2,298
Views
49
CrossRef citations to date
0
Altmetric
Articles

Preparation, properties, and uses of enzymatic milk protein hydrolysates

&

References

  • Abert, T. and Kneifel, W. (1992). Physicochemical and functional properties of casein hydrolysates as obtained by treatment with different enzymes. In: Protein and Fat Globule Modifications by Heat Treatment, Homogenization and Other Technological Means for High Quality Dairy Products. Int. Dairy Fed. (Special Issue) 9303:125–131. International Dairy Federation, Brussels, Belgium.
  • Alexander, D. D., Schmitt, D. F., Tran, N. L., Barraj, L. M. and Cushing, C. A. (2010). Partially hydrolyzed 100% whey protein infant formula and atopic dermatitis risk reduction: A systematic review of the literature. Nutr. Rev. 68:232–245.
  • Badawy, A. (2013). Novel nutritional treatment for manic and psychotic disorders: A review of tryptophan and tyrosine depletion studies and the potential of protein-based formulations using glycomacropeptide. Psychopharmacology. 228:347–358.
  • Bazinet, L. and Firdous, L. (2009). Membrane processes and devices for separation of bioactive peptides. Rec. Pat. Biotechnol. 3:61–72.
  • Bonte, A. W., Geurts, J. M. W., Van Kan, J. M. and Klarenbeek, G. (2010). ACE-inhibitory peptides from whey and methods for providing the same. US Patent 20100093640.
  • Boolsma, E. and Kloek, J. (2010). IPP-rich milk protein hydrolysate lower blood pressure in subjects with stage 1 hypertension. Nutr. J. 9:52–58.
  • Boots, J.-W. P. (2013). Protein hydrolysate enriched in peptides inhibiting DPP-IV and the use. US Patent 20130096074.
  • Bosse, J. D. and Dixon, B. M. (2012). Dietary protein to maximize resistance training: A review and examination of protein spread and change theories. J. Inter. Soc. Sports Nutr. 9:42.
  • Boza, J. J. and Moënnez, D. (2000). Protein hydrolysate vs. free amino acid-based diets on the nutritional recovery of starved rat. Eur. J. Nutr. 39:337–343.
  • Brody, E. P. (2000). Biological activities of bovine glycomacropeptide. British J. Nutr. 84(Suppl 1):S39–S46.
  • Buckley, J. D., Thompson, R. L., Coates, A. M., Howl, P. R. C., De Nichilo, M. O. and Rowney, M. K. (2010). Supplementation with whey protein hydrolysates enhances recovery of muscle force-generating capacity following eccentric exercise. J. Sci. Med. Sport 13:178–181.
  • Cabrora-Padilla, R. Y., Pinto, C. A., Giordano, C. L. C. and Giordano, R. C. (2009). A new conception of enzymatic membrane reactor for the production of whey protein hydrolysates with low contents of phenylalanine. Process Biochem. 44:269–276.
  • Castell, L. M. and Newshelme, E. A. (1998). Glutemine and the effect of exhaustive exercise upon the immune response. Can. J. Physiol. Pharmacol. 76:524–532.
  • Chen, S. X., Swaisgood, H. E. and Foegeding, E. A. (1994). Gelation of ß-lactoglobulin treated with limited proteolysis by immobilized trypsin. J. Agric. Food Chem. 42:234–239.
  • Chiang, W-D., Cordle, C. T. and Thomas, R. L. (1995). Casein hydrolysate produced using formed-in-place membrane reactor. J. Food Sci. 60:1349–1353.
  • Chobert, J. M., Bertrand-Harb, C., Dalgalarrondo, M. and Nicolas, M. G. (1989). Solubility and emulsifying properties of beta casein modified by trypsin. J. Biochem. 13:335–352.
  • Chobert, J. M., Bertrand-Harb, C. and Nicolas, M. G. (1988a). Solubility and emulsifying properties of caseins and whey proteins modified by trypsin. J. Agric. Food Chem. 36:883–892.
  • Chobert, J. M., Sitohy, M. Z. and Whitaker, J. R. (1988b). Solubility and emulsifying properties of caseins modified enzymatically by Staphylococcus aureus V8 protease. J. Agric. Food Chem. 36:220–224.
