9,045
Views
285
CrossRef citations to date
0
Altmetric
Research Article

Mechanisms of starch digestion by α-amylase—Structural basis for kinetic properties

, , , &
Pages 875-892 | Received 24 Dec 2013, Accepted 05 May 2014, Published online: 28 Dec 2016

References

  • Ai, Y., Hasjim, J. and Jane, J. L. (2012). Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohydr. Polym. 92:120–127.
  • Al-Rabadi, G. J. S., Gilbert, R. G. and Gidley, M. J. (2009). Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. J. Cereal Sci. 50:198–204.
  • Anderson, D. M. (1973). The effect of feeding on the concentration of glucose and insulin in the portal and atrial plasma in pigs. J. Agric. Sci. 82:29–36.
  • Ao, Z., Quezada-Calvillo, R., Sim, L., Nichols, B. L., Rose, D. R., Sterchi, E. E. and Hamaker, B. R. (2007a). Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant). FEBS Lett. 581:2381–2388.
  • Ao, Z., Simsek, S., Zhang, G., Venkatachalam, M., Reuhs, B. L. and Hamaker, B. R. (2007b). Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure. J. Agric. Food Chem. 55:4540–4547.
  • Aravind, N., Sissons, M. and Fellows, C. M. (2012). Effect of soluble fibre (guar gum and carboxymethylcellulose) addition on technological, sensory and structural properties of durum wheat spaghetti. Food Chem. 131:893–900.
  • Baldwin, P. M. (2001). Starch granule-associated proteins and polypeptides: A review. Starch-Stärke 53:475–503.
  • Baldwin, P. M., Davies, M. C. and Melia, C. D. (1997). Starch granule surface imaging using low-voltage scanning electron microscopy and atomic force microscopy. Int. J. Biol. Macromol. 21:103–107.
  • Baldwin, A. J., Egan, D. L., Warren, F. J. Barker, P. D., Dobson, C. M., Butterworth, P. J., Ellis, P. R. (2015). Investigating the mechanisms of amylolysis of starch granules by solution-state NMR. Biomacromolecules 16:1614–1621.
  • Belton, P. S., Delgadillo, I., Halford, N. G. and Shewry, P. R. (2006). Kafirin structure and functionality. J. Cereal Sci. 44:272–286.
  • Benmoussa, M., Hamaker, B. R., Huang, C. P., Sherman, D. M., Weil, C. F. and BeMiller, J. N. (2010). Elucidation of maize endosperm starch granule channel proteins and evidence for plastoskeletal structures in maize endosperm amyloplasts. J. Cereal Sci. 52:22–29.
  • Berg, T., Singh, J., Hardacre, A. and Boland, M. J. (2012). The role of cotyledon cell structure during in vitro digestion of starch in navy beans. Carbohydr. Polym. 87:1678–1688.
  • Berry, C. S. (1986). Resistant starch - formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. J. Cereal Sci. 4:301–314.
  • Bird, A. R., Lopez-Rubio, A., Shrestha, A. K. and Gidley, M. J. (2009). Resistant starch in vitro and in vivo: Factors determining yield, structure, and physiological relevance. In: Modern Biopolymer Science, pp. 449–510. Kasapis, S., Ubbink, J., and Norton, I. T., Eds., Academic Press, London.
  • Björck, I., Asp, N. G., Birkhed, D., Eliasson, A. C., Sjoberg, L. B. and Lundquist, I. (1984). Effects of processing on starch availability in vitro and in vivo. 2. Drum-drying of wheat-flour. J. Cereal Sci. 2:165–178.
  • Blazek, J. and Gilbert, E. P. (2010). Effect of enzymatic hydrolysis on native starch granule structure. Biomacromolecules 11:3275–3289.
  • Bornet, F., Fontvieille, A.-M., Rizkalla, S., Colonna, P., Blayo, A., Mercier, C. and Slama, G. (1989). Insulin and glycemic responses in healthy humans to native starches processed in different ways: Correlation with in vitro alpha-amylase hydrolysis. Am. J. Clin. Nutr. 50:315–323.
  • Brayer, G. D., Sidhu, G., Maurus, R., Rydberg, E. H., Braun, C., Wang, Y. L., Nguyen, N. T., Overall, C. H. and Withers, S. G. (2000). Subsite mapping of the human pancreatic alpha-amylase active site through structural, kinetic, and mutagenesis techniques. Biochemistry 39:4778–4791.
  • Brennan, C. S., Blake, D. E., Ellis, P. R. and Schofield, J. D. (1996). Effects of guar galactomannan on wheat bread microstructure and on the in vitro and in vivo digestibility of starch in bread. J. Cereal Sci. 24:151–160.
  • Brumovsky, J. O. and Thompson, D. B. (2001). Production of boiling-stable granular resistant starch by partial acid hydrolysis and hydrothermal treatments of high-amylose maize starch. Cereal Chem. 78:680–689.
  • Bučko, A., Kopec, Z., Ovečka, M. and Grunt, J. (1982). Adaptability of pancreatic enzymes activity to various food nutritive values in man. Influence of high protein diet. Food/Nahrung 26:59–64.
  • Butterworth, P. J., Warren, F. J. and Ellis, P. R. (2011). Human alpha-amylase and starch digestion: An interesting marriage. Starch-Stärke 63:395–405.
  • Butterworth, P. J., Warren, F. J., Grassby, T., Patel, H. and Ellis, P. R. (2012). Analysis of starch amylolysis using plots for first-order kinetics. Carbohydr. Polym. 87:2189–2197.
