Feasibility in fortification of sorghum (Sorghum bicolor L. Moench) and pearl millet (Pennisetum glaucum) flour with iron. LWT—Food Sci. Technol. 50:220–225.
  • Tzounis, X., Rodriguez-Mateos, A., Vulevic, J., Gibson, G. R., Kwik-Uribe, C. and Spencer, J. P. (2011). Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am. J. Clin. Nutr. 93:62–72.
  • U.S. Department of Agriculture, A. R. S. (2012). USDA National Nutrient Database for Standard Reference (25th ed.). Washington, DC.
  • U.S. Grains Council. (2004). Sorghum Handbook: White Sorghum, the New Food Grain. U.S. Grains Council, Washington, DC.
  • Udachan, I. S., Sahu, A. K. and Hend, F. M. (2012). Extraction and characterization of sorghum (Sorghum bicolor L. Moench) starch. Int. Food Res. J. 19:315–319.
  • Urpi-Sarda, M., Rothwell, J., Morand, C. and Manach, C. (2012). Bioavailability of flavanones. In: Flavanoids and Related Compounds: Bioavailability and Function, pp. 1–44. Spencer, J. P. E. and Crozier, A., Eds., CRC Press, London, U.K.
  • Wang, L., Weller, C. L., Schlegel, V. L., Carr, T. P. and Cuppett, S. L. (2007). Comparison of supercritical CO2 and hexane extraction of lipids from sorghum distillers grains. Eur. J. Lipid Sci. Technol. 109:567–574.
  • Wang, L., Weller, C. L., Schlegel, V. L., Carr, T. P. and Cuppett, S. L. (2008). Supercritical CO2 extraction of lipids from grain sorghum dried distillers grains with solubles. Bioresource Technol. 99:1373–1382.
  • Waniska, R. D. and Rooney, L. W. (2000). Structure and chemistry of the sorghum caryopsis. In: Sorghum: Production, Agronomy, Chemistry and Utilization, pp. 649–688. Smith, W. and Frederiksen, R. A., eds., Wiley & Sons, New York.
  • Wedad, H. A., El Tinay, A. H., Mustafa, A. I. and Babiker, E. E. (2008). Effect of fermentation, malt-pretreatment and cooking on antinutritional factors and protein digestibility of sorghum cultivars. Pakistan J. Nutr. 7:335–341.
  • Williamson, G. and Clifford, M. N. (2010). Colonic metabolites of berry polyphenols: the missing link to biological activity? Br. J. Nutr. 104:48–66.
  • Wong, J. H., Lau, T., Cai, N., Singh, J., Pedersen, J. F., Vensel, W. H., Hurkman, W. J., Wilson, J. D., Lemaux, P. G. and Buchanan, B. B. (2009). Digestibility of protein and starch from sorghum (Sorghum bicolor) is linked to biochemical and structural features of grain endosperm. J. Cereal Sci. 49:73–82.
  • Woo, H. J., Oh, I. T., Lee, J. Y., Jun, D. Y., Seu, M. C., Woo, K. S., Nam, M. H. and Kim, Y. H. (2012). Apigeninidin induces apoptosis through activation of Bak and Bax and subsequent mediation of mitochondrial damage in human promyelocytic leukemia HL-60 cells. Process BioChem. 47:1861–1871.
  • Woodward, G., Kroon, P., Cassidy, A. and Kay, C. (2009). Anthocyanin stability and recovery: implications for the analysis of clinical and experimental samples. J. Agric. Food Chem. 57:5271–5278.
  • Wu, X., Pittman, H. E., Mckay, S. and Prior, R. L. (2005). Aglycones and sugar moieties alter anthocyanin absorption and metabolism after berry consumption in weanling pigs. J. Nutr. 135:2417–2424.
  • Wu, X. and Prior, R. L. (2005). Identification and characterization of anthocyanins by high-performance liquid chromatography—electrospray ionization—tandem mass spectrometry in common foods in the United States: vegetables, nuts, and grains. J. Agric. Food Chem. 53:3101–3113.
  • Wu, Y., Li, X., Xiang, W., Zhu, C., Lin, Z., Wu, Y., Li, J., Pandravada, S., Ridder, D. D., Bai, G., Wang, M. L., Trick, H. N., Bean, S. R., Tuinstra, M. R., Tesso, T. T. and Yu, J. (2012). Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1. Proc. Natl. Acad. Sci. USA 109:10281–10286.
  • Wu, Y., Yuan, L., Guo, X., Holding, D. R. and Messing, J. (2013). Mutation in the seed storage protein kafirin creates a high-value food trait in sorghum. Nature Commun. 4.
  • Yamagishi, S.-i. (2011). Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp. Gerontol. 46:217–224.
  • Yang, L., Allred, K. F., Geera, B., Allred, C. D. and Awika, J. M. (2012). Sorghum phenolics demonstrate estrogenic action and Induce apoptosis in nonmalignant colonocytes. Nutr. Cancer 64:419–427.
  • Yang, L., Browning, J. D. and Awika, J. M. (2009). Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. J. Agric. Food Chem. 57:1797–1804.
  • Yang, M., I Koo, S., O Song, W. and K Chun, O. (2011). Food matrix affecting anthocyanin bioavailability: review. Curr. Med. Chem. 18:291–300.
  • Ye, J.-C., Chang, W.-C., Hsieh, D. J.-Y. and Hsiao, M.-W. (2010). Extraction and analysis of β-sitosterol in herbal medicines. J. Med. Plants Res. 7:522–527.
  • Zbasnik, R., Carr, T., Weller, C., Hwang, K. T., Wang, L., Cuppett, S. and Schlegel, V. (2009). Antiproliferation properties of grain sorghum dry distiller's grain lipids in caco. J. Agric. Food Chem. 57:10435–10441.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.