  • Christiansen, K. F., Vagarud, G., Langsrud, T., Ellekjaer, M. R. and Egleudsdal, B. (2004). Hydrolyzed whey proteins as emulsifiers and stabilizers in high pressure processed dressings. Food Hydro. 18:757–767.
  • Clemente, A. (2000). Enzymatic protein hydrolysates in human nutrition. Trends Food Sci. Technol. 11:254–262.
  • Contreras, M. D. M., Sevilla, M. A., Monroy-Ruiz, J., Amigo, L., Gomez-Sala, B., Melina, E., Ramos, M. and Recio, I. (2011). Food-grade production of an antihypertensive casein hydrolysate and resistance of active peptides to drying and storage. Int. Dairy J. 21:420–426.
  • Cooke, M. B., Rybalka, E., Stathis, C. G., Cribb, P. J. and Hayes, A. (2010). Whey protein isolate attenuates strength decline after eccentrically induced muscle damage in healthy individuals. J. Inter. Soc. Sports Nutr. 7:30.
  • Cordle, C. T. (1994). Control of food allergies using protein hydrolysates. Food Technol. 48:72–76.
  • Cordle, C. T. (2006). >Enzyme-Induced Aggregation of Whey Proteins with Bacillus Liceniformis Protease, PhD thesis, Wageningin University, Wageningin, the Netherlands.
  • Edans, L. and De Rees, A. L. (2005). Process for the hydrolysis of milk proteins. US Patent 20050175622.
  • El-Mecherfi, K..E, Saidi, D., Kheroua, O., Beudrea, G., Touchami, M., Rouaud, O., Curet, S., Choiset, Y., Robosona, A., Chobert, J. M. and Haertlè, T. (2011). Combined microwave and enzymatic treatments for ß-lactoglobulin and bovine whey proteins and their effect on the IgE-immunoreactivity. Eur. Food Res. Technol. 233:859–867.
  • Ena, J. M., Van Beresteijn, E. C. H., Robben, A. J. P. M. and Schmidt, D. G. (1995). Whey protein antigenicity reduction by fungal proteinases and a pepsin/pancreatin combination. J. Food Sci. 60:104–111.
  • Exl, B-M. (2001). A review of recent developments in the use of moderately hydrolysed whey formulae in infant nutrition. Nutr. Res. 21:355–379.
  • FitzGerald, R. J. (1998). Potential uses of casinophophopeptides. Int. Dairy J. 8:451–467.
  • FitzGerald, R. J. and O'Cuinn, G. (2006). Enzymatic debittering of food protein hydrolysates. Biotechnol. Adv. 2:234–237.
  • Fitzpatrik, J. J. and O'Keeffe, U. (2001). Influence of whey protein hydrolysate addition to whey permeate batch fermentation for producing lactic acid. Process Biochem. 37:183–186.
  • Fritschè, R., Pahud, J. J., Pecquet, S. and Pfeifer, A. (1997). Induction of systemic immunologic tolerance to ß-lactoglobulin by oral administration of whey protein hydrolysate. J. Allergy Clin. Immunol. 100:266–273.
  • Gautam, A., Garica, A. C. and Hander, R. J. (2006). Nutrition bar. US Patent 2006011554.
  • Gauthier, S., Boutin, Y., Jaquot, A., Saint-Saveur, D., Dronin, R. and Fliss, I. (2009). Immunomodulatory dairy peptide and uses thereof. US Patent 20090297545.
  • Ge, S-J. and Zhang, L-X. (1996). Immobilized procine pancreatic exopeptidases and its application in casein hydrolysate debittering. Appl. Biochem. Biotechnol. 59:159–166.
  • Gilbert, E. R., Wong, E. A. and Webb, K. E. (2008). Peptides absorption and utilization: Implications for animal nutrition and health. J. Anim. Sci. 86:2135–2155.
  • Haque, Z. and Mozaffer, Z. (1992a). Casein hydrolysates I continuous production using enzyme bioreactor. Food Hydro. 5:549–557.
  • Haque, Z. and Mozaffer, Z. (1992b). Casein hydrolysates II functional properties of peptides. Food Hydro. 5:559–571.
  • Hays, T. and Wood, R. A. (2005). A systematic review of the role of hydrolysed infant formulas in allergy prevention. Arch. Ped. Adol. Med. 159:810–816.