  • Cai, L. M. and Shi, Y. C. (2010). Structure and digestibility of crystalline short-chain amylose from debranched waxy wheat, waxy maize, and waxy potato starches. Carbohydr. Polym. 79:1117–1123.
  • Cai, L. and Shi, Y.-C. (2013). Self-assembly of short-linear chains to A-and B-type starch spherulites and their enzymatic digestibility. J. Agric. Food Chem. 61:10787–10797.
  • Cai, L. M., Shi, Y. C., Rong, L. X. and Hsiao, B. S. (2010). Debranching and crystallization of waxy maize starch in relation to enzyme digestibility. Carbohydr. Polym. 81:385–393.
  • Champ, M., Langkilde, A.-M., Brouns, F., Kettlitz, B. and Le Bail-Collet, Y. (2003). Advances in dietary fibre characterisation. 2. Consumption, chemistry, physiology and measurement of resistant starch; implications for health and food labelling. Nutr. Res. Rev. 16:143–161.
  • Champ, M., Martin, L., Noah, L. and Grams, M. (1999). Analytical methods for resistant starch. In: Complex Carbohydrates in Foods, pp. 169–188. Cho, S. S., Prosky, L., and Dreher, M., Eds., Marcle Dekker, New York.
  • Chandrashekar, A. and Kirleis, A. W. (1988). Influence of protein on starch gelatinization in sorghum. Cereal Chem. 65:457–462.
  • Chevallier, S., Colonna, P., Buléon, A. and Della Valle, G. (2000). Physicochemical behaviors of sugars, lipids, and gluten in short dough and biscuit. J. Agric. Food Chem. 48:1322–1326.
  • Chillo, S., Ranawana, D. V. and Henry, C. J. K. (2010). Effect of two barley beta-glucan concentrates on in vitro glycaemic impact and cooking quality of spaghetti. Lwt Food Sci. Technol. 44:940–948.
  • Choi, S. J., Woo, H. D., Ko, S. H. and Moon, T. W. (2008). Confocal laser scanning microscopy to investigate the effect of cooking and sodium bisulfate on in vitro digestibility of waxy sorghum flour. Cereal Chem. 85:65–69.
  • Colonna, P., Barry, J. L., Cloarec, D., Bornet, F., Gouilloud, S. and Galmiche, J. P. (1990). Enzymic susceptibility of starch from pasta. J. Cereal Sci. 11:59–70.
  • Colonna, P., Leloup, V. and Buleon, A. (1992). Limiting factors of starch hydrolysis. Eur. J. Clin. Nutr. 46:S17–S32.
  • Conlon, M. A., Kerr, C. A., McSweeney, C. S., Dunne, R. A., Shaw, J. M., Kang, S., Bird, A. R., Morell, M. K., Lockett, T. J. and Molloy, P. L. (2012). Resistant starches protect against colonic DNA damage and alter microbiota and gene expression in rats fed a Western diet. J. Nutr. 142:832–840.
  • Cornish-Bowden, A. (2004). Fundamentals of enzyme kinetics. Portland Press Ltd, London, UK.
  • Crapo, P. A., Reaven, G. and Olefsky, J. (1977). Postprandial plasma-glucose and plasma-insulin responses to different complex carbohydrates. Diabetes 26:1178–1183.
  • Crittenden, R. (2006). Emerging prebiotic carbohydrates. In: Prebiotics: Development and Application, pp. 111–133. Gibson, G. R., and Rastall, R. A., Eds. John Wiley and Sons, England.
  • DeVries, J. W. (2007). Glycemic index: The analytical perspective. Cereal Foods World 52:45–49.
  • Dhital, S., Bhattarai, R. R., Gorham, J. and Gidley, M. J. (2016). Intactness of cell wall structure controls the in vitro digestion of starch in legumes. Food Funct. 7:1367–1379.
  • Dhital, S., Dolan, G., Stokes, J. R. and Gidley, M. J. (2014). Enzymatic hydrolysis of starch in the presence of cereal soluble fibre polysaccharides. Food Funct. 5:579–586.
  • Dhital, S., Shrestha, A. K. and Gidley, M. J. (2010a). Effect of cryo-milling on starches: Functionality and digestibility. Food Hydrocolloid. 24:152–163.
  • Dhital, S., Shrestha, A. K. and Gidley, M. J. (2010b). Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydr. Polym. 82:480–488.
  • Dhital, S., Shrestha, A. K., Hasjim, J. and Gidley, M. J. (2011). Physicochemical and structural properties of maize and potato starches as a function of granule size. J. Agric. Food Chem. 59:10151–10161.
  • Dias, A. R. G., Zavareze, E. D., Spier, F., de Castro, L. A. S. and Gutkoski, L. C. (2010). Effects of annealing on the physicochemical properties and enzymatic susceptibility of rice starches with different amylose contents. Food Chem. 123:711–719.
  • Dikeman, C. L. and Fahey, G. C., Jr. (2006). Viscosity as related to dietary fiber: A review. Crit. Rev. Food Sci. Nut. 46:649–663.
  • Dikeman, C. L., Murphy, M. R. and Fahey, G. C. (2006). Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta. J. Nutr. 136:913–919.
  • Dona, A. C., Pages, G., Gilbert, R. G. and Kuchel, P. W. (2010). Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydr. Polym. 80:599–617.
  • Duggleby, R. G. and Clarke, R. B. (1991). Experimental designs for estimating the parameters of the Michaelis-Menten equation from progress curves of enzyme-catalyzed reactions. Biochim. Biophys. Acta. 1080:231–236.
  • Edwards, C. H., Warren, F. J., Milligan, P. J., Butterworth, P. J. Ellis and P. R. (2014). A novel method for classifying starch digestion by modelling the amylolysis of plant foods using first-order enzyme kinetic principles. Food Funct. 5:2751–2758.
