796
Views
35
CrossRef citations to date
0
Altmetric
Articles

Marine phospholipids: The current understanding of their oxidation mechanisms and potential uses for food fortification

, , &

References

  • Adams, A., Bouckaert, C., Lancker, F. V., Meulenaer, B. D. and Kimpe, N. D. (2011a). Amino acid catalysis of alkylfuran formation from lipid oxidation derived α, β-unsaturated aldehydes. J. Agric. Food Chem. 59:11058–11062.
  • Adams, A., Kitryte, V., Venskutonis, R. and Kimpe, N. D. (2009). Formation and characterization of melanoidin like polycondensation products from amino acids and lipid oxidation products. Food Chem. 115:904–911.
  • Adams, A., Kitryte, V., Venskutonis, R. and Kimpe, N. D. (2011b). Model studies on the pattern of volatiles generated in mixtures of amino acids, lipid oxidation derived aldehydes and glucose. J. Agric. Food Chem. 59:1449–1456.
  • Adams, A., Polizzi, V., Boekel, M. V. and Kimpe, N. D. (2008). Formation of pyrazine and a novel pyrrole in Maillard model systems of 1, 3-dihydroacetone and 2-oxopropanal. J. Agric. Food Chem. 56:2147–21531.
  • Ahmad, I., Alaiz, M., Hidalgo, F. J. and Zamora, R. (1998). Effect of oxidized lipid/