  • Heine, R. G. and Tang, M. L. (2008). Dietary approaches to the prevention of food allergy. Curr. Opin. Clin. Nutr. Metab. Care. 11:320–328.
  • Henle, T., Deussen, A. and Martin, M. (2011). Whey protein hydrolysate containing tryptophan peptides consisting of alpha-lactalbumin and the use thereof. US Patent 20110263505.
  • Herranz, I., Molina, E. and López Expósito, I. (2013). Use of food-grade enzymes to obtain milk proteins hydrolysates with hypoallergenic properties. Clin. Trans. Allergy. 3(Suppl 3):P8. doi:10.1186/2045-7022-3-S3-P8.
  • Huang, X. L., Catignani, G. L. and Swaisgood, H. E. (1996). Improved emulsifying properties of the ß-barrel domain peptides obtained by membrane fractionation of a limited tryptic hydrolysate of ß-lactoglobulin. J. Agric. Food Chem. 44:3437–3443.
  • Huang, X. L., Catignani, G. L. and Swaisgood, H. E. (1999). Modification of the rheological properties of whey protein isolate by limited proteolysis. Nahrung. 43:79–85.
  • Kanda, A., Morifuji, M., Koga, J., Kawanaka, K. and Higuchi, M. (2010). Long-term feeding of whey protein hydrolysates increases skeletal muscle glycogen levels and improves exercise performance in mice. J. Inter. Soc. Sports Nutr. 7(Suppl 1):P2.
  • Kim, S. B., Ki, R. S., Khan, M. A., Lee, W. S., Lee, H. J., Ahn, B. S. and Kim, H. S. (2007a). Peptic and tryptic hydrolysis of native and heated whey protein to reduce its antigenicity. J. Dairy Sci. 90:4043–4050.
  • Kim, S. B., Seo, I. S., Khan, M. A., Ki, K. S., Nam, M. S. and Kim, H. S. (2007b). Separation of iron-binding protein from whey through enzymatic hydrolysis. Int. Dairy J. 17:625–631.
  • Kinghts, R. J. and Manes, J. D. (1987). Composition, molecular weight and antigenicity of casein hydrolysates used in formula for food allergic and malabsorptive infants. In: Food Allergy, pp. 273–285. Chandra, R. K., Ed., Nutrition Research Education Foundation, St. John's, Newfoundland.
  • Kosalková, K., García-Estrada, C., Barreiro, C., Flórez, M. G., Jami, M. S., Paniagua, M. A. and Martín, J. F. (2012). Casein phosphopeptides drastically increase the secretion of extracellular proteins in Aspergillus awamori. Proteomics studies reveal changes in the secretory pathway. Microb. Cell Factories. 11:5 Available from http://www.microbialcellfactories.com/content/11/1/5
  • Kwak, H. S., Choi, S. S., Ahn, J. and Lee, S. W. (2002). Casein hydrolysate fractions acts as emulsifiers in process cheese. J. Food Sci. 67:821–825.
  • Lakshman, P. L. N., Toyokawa, Y., Tachibana, S., Toyama, H., Taira, T. and Yasuda, M. (2011). Reducing the antigenicity of milk protein using acid proteinases from Monasus pilosus. Process Biochem. 46:806–810.
  • Lara, M. G., Izumi, C., Greene, L. J., Vilela, L. and de Freitas, O. (2005). Preparation and scaling up of low phenylalanine hydrolysate of bovine whey proteins. Br. J. Pharm. Sci. 41:459–467.
  • Leeb, E., Holde, A., Letzel, T., Cheison, S. C., Kulozik, U. and Hinrichs, J. (2014). Fractionation of dairy-based functional peptides using ion-exchange membrane adsorption chromatography and cross-flow electro membrane filtration. Inter. Dairy J. 38:116–123.
  • Leksrisompong, P., Gerard, P., Lopetcherat, K. and Drak, M-A. (2012). Bitter-taste inhibiting agents for whey protein hydrolysates and whey protein hydrolysate beverages. J. Food Sci. 77:S282–S287.
  • Lieske, B. and Konrad, G. (1996). Physico-chemical and functional properties of whey protein as affected by limited papain proteolysis and selective ultrafiltration. Int. Dairy J. 6:13–31.