  • Edwards, C. H., Warren, F. J., Campbell, G. M., Gaisford, S., Royall, P. G., Butterworth, P. J. and Ellis, P. R. (2015a). A study of starch gelatinisation behaviour in hydrothermally-processed plant food tissues and implications for in vitro digestibility. Food Funct. 6:3634–3641.
  • Edwards, C. H., Grundy, M. M.L., Grassby, T., Vasilopoulou, D., Frost, G. S., Butterworth, P. J., Berry, S. E. E., Sanderson, J. and Ellis, P. R. (2015b). Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: a randomized controlled trial in healthy ileostomy participants. Am. J. Clin. Nutr. 102:791–800.
  • Eerlingen, R. C. and Delcour, J. A. (1995). Formation, analysis, structure and properties of type-iii enzyme resistant starch. J. Cereal Sci. 22:129–138.
  • Ellis, P., Apling, E., Leeds, A. and Bolster, N. (1981). Guar bread: Acceptability and efficacy combined. Studies on blood glucose, serum insulin and satiety in normal subjects. Br. J. Nutr. 46:267–276.
  • Ellis, P. R., Dawoud, F. M. and Morris, E. R. (1991). Blood glucose, plasma insulin and sensory responses to guar-containing wheat breads: Effects of molecular weight and particle size of guar gum. Br. J. Nutr. 66:363–379.
  • Ellis, P., Qi, W., Rayment, P., YiLong, R., Ross-Murphy, S., Cho, S. and Dreher, M. (2001). Guar gum: Agricultural and botanical aspects, physicochemical and nutritional properties, and its use in the development of functional foods. In: Handbook of Dietary Fiber, pp. 613–657. Cho, S. S., and Dreher, M. L., Eds, Marcel Dekker, New York.
  • Ellis, P., Roberts, F., Low, A. and Morgan, L. (1995). The effect of high-molecular-weight guar gum on net apparent glucose absorption and net apparent insulin and gastric inhibitory polypeptide production in the growing pig: Relationship to rheological changes in jejunal digesta. Br. J. Nutr. 74:539–556.
  • Ells, L. J., Seal, C. J., Kettlitz, B., Bal, W. and Mathers, J. C. (2005). Postprandial glycaemic, lipaemic and haemostatic responses to ingestion of rapidly and slowly digested starches in healthy young women. Br. J. Nutr. 94:948–955.
  • Elödi, P., Móra, S. and Krysteva, M. (1972). Investigation of the active center of porcine‐pancreatic amylase. Eur. J. Biochem. 24:577–582.
  • Englyst, K. N., Englyst, H. N., Hudson, G. J., Cole, T. J. and Cummings, J. H. (1999). Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response. Am. J. Clin. Nutr. 69:448–454.
  • Englyst, H. N., Kingman, S. M. and Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46:30–50.
  • Englyst, H. N., Kingman, S. M., Hudson, G. J. and Cummings, J. H. (1996a). Measurement of resistant starch in vitro and in vivo. Br. J. Nutr. 75:749–755.
  • Englyst, H. N., Veenstra, J. and Hudson, G. J. (1996b). Measurement of rapidly available glucose (RAG) in plant foods: A potential in vitro predictor of the glycaemic response. Br. J. Nutr. 75:327–338.
  • Evans, A. and Thompson, D. B. (2004). Resistance to alpha-amylase digestion in four native high-amylose maize starches. Cereal Chem. 81:31–37.
  • Ezeogu, L. I., Duodu, K. G. and Taylor, J. R. N. (2005). Effects of endosperm texture and cooking conditions on the in vitro starch digestibility of sorghum and maize flours. J. Cereal Sci. 42:33–44.
  • Faisant, N., Champ, M., Colonna, P. and Buleon, A. (1993). Structural discrepancies in resistant starch obtained in vivo in humans and in vitro. Carbohydr. Polym. 21:205–209.
  • Fannon, J. E., Hauber, R. J. and BeMiller, J. N. (1992). Surface pores of starch granules. Cereal Chem. 69:284–288.
  • Fannon, J. E., Shull, J. M. and BeMiller, J. N. (1993). Interior channels of starch granules. Cereal Chem. 70:611–613.
  • Fardet, A., Hoebler, C., Baldwin, P. M., Bouchet, B., Gallant, D. J. and Barry, J. L. (1998). Involvement of the protein network in the in vitro degradation of starch from spaghetti and lasagne: A microscopic and enzymic study. J. Cereal Sci. 27:133–145.
  • Franco, C. M. L. and Ciacco, C. F. (1992). Factors that affect the enzymatic degradation of natural starch granules - effect of the size of the granules. Starch-Stärke 44:422–426.
  • Franco, C. M. L., Ciacco, C. F. and Tavares, D. Q. (1998). The structure of waxy corn starch: Effect of granule size. Starch-Stärke 50:193–198.
  • French, D. (1984). Organisations of strach granules. In: Starch: Chemistry and Technology, pp. 285–309. BeMiller, J. N., and Whistler, R. L., Eds., Academic Press, New York.
  • Gallant, D. J., Bouchet, B. and Baldwin, P. M. (1997). Microscopy of starch: Evidence of a new level of granule organization. Carbohydr. Polym. 32:177–191.
  • Gallant, D. J., Bouchet, B., Buleon, A. and Perez, S. (1992). Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur. J. Clin. Nutr. 46:3–16.
  • Gelders, G. G., Duyck, J. P., Goesaert, H. and Delcour, J. A. (2005). Enzyme and acid resistance of amylose-lipid complexes differing in amylose chain length, lipid and complexation temperature. Carbohydr. Polym. 60:379–389.