  • Lin, S-B., Chang, W-D., Cordle, C. T. and Thomas, R. L. (1997). Functional and immunological properties of casein hydrolysate produced from a two-stage membrane system. J. Food Sci. 62:480–483.
  • Lollo, P. C. B., Amaya-Farfan, J., Faria, I. C., Salgado, J. V. V., Chacon-Mikahil, M. P. T., Cruz, A. G., Oliveira, C. A. F., Montagner, P. C. and Arruda, M. (2014). Hydrolysed whey protein reduces muscle damage markers in Brazilian elite soccer players compared with whey protein and maltodextrin. A twelve-week in-championship intervention. Inter. Dairy J. 34:19–24.
  • Lopez-Bajonero, L. J., Lara-Claderon, P., Galvez-Marsical, A., Velazcanez-Arellano, A. and Lopez-Mangnia, A. (1991). Enzymatic production of a low phenylalanine product from skim milk powder and caseinate. J. Food Sci. 56:938–942.
  • Lowe, A. L., Hosking, C. S., Beunett, C. M., Allen, K. J., Axelard, C., Carlin, J. B., Abramson, M. J., Dharmage, S. C. and Hill, D. J. (2011). Effect of partially hydrolyzate whey infant formula at weaning on risk of allergic disease in high-risk children: A randomized controlled trail. J. Allergy Clin. Immunol. 128:360–365.
  • Lucas, A., Sodini, I., Monnet, R., Jolivet, P. and Corrieu, G. (2004). Probiotic cell counts and acidification in fermented milks supplemented with milk protein hydrolysates. Int. Dairy J. 14:47–53.
  • Mahmoud, M. I., Malone, W. T. and Cordle, C. T. (1992). Enzymatic hydrolysis of casein: Effect of degree of hydrolysis on antigenicity and physical properties. J. Food Sci. 57:1223–1230.
  • Ma, J-J., Mao, X.-Y., Wang. Q., Shu Yang, S., Zhang, D., Chen, S-W. and Li, Y-H., (2014). Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate. Food Sci. Technol. 56:296–302
  • Manninen, A. H. (2009). Protein hydrolysates in sports nutrition. Nutr. Metabol. 6:38–42.
  • McDonagh, D. and FitzGerald, R. J. (1998). Production of caseinphosphopeptides (CPPs) from sodium caseinate using a range of commercial protease preparations. Int. Dairy J. 8:39–45.
  • Mietsch, F., Fehor, I. and Halász, A. (1989). Investigation of functional properties of partially hydrolysed proteins. Nahrung. 33:9–15.
  • Monti, J. C. and Jost, R. (1978). Enzymatic solubilization of heat-denatured whey proteins. J. Dairy Sci. 61:1233–1237.
  • Morais, H. A., Marialice Pinto Coelho Silvestre, M. P. C., Silva, M. R., Silva, V. D. M., Batista, M. A., e Silva, A. C. S. and Silveira, J. N. (2013). Enzymatic hydrolysis of whey protein concentrate: Effect of enzyme type and enzyme: Substrate ratio on peptide profile. J. Food Sci. Technol. 52:201–210.
  • Morato, A. F., Carreira, R. L., Junqueira, R. G. and Silvestra, M. P. C. (2000). Optimization of casein hydrolysis for obtaining high contents of small peptides: Use of substilisin and trypsin. J. Food Comp. Anal. 13:843–857.
  • Morifugi, M., Kanda, A., Koga, J, Kawanaka, K. and Higuchi, M. (2010). Post-exercise carbohydrate plus whey protein hydrolysates supplementation increases skeletal muscle glycogen level in rats. Amino. Acids. 28:1100–1115.
  • Morifugi, M., Kanda, A., Koga, J, Kawanaka, K. and Higuchi, M. (2011). Pre-exercise ingestion of carbohydrate plus whey protein hydrolysates attenuates skeletal muscle glycogen depletion during exercise in rats. Nutrition. 27:833–837.
  • Morifugi, M., Koga, J, Kawanaka, K. and Higuchi, M. (2009). Branched chain amino acid containing dipeptides, identified from whey protein hydrolysates stimulate glucose uptake rate in L6 myotube and isolated skeletal muscles. J. Nutr. Sci. Vitaminol. 55:81–86.