  • Gerard, C., Colonna, P., Buleon, A. and Planchot, V. (2001). Amylolysis of maize mutant starches. J. Sci. Food Agric. 81:1281–1287.
  • Germaine, K. A., Samman, S., Fryirs, C. G., Griffiths, P. J., Johnson, S. K. and Quail, K. J. (2008). Comparison of in vitro starch digestibility methods for predicting the glycaemic index of grain foods. J. Sci. Food Agric. 88:652–658.
  • Gidley, M. J. (1987). Factors affecting the crystalline type (A–C) of native starches and model compounds—A rationalization of observed effects in terms of polymorphic structures. Carbohydr. Res. 161:301–304.
  • Gilles, C., Astier, J. P., Marchis-Mouren, G., Cambillau, C. and Payan, F. (1996). Crystal structure of pig pancreatic α-amylase isoenzyme II, in complex with the carbohydrate inhibitor acarbose. Eur. J. Biochem. 238:561–569.
  • Goñi, I., Garcia-Alonso, A. and Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 17:427–437.
  • Goni, I., Valdivieso, L. and Garcia-Alonso, A. (2000). Nori seaweed consumption modifies glycemic response in healthy volunteers. Nutr. Res. 20:1367–1375.
  • Granfeldt, Y. and Björck, I. (1991). Glycemic response to starch in pasta: A study of mechanisms of limited enzyme availability. J. Cereal Sci. 14:47–61.
  • Granfeldt, Y., Bjorck, I., Drews, A. and Tovar, J. (1992). An in vitro procedure based on chewing to predict metabolic response to starch in cereal and legume products. Eur. J. Clin. Nutr. 46:649–660.
  • Han, X. Z., Benmoussa, M., Gray, J. A., BeMiller, J. N. and Hamaker, B. R. (2005). Detection of proteins in starch granule channels. Cereal Chem. 82:351–355.
  • Harris, P. J. and Stone, B. A. (2008). Chemistry and molecular organization of plant cell walls. In: Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy, pp. 61–93. Himmel, M. E., ed., Blackwell, Oxford.
  • Hasjim, J., Lavau, G. C., Gidley, M. J. and Gilbert, R. G. (2010a). In vivo and in vitro starch digestion: Are current in vitro techniques adequate? Biomacromolecules 11:3600–3608.
  • Hasjim, J., Lee, S. O., Hendrich, S., Setiawan, S., Ai, Y. and Jane, J. L. (2010b). Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses. Cereal Chem. 87:257–262.
  • Heaton, K. W., Marcus, S. N., Emmett, P. M. and Bolton, C. H. (1988). Particle-size of wheat, maize, and oat test meals - effects on plasma-glucose and insulin responses and on the rate of starch digestion in vitro. Am. J. Clin. Nutr. 47:675–682.
  • Hermansen, K., Rasmussen, O., Arnfred, J., Winther, E. and Schmitz, O. (1986). Differential glycemic effects of potato, rice and spaghetti in type-1 (insulin-dependent) diabetic patients at constant insulinemia. Diabetologia 29:358–361.
  • Hizukuri, S. (1986). Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr. Res. 147:342–347.
  • Hoebler, C., Karinthi, A., Chiron, H., Champ, M. and Barry, J. (1999). Bioavailability of starch in bread rich in amylose: Metabolic responses in healthy subjects and starch structure. Eur. J. Clin. Nutr. 53:360.
  • Hoebler, C., Karinthi, A., Devaux, M., Guillon, F., Gallant, D., Bouchet, B., Melegari, C. and Barry, J. (1998). Physical and chemical transformations of cereal food during oral digestion in human subjects. Br. J. Nutr. 80:429–436.
  • Holm, J., Björck, I., Ostrowska, S., Eliasson, A. C., Asp, N. G., Larsson, K. and Lundquist, I. (1983). Digestibility of amylose-lipid complexes in vitro and in vivo. Starch-Stärke 35:294–297.
  • Htoon, A., Shrestha, A. K., Flanagan, B. M., Lopez-Rubio, A., Bird, A. R., Gilbert, E. P. and Gidley, M. J. (2009). Effects of processing high amylose maize starches under controlled conditions on structural organisation and amylase digestibility. Carbohydr. Polym. 75:236–245.
  • Huntington, G., Harmon, D. and Richards, C. (2006). Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle. J. Anim. Sci. 84:14–24.
  • Hur, S. J., Lim, B. O., Decker, E. A. and McClements, D. J. (2011). In vitro human digestion models for food applications. Food Chem. 125:1–12.
  • Imberty, A., Buleon, A., Tran, V. and Perez, S. (1991). Recent advances in knowledge of starch structure. Starch-Stärke 43:375–384.
  • Jacobs, H. and Delcour, J. A. (1998). Hydrothermal modifications of granular starch, with retention of the granular structure: A review. J. Agric. Food Chem. 46:2895–2905.
  • Jacobson, M. R. and BeMiller, J. N. (1997). Retrogradation of starches from different botanical sources. Cereal Chem. 74:511–518.
  • Jane, J. L. (2007). Current understanding on starch granule structure. J. Appl. Glycosci. 53:205–213.
  • Jane, J. L., Ao, Z., Duvick, S. A., Wiklund, M., Yoo, S. H., Wong, K. S. and Gardner, C. (2003). Structures of amylopectin and starch granules: How are they synthesized? J. Appl. Glycosci. 50:167–172.
  • Jane, J., Chen, Y. Y., Lee, L. F., McPherson, A. E., Wong, K. S., Radosavljevic, M. and Kasemsuwan, T. (1999). Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 76:629–637.
  • Jane, J. L. and Robyt, J. F. (1984). Structure studies of amylose-v complexes and retrograded amylose by action of alpha-amylases, and a new method for preparing amylodextrins. Carbohydr. Res. 132:105–118.
  • Jarjis, H., Blackburn, N., Redfern, J. and Read, N. (1984). The effect of ispaghula (Fybogel and Metamucil) and guar gum on glucose tolerance in man. Br. J, Nutr. 51:371–378.
  • Jenkins, J. P. J., Cameron, R. E. and Donald, A. M. (1993). A universal feature in the structure of starch granules from different botanical sources. Starch-Stärke 45:417–420.
  • Jenkins, P. J. and Donald, A. M. (1995). The influence of amylose on starch granule structure. Int. J. Biol. Macromol. 17:315–321.
  • Jenkins, D., Ghafari, H., Wolever, T., Taylor, R., Jenkins, A., Barker, H., Fielden, H. and Bowling, A. (1982). Relationship between rate of digestion of foods and post-prandial glycaemia. Diabetologia 22:450–455.
  • Jenkins, D. J. A., Wolever, T. M. S., Jenkins, A. L., Lee, R., Wong, G. S. and Josse, R. (1983). Glycemic response to wheat products reduced response to pasta but no effect of fiber. Diab. Care 6:155–159.
  • Jenkins, D., Wolever, T., Leeds, A. R., Gassull, M. A., Haisman, P., Dilawari, J., Goff, D. V., Metz, G. L. and Alberti, K. (1978). Dietary fibres, fibre analogues, and glucose tolerance: Importance of viscosity. Br. Med, J. 1:1392–1394.
  • Jenkins, D., Wolever, T., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., Bowling, A. C., Newman, H. C., Jenkins, A. L. and Goff, D. V. (1981a). Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 34:362–366.
  • Jenkins, D. J. A., Wolever, T. M. S., Taylor, R. H., Barker, H. M., Fielden, H. and Gassull, M. A. (1981b). Lack of effect of refining on the glycemic response to cereals. Diab. Care 4:509–513.
  • Judd, P. A. and Ellis, P. R. (2006). Plant polysaccharides in the prevention and treatment of diabetes mellitus. In: Traditional Medicines for Modern Times: Antidiabetic Plants, pp. 257–272. Soumyanath, A., ed., Taylor and Francis, Florida.
  • Juntunen, K. S., Niskanen, L. K., Liukkonen, K. H., Poittanen, K. S., Holst, J. J. and Mykkanen, H. M. (2002). Postprandial glucose, insulin, and incretin responses to grain products in healthy subjects. Am. J. Clin. Nutr. 75:254–262.
  • Kasemwong, K., Piyachomkwan, K., Wansuksri, R. and Sriroth, K. (2008). Granule sizes of Canna (Canna edulis) starches and their reactivity toward hydration, enzyme hydrolysis and chemical substitution. Starch-Stärke 60:624–633.
  • Kaur, L., Singh, J., Singh, H. and McCarthy, O. J. (2008). Starch-cassia gum interactions: A microstructure - rheology study. Food Chem. 111:1–10.
  • Kim, J. C., Kong, B. W., Kim, M. J. and Lee, S. H. (2008a). Amylolytic hydrolysis of native starch granules affected by granule surface area. J. Food Sci. 73:621–624.
  • Kim, E. H. J., Petrie, J. R., Motoi, L., Morgenstern, M. P., Sutton, K. H., Mishra, S. and Simmons, L. D. (2008b). Effect of structural and physicochemical characteristics of the protein matrix in pasta on in vitro starch digestibility. Food Biophysics 3:229–234.
  • Kitahara, K., Sugnuma, T. and Nagahama, T. (1996). Susceptibility of amylose-lipid complexes to hydrolysis by glucoamylase. Cereal Chem. 73:428–432.
  • Kweon, M., Haynes, L., Slade, L. and Levine, H. (2000). The effect of heat and moisture treatments on enzyme digestibility of AeWx, Aewx and aeWx corn starches. J. Therm. Anal. Calorim. 59:571–586.
  • Lee, B.-H., Bello-Pérez, L. A., Lin, A. H.-M., Kim, C. Y. and Hamaker, B. R. (2013). Importance of location of digestion and colonic fermentation of starch related to its quality. Cereal Chem. 90:335–343.
  • Lee Wah, K., Kasapis, S., Keng Moh, L. and Check Woo, F. (2009). Structural enhancement leading to retardation of in vitro digestion of rice dough in the presence of alginate. Food Hydrocolloids 23:1458–1464.
  • Leeds, A. R. (1979). Gastric-emptying, fiber, and absorption. Lancet 1:872–873.
  • Leloup, V. M., Colonna, P. and Ring, S. G. (1991). Alpha-amylase adsorption on starch crystallites. Biotechnol. Bioeng. 38:127–134.
  • Lineback, D. R. and Wongsrikasem, E. (1980). Gelatinization of starch in baked products. J. Food Sci. 45:71–74.
  • Lopez-Rubio, A., Flanagan, B. M., Shrestha, A. K., Gidley, M. J. and Gilbert, E. P. (2008). Molecular rearrangement of starch during in vitro digestion: Toward a better understanding of enzyme resistant starch formation in processed starches. Biomacromolecules 9:1951–1958.
  • Lopez-Rubio, A., Htoon, A. and Gilbert, E. P. (2007). Influence of extrusion and digestion on the nanostructure of high-amylose maize starch. Biomacromolecules 8:1564–1572.
  • Mahasukhonthachat, K., Sopade, P. A. and Gidley, M. J. (2010a). Kinetics of starch digestion and functional properties of twin-screw extruded sorghum. J. Cereal Sci. 51:392–401.