  • Muro, C., Ricra, F. and Fernandoz, A. (2013). Advancements in the fractionation of milk bioactive peptides by membrane processes. InTech. Open Chap., pp 241–266. Available from http//dx.doi.org/10.5772/53674.
  • Mutilangi, W. A. M., Panyam, D. and Kilara, A. (1995). Hydrolysates from proteolysis of heat-denatured whey proteins. J. Food. Sci. 60:1104–1110.
  • Mutilangi, W. A. M., Panyam, D. and Kilara, A. (1996). Functional properties of hydrolysates from proteolysis of heat-denatured whey proteins. J. Food Sci. 61:270–275.
  • Nakamura, T., Sado, H., Syukunolze, Y. and Hirota, T. (1993). Antigenicity of whey protein hydrolysates prepared by combined of two enzymes. Milchwischenschaft. 45:667–670.
  • Neklyudov, A. D., Zvaukin, A. N. and Berdutina, A. V. (2000). Properties and uses of protein hydrolysates (review). J. Biochem. Microbiol. 36:525–534.
  • Ney, K. H. (1971). Prediction of bitterness of peptides from their amino acid composition. Z. Lebensm. Unters Forsch. 147:64–8.
  • Nongonierma, A. B., Harri ¨ et Schellekens, H., Dinan, T. G., Cryan, J. F. and FitzGerald, R. J. (2013). Milk protein hydrolysates activate 5-HT2C serotonin receptors: Influence of the starting substrate and isolation of bioactive fractions. Food Funct. 4:728–737.
  • Otte, J., Ju, Z. Y., Feergenand, M., Lomnolf, S. B. and Qvist, K. B. (1996). Protease-induced aggregation and gelation of whey proteins. J. Food Sci. 61:911–916.
  • Outinen, M. T., Tossavainen, O., Harju, M. and Linko, P. (1996). Method to remove phenylalanine from proteinaceous composition, a product so obtained and use thereof. US Patent 5.547.687.
  • O'Loghlin, I. B., Murray, B. A., Brodkorb, A., FitzGerald, R. J. and Kelly, P. M. (2014a). Production of whey protein isolate hydrolysate fractions with enriched ACE-inhibitory activity. Int. Dairy J. 38:116–123.
  • O'Loghlin, I. B., Murray, B. A., Brodkorb, A., FitzGerald, R. J., Robinson, A. A., Holton, T. A. and Kelly, P. M. (2013). Whey protein isolate polydispersity affects enzymatic hydrolysis outcome. Food Chem. 141:2334–2342.
  • O'Loghlin, I. B., Murray, B. A., FitzGerald, R. J., Brodkorb, A. and Kelly, P. M. (2014b). Pilot-scale production of hydrolysates with altered bio-functionalities based on thermally denatured whey protein isolates. Int. Dairy. J. 34:146–152.
  • Panyam, D. and Kilara, A. (2004). Emulsifying peptides from tryptic hydrolysis of casein. J. Food Sci. 69:FCT154–FCT163.
  • Pasupuleti, V. K. and Demain, A. L. (Eds.). (2010). Protein Hydrolysates in Biotechnology. Springer, Berlin, Germany, 229 p.
  • Patel, G. (1994). Structure and Foaming Properties of Peptides Isolated from a Casein Hydrolysates. PhD thesis, Pennsylvania State University, University Park, Pennsylvania, PA.
  • Pinto, G., Caira, S., Cuello, M., Lilla, S., Chianese, L. and Addeo, F. (2012). Bioactive phosphopeptides in dairy products as neutraceuticals for functional foods. InTech. Open Access Chap. Ch. 1, pp. 1–42. DOI:10.5772/50725.
  • Prieto, C. A., Guadix, A., González-Telle, P. and Guadix, E. M. (2007). A cyclic batch membrane reactor for the hydrolysis of whey proteins. J. Food Eng. 78:257–265.
  • Prieto, C. A., Guadix, E. M. and Guadix, A. (2010). Recent patents on whey protein hydrolysates manufactured by proteolysis coupled to membrane ultrafiltration. Rec. Pat. Chem. Eng. 3:115–128.
  • Puerta, A., Diez-Masa, J. C. and de Furtos, M. (2006). Immunochromatographic determination of ß-lactoglobulin and its antigenic peptides in hypoallergenic formula. Int. Dairy J. 16:406–414.