  • Mahasukhonthachat, K., Sopade, P. A. and Gidley, M. J. (2010b). Kinetics of starch digestion in sorghum as affected by particle size. J. Food Eng. 96:18–28.
  • Maningat, C. C. and Seib, P. A. (2013). RS4-type resistant starch: Chemistry, functionality and health benefits. In: Resistant Starch Sources, Applications and Health Benefits, pp. 43–77. Shi, Y-C. and Maningat, C. C., eds., John Wiley, New Jersey.
  • McCleary, B. V. (2013). Measurement of resistant starch and incorporation of resistant starch into dietary fibre measurements. In: Resistant Starch Sources, Applications and Health Benefits, pp. 131–144. Yong-Cheng, S., and Maningat, C. C., eds., John Wiley, New Jersey.
  • McPherson, A. E. and Jane, J. (1999). Comparison of waxy potato with other root and tuber starches. Carbohydr. Polym. 40:57–70.
  • Monro, J. A., Mishra, S. and Venn, B. (2010). Baselines representing blood glucose clearance improve in vitro prediction of the glycaemic impact of customarily consumed food quantities. Br. J. Nutr. 103:295–305.
  • Montagne, L., Pluske, J. and Hampson, D. (2003). A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Fed Sci. Technol. 108:95–117.
  • Morrison, W. R. (1981). Starch lipids - a reappraisal. Starch-Stärke 33:408–410.
  • Morrison, W. R. (1988). Lipids in cereal starches - a review. J. Cereal Sci. 8:1–15.
  • Moss, R. (1975). Bread microstructure as affected by cysteine, potassium bromate and ascorbic acid. Cereal Foods World 20:289–292.
  • Naguleswaran, S., Li, J. H., Vasanthan, T. and Bressler, D. (2011). Distribution of granule channels, protein, and phospholipid in triticale and corn starches as revealed by confocal laser scanning microscopy. Cereal Chem. 88:87–94.
  • Naguleswaran, S., Li, J., Vasanthan, T., Bressler, D. and Hoover, R. (2012). Amylolysis of large and small granules of native triticale, wheat and corn starches using a mixture of alpha-amylase and glucoamylase. Carbohydr. Polym. 88:864–874.
  • Nichols, B. L., Avery, S., Sen, P., Swallow, D. M., Hahn, D. and Sterchi, E. (2003). The maltase-glucoamylase gene: Common ancestry to sucrase-isomaltase with complementary starch digestion activities. Proc. Nat. Acad. Sci. USA 100:1432–1437.
  • Noda, T., Takigawa, S., Matsuura-Endo, C., Kim, S. J., Hashimoto, N., Yamauchi, H., Hanashiro, I. and Takeda, Y. (2005). Physicochemical properties and amylopectin structures of large, small, and extremely small potato starch granules. Carbohydr. Polym. 60:245–251.
  • O'Dea, K., Nestel, P. J. and Antonoff, L. (1980). Physical factors influencing postprandial glucose and insulin responses to starch. Am. J. Clin. Nutr. 33:760–765.
  • O'Dea, K., Snow, P. and Nestel, P. (1981). Rate of starch hydrolysis in vitro as a predictor of metabolic responses to complex carbohydrate in vivo. Am. J. Clin. Nutr. 34:1991–1993.
  • Oates, C. G. (1997). Towards an understanding of starch granule structure and hydrolysis. Trends Food Sci. Technol. 8:375–382.
  • Oostergetel, G. T. and Vanbruggen, E. F. J. (1989). On the origin of a low-angle spacing in starch. Starch-Stärke 41:331–335.
  • Oria, M. P., Hamaker, B. R. and Shull, J. M. (1995). Resistance of sorghum alpha-kafirins, beta-kafirins, and gamma-kafirins to pepsin digestion. J. Agric. Food Chem. 43:2148–2153.
  • Payan, F., Haser, R., Pierrot, M., Frey, M., Astier, J. P., Abadie, B., Duee, E. and Buisson, G. (1980). 3-dimensional structure of alpha-amylase from porcine pancreas at 5-A° resolution - active-site location. Acta Crystallographica 36:416–421.
  • Planchot, V. and Colonna, P. (1995). Purification and characterization of extracellular alpha-amylase from aspergillus-fumigatus. Carbohydr. Res. 272:97–109.
  • Planchot, V., Colonna, P. and Buleon, A. (1997). Enzymatic hydrolysis of alpha-glucan crystallites. Carbohydr. Res. 298:319–326.
  • Prodanov, E., Seigner, C. and Marchis-Mouren, G. (1984). Subsite profile of the active center of porcine pancreatic α-amylase. Kinetic studies using maltooligosaccharides as substrates. Biochem. Biophys. Res. Commun. 122:75–81.
  • Quigley, T. A., Kelly, C. T., Doyle, E. M. and Fogarty, W. M. (1998). Patterns of raw starch digestion by the glucoamylase of Cladosporium gossypiicola ATCC 38026. Process Biochem. 33:677–681.
  • Ranawana, V., Clegg, M. E., Shafat, A. and Henry, C. J. (2011). Postmastication digestion factors influence glycemic variability in humans. Nutr. Res. 31:452–459.
  • Ranawana, V., Monro, J. A., Mishra, S. and Henry, C. J. K. (2010). Degree of particle size breakdown during mastication may be a possible cause of interindividual glycemic variability. Nutr. Res. 30:246–254.
  • Regand, A., Chowdhury, Z., Tosh, S. M., Wolever, T. M. S. and Wood, P. (2012). The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility. Food Chem. 129:297–304.
  • Ring, S. G., Colonna, P., Ianson, K. J., Kalichevsky, M. T., Miles, M. J., Morris, V. J. and Orford, P. D. (1987). The gelation and crystallization of amylopectin. Carbohydr. Res. 162:277–293.
  • Robertson, G. H., Wong, D. W., Lee, C. C., Wagschal, K., Smith, M. R. and Orts, W. J. (2006). Native or raw starch digestion: A key step in energy efficient biorefining of grain. J. Agric. Food Chem. 54:353–365.
  • Roder, N., Gerard, C., Verel, A., Bogracheva, T. Y., Hedley, C. L., Ellis, P. R. and Butterworth, P. J. (2009). Factors affecting the action of α-amylase on wheat starch: Effects of water availability. An enzymic and structural study. Food Chem. 113:471–478.
  • Rooney, L. W. and Pflugfelder, R. L. (1986). Factors affecting starch digestibility with special emphasis on sorghum and corn. J. Animal Sci. 63:1607–1623.
  • Sambrook, I. E. and Rainbird, A. L. (1985). The effect of guar gum and level and source of dietary fat on glucose tolerance in growing pigs. Br. J. Nutr. 54:27–35.
  • Seigner, C., Prodanov, E. and Marchis-Mouren, G. (1987). The determination of subsite binding energies of porcine pancreatic α-amylase by comparing hydrolytic activity towards substrates. Biochim. Biophys. Acta 913:200–209.
  • Shrestha, A. K., Blazek, J., Flanagan, B. M., Dhital, S., Larroque, O., Morell, M. K., Gilbert, E. P. and Gidley, M. J. (2012). Molecular, mesoscopic and microscopic structure evolution during amylase digestion of maize starch granules. Carbohydr. Polym. 90:23–33.
  • Shrestha, A. K., Ng, C. S., Lopez-Rubio, A., Blazek, J., Gilbert, E. P. and Gidley, M. J. (2010). Enzyme resistance and structural organization in extruded high amylose maize starch. Carbohydr. Polym. 80:699–710.
  • Slaughter, S. L., Ellis, P. R. and Butterworth, P. J. (2001). An investigation of the action of porcine pancreatic alpha-amylase on native and gelatinised starches. Biochimica et Biophysica Acta, 1525:29–36.
  • Slaughter, S. L., Ellis, P. R., Jackson, E. C. and Butterworth, P. J. (2002). The effect of guar galactomannan and water availability during hydrothermal processing on the hydrolysis of starch catalysed by pancreatic α-amylase. Biochim. Biophys. Acta 1571:55–63.
  • Smith, A. M., Zeeman, S. C., Thorneycroft, D. and Smith, S. M. (2003). Starch mobilization in leaves. J. Exp. Bot. 54:577–583.
  • Sopade, P. A. and Gidley, M. J. (2009). A rapid in vitro digestibility assay based on glucometry for investigating kinetics of starch digestion. Starch-Stärke 61:245–255.
  • Sujka, M. and Jamroz, J. (2009). alpha-Amylolysis of native potato and corn starches - SEM, AFM, nitrogen and iodine sorption investigations. Lwt-Food Sci. Technol. 42:1219–1224.
  • Tahir, R., Ellis, P. R., Bogracheva, T. Y., Meares-Taylor, C. and Butterworth, P. J. (2011). Study of the structure and properties of native and hydrothermally processed wild-type, lam and r variant pea starches that affect amylolysis of these starches. Biomacromolecules 12:123–133.
  • Tahir, R., Ellis, P. R. and Butterworth, P. J. (2010). The relation of physical properties of native starch granules to the kinetics of amylolysis catalysed by porcine pancreatic alpha-amylase. Carbohydr. Polym. 81:57–62.
  • Tang, H. J., Mitsunaga, T. H. and Kawamura, Y. (2006). Molecular arrangement in blocklets and starch granule architecture. Carbohydr. Polym. 63:555–560.
  • Taylor, R. H. (1979). Gastric-emptying, fiber, and absorption. Lancet 1:872–872.
  • Tester, R. F., Karkalas, J. and Qi, X. (2004). Starch structure and digestibility enzyme-substrate relationship. World Poultry Sci. J. 60:186–195.
  • Tharakan, A., Norton, I. T., Fryer, P. J. and Bakalis, S. (2010). Mass transfer and nutrient absorption in a simulated model of small intestine. J. Food Sci. 75:339–346.
  • Thompson, D. B. (2000). Strategies for the manufacture of resistant starch. Trends Food Sci. Technol. 11:245–253.
  • Topping, D. L. and Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: Roles of resistant starch and non-starch polysaccharides. Physiol. Rev. 81:1031–1064.
  • Tran, T. T., Shelat, K. J., Tang, D., Li, E., Gilbert, R. G. and Hasjim, J. (2011). Milling of rice grains. The degradation on three structural levels of starch in rice flour can be independently controlled during grinding. J. Agric. Food Chem. 59:3964–3973.
  • Tufvesson, F., Wahlgren, M. and Eliasson, A. C. (2003a). Formation of amylase-lipid complexes and effects of temperature treatment. Part 1. Monoglycerides. Starch-Stärke 55:61–71.
  • Tufvesson, F., Wahlgren, M. and Eliasson, A. C. (2003b). Formation of amylase-lipid complexes and effects of temperature treatment. Part 2. Fatty acids. Starch-Stärke 55:138–149.
  • Varatharajan, V., Hoover, R., Li, J. H., Vasanthan, T., Nantanga, K. K. M., Seetharaman, K., Liu, Q., Donner, E., Jaiswal, S. and Chibbar, R. N. (2011). Impact of structural changes due to heat-moisture treatment at different temperatures on the susceptibility of normal and waxy potato starches towards hydrolysis by porcine pancreatic alpha amylase. Food Res. Int. 44:2594–2606.