  • Raksakulthai, D. and Haard, N. F. (2003). Exopeptidases and their application to reduce bitterness in food: A review. Crit. Rev. Food Sci. Nutr. 43:401–445.
  • Rennie, M. J. and Tipton, K. D. (2000). Protein and amino acid metabolism after exercise and the effect of nutrition. Ann. Rev. Nutr. 20:457–483.
  • Reynolds, E. L., Cai, F., Shen, P. and Walker, G. D. (2003). Retention in plaque and remineralization of enamel losions by various forms of calcium in a mouth rinse or sugar-free chewing gum. J. Dent. Res. 82:206–211.
  • Roche, C., Teixeira, J. A., Hillion, L., Sampio, P. and Conçalves, M. P. (2009). Rheolgical and structural characterization of gels from whey protein hydrolysates/loust bean gum systems. Food Hydro. 23:1734–1745.
  • Roos, A. L. De., Broocke, P. M. Van. and Edens, L. (2008). Blood pressure lowering peptide from glycomacropeptide. US Patent 20080161227.
  • Sato, K., Nakamura, M., Nishiya, T., Kawauari, M. and Nakajima, I. (1995). Preparation of a gel of partially heat-denatured whey protein by proteolytic digestion. Milchwissenschaft. 50:389–342.
  • Schaafsma, G. (2009). Safety of protein hydrolysates, fractions therof and bioactive peptides in human nutrition. Eur. J. Clin. Nutr. 63:1161–1168.
  • Shin, M. S., Kim, S. B., Kang, S. C., Khan, M. A., Kim, H. S., Shin, H. J. and Chang, C. H. (2007). Production of low antigenic cheese whey protein hydrolysates using mixed enzymes. J. Sci. Food Agric. 87:2055–2060.
  • Silva, V. D. M., DeMarco, L. M., Afonso, W. O., Lopes, D. C. F., Januário, J. N., Aguiar, M. J. B., Sterling, A. L. P. and Silvestre, M. P. C. (2007). Preparation of low phenylalanine whey hydrozates using papain and pancreatin immobilized on active carbon and alumina. Am. J. Food Technol. 2:327–341.
  • Singh, A. M. and Dalglish, D. G. (1998). The emulsifying properties of hydrolysates of whey proteins. J. Dairy Sci. 81:919–924.
  • Singh, A. and Ye, H. (2006). Heat stability of oil-in-water emulsions formed with intact or hydrolysed whey proteins: Influence of polysaccharides. Food Hydro. 20:269–276.
  • Slattary, H. and FitzGerald, R. J. (1998). Functional properties and bitterness of sodium caseinate hydrolysates prepared with Bacillus proteinase. J. Food Sci. 63:418–422.
  • Smith, I. (1994). Treatment of phenylalanine hydroxylase deficiency. Acta Ped. 407:560–565.
  • Soares, R. D. L., Biasutti, E. A. R., Capobiango, M., Vieira, C. R., Silva, V. D. M., Morias, H. A., Januário, J. N., de Aguiar, M. J. B. and Silvestre, M. P. C. (2006). Preparation of enzymatic skim milk hydrolysate with low phenylalanine. Acta Farm. Bom. 25:325–332.
  • Sodini, I., Lucas, A, Tissler, J. P. and Corrieu, G. (2005). Physical properties and microstructures of yoghurts supplemented with milk protein hydrolysates. Int. Dairy J. 15:29–35.
  • Sorensen, T. L., Madkor, S. A. and Mims, S. (2003). Milk protein hydrolysate. US Patent 20030224096.
  • Souppe, L. and Schumacher, J. (2006). Modified whey, method for preparing same, use and bread-making product comprising modified whey. US Patent 7083816.
  • Spellman, D., ÒCuinn, G. and FitzGerald, R. J. (2009). Bitterness in Bacillus protein hydrolysis of whey proteins. Food Chem. 114:440–446.
  • Spellman, D., Ò'Cuinn, G. and FitzGerald, R. J. (2005). Physicochemical and sensory characteristics of whey protein hydolysates generated at different total solids levels. J. Dairy Res. 72:138–143.
  • Sponton, O. E., Perez, A. A., Carrora, C. and Santiago, L. G. (2014). Effect of limited hydrolysis on linoleic acid binding properties of ß-lactoglobulin. Food Chem. 146:577–582.