  • Vasanthan, T. and Bhatty, R. S. (1996). Physicochemical properties of small- and large-granule starches of waxy, regular, and high-amylose barleys. Cereal Chem. 73:199–207.
  • Vidal, B. C., Jr., Dien, B. S., Ting, K. C. and Singh, V. (2011). Influence of feedstock particle size on lignocellulose conversion—a review. Appl. Biochem. Biotechnol. 164:1405–1421.
  • Wang, Q. and Ellis, P. (2014). Oat β-glucan: Physicochemical characteristics in relation to its blood-glucose and cholesterol-lowering properties. British Journal of Nutrition 112:S4–S13.
  • Wang, Y. J., Kozlowski, R. and Delgado, G. A. (2001). Enzyme resistant dextrins from high amylose corn mutant starches. Starch-Stärke 53:21–26.
  • Warren, F. J., Butterworth, P. J. and Ellis, P. R. (2013) The surface structure of a complex substrate revealed by enzyme kinetics and Freundlich constants for α-amylase interaction with the surface of starch. Biochim. Biophys. Acta 1830:3095–3101.
  • Warren, F. J., Butterworth, P. J. and Ellis, P. R. (2012). Studies of the effect of maltose on the direct binding of porcine pancreatic α-amylase to maize starch. Carbohydr. Res. 358:67–71.
  • Warren, F. J., Royall, P. G., Gaisford, S., Butterworth, P. J. and Ellis, P. R. (2011). Binding interactions of alpha-amylase with starch granules: The influence of supramolecular structure and surface area. Carbohydr. Polym. 86:1038–1047.
  • Williamson, G., Belshaw, N. J., Self, D. J., Noel, T. R., Ring, S. G., Cairns, P., Morris, V. J., Clark, S. A. and Parker, M. L. (1992). Hydrolysis of A-type and B-type crystalline polymorphs of starch by alpha amylase, beta amylase and glucoamylase. Carbohydr. Polym. 18:179–187.
  • Woolnough, J. W., Monro, J. A., Brennan, C. S. and Bird, A. R. (2008). Simulating human carbohydrate digestion in vitro: A review of methods and the need for standardisation. Int. J. Food Sci. Technol. 43:2245–2256.
  • Wootton, M. and Chaidhry, M. A. (1980). Gelatinization and in vitro digestibility of starch in baked products. J. Food Sci. 45:1783–1784.
  • Yamaguchi, M., Kainuma, K. and French, D. (1979). Electron-microscopic observations of waxy maize starch. J. Ultrastructure Res. 69:249–261.
  • Yoshida, M., Fuji, M., Nikuni, Z. and Maruo, B. (1958). The appositive growth of starch granules in beans as revealed by autoradiography. Bull. Agric. Chem. Soc. Jpn. 22:127–127.
  • Yotsawimonwat, S., Sriroth, K., Kaewvichit, S., Piyachomkwan, K., Jane, J.-L. and Sirithunyalug, J. (2008). Effect of pH on complex formation between debranched waxy rice starch and fatty acids. Int. J. Biol. Macromol. 43:94–99.
  • Zavareze, E. D. and Dias, A. R. G. (2011). Impact of heat-moisture treatment and annealing in starches: A review. Carbohydr. Polym 83:317–328.
  • Zavareze, E. D., Storck, C. R., de Castro, L. A. S., Schirmer, M. A. and Dias, A. R. G. (2010). Effect of heat-moisture treatment on rice starch of varying amylose content. Food Chem. 121:358–365.
  • Zhang, G. Y., Ao, Z. H. and Hamaker, B. R. (2006). Slow digestion property of native cereal starches. Biomacromolecules 7:3252–3258.
  • Zhang, B., Dhital, S., Flanagan, F. M. and Gidley, M. J. (2014). Mechanism for starch granule ghost formation deduced from structural and enzyme digestion properties. J Agric. Food Chem. 62:760–771.
  • Zhang, B., Dhital, S. and Gidley, M. J. (2013). Synergistic and antagonistic effects of α-amylase and amyloglucosidase on starch digestion. Biomacromolecules 12:1945–1954.
  • Zhang, B., Dhital, S. and Gidley, M. J. (2015). Densely packed matrices as rate determining features in starch hydrolysis. Trends in Food Science & Technology, 43:18–31.
  • Zhang, G. Y. and Hamaker, B. R. (1998). Low alpha-amylase starch digestibility of cooked sorghum flours and the effect of protein. Cereal Chem. 75:710–713.
  • Zhang, G. Y. and Hamaker, B. R. (2009). Slowly digestible starch: Concept, mechanism, and proposed extended glycemic index. Crit. Rev. Food Sci. Nutr. 49:852–867.
  • Zhang, G., Sofyan, M. and Hamaker, B. R. (2008). Slowly digestible state of starch: Mechanism of slow digestion property of gelatinized maize starch. J. Agric. Food Chem. 56:4695–4702.
  • Zou, W., Sissons, M., Gidley, M. J., Gilbert, R. G. and Warren, F. J. (2015). Combined techniques for characterising pasta structure reveals how the gluten network slows enzymic digestion rate. Food Chemistry, 188:559–568.
  • Zhu, Q. and Bertoft, E. (1996). Composition and structural analysis of alpha-dextrins from potato amylopectin. Carbohydr. Res. 288:155–174.
  • Zobel, H. F. (1988). Molecules to granules - a comprehensive starch review. Starch-Stärke 40:44–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.