  • Svenning, C., Molland, T., Langsrud, R. and Vegarud, G. E. (1992). A characterization study of peptides derived from casein hydrolysis. In: Protein and Fat Globule Modifications by Heat Treatment, Homogenization and Other Technological Means for High Quality Dairy Products. Int. Dairy Fed. ( Special Issue) 9303: 96–105. IDF, Brussels, Belgium.
  • Tang, J. E., Moore, D. R., Kujbida, G. W., Taropolsky, M. A. and Philips, S. M. (2009). Ingestion of whey protein hydrolysate, casein and soy protein isolate: Effect on mixed muscle protein synthesis at rest and following resistance exercise. J. Appl. Physiol. 107:987–992.
  • Taylor, S. L. and Heftle, S. L. (2006). Food allergies and intolerances. In: Modern Nutrition in Health and Disease, 10th Ed., pp 1512–1530. Shile, M. S., Shike, M., Roos, A. C., Caballero, B. and Cousins, R. J., Eds., Lippincott Williams & Wilkens, Balitimore, MD.
  • Toedebusch, R. G., Childs, T. E., Hamilton, S. R., Jan R, Crowley, J. R., Booth, F. W. and Roberts, M. D. (2012). Postprandial leucine and insulin responses and toxicological effects of a novel whey protein hydrolysate-based supplement in rats. J. Inter. Soc. Sports Nutr. 9(Suppl 1):P30.
  • Trusek-Holownia, A. (2008). Preparation of protein hyrolysates in an enzymatic membrane reactor. Biochem. Eng. J. 39:461–467.
  • Van Beresteign, E. C. H., Peeters, R. A., Kaper, J., Meijer, R. J. G. M., Robben, A. J. P. M. and Schmidt, D. G. (1994). Molecular mass distribution, immunological properties and nutritive value of whey protein hydrolysates. J. Food Prot. 57:614–625.
  • van Calcar, S. C. and Ney, D. M. (2012). Food products made with glycomacropeptide, a low phenylalanine whey protein, provide a new alternative to amino acid-based medical foods for nutrition management of phenylketonuria. J. Acad. Nutr. Diat. 112:1201–1210.
  • Van Hoeyveld, E. M., Escalona-Monge, M., de Swert, L. F. A. and Stevens, E. A. M. (1998). Allergenic and antigenic activity of peptide fragments in a whey hydrolysate formula.Clin. Exp. Allergy. 28:1131–1137.
  • Walker, G. D., Cai, F., Shen, P., Bailey, D. L., Yuan, Y., Cocherone, N. J., Reynolds, C. and Reynolds, E. C. (2009). Consumption of milk with added casein phosphopeptide and phospho amorphous calcium remineralize enamel subsurface lesions in situ. Aust. Dent. J. 54:245–249.
  • Wröblewska, B., Korenal, M., Amarowicz, R., Szymkiewicz, A., Trozzytiska, A. and Kuoica, E. (2004). Immunoreactive properties of peptide fractions of cow's whey milk proteins after enzymatic hydrolysis. Inter J. Food Sci. Technol. 39:839–850.
  • Yang, S., Mao, X-Y., Li, F-F., Zhang, D., Leng, X-J., Ren, F.-Z. and Teng, G-X. (2012). The improving effect of spray-drying encapsulation process on the bitter taste and stability of whey protein hydrolysate. Eur. J. Food Res. Technol. 235:91–97.
  • Zhao, G.-Z., Wang, J.-S., Zhao, M.-M., Jiang, Y.-M. and Chun, C. (2006). Effect of casein hydrolysates on yogurt fermentation and texture properties during storage. Food Technol. Biotechnol. 44:429–434.
  • Zheng, H., Shen, X. Q., Bu, G. H. and Luo, Y. K. (2008). Effect of pH, temperature and enzyme-to-substrate ratio on the antigenicity of whey protein hydrolysates. Int. Dairy J. 18:1028–1033.
  • Zhou, J. X., Wang, X., Ai, T., Cheng, X., Guo, H. Y., Teng, G. X. and Mao, X. Y. (2012). Preparation and characterization of β-lactoglobulin hydrolysate-iron complexes. J. Dairy Sci. 95:4230–4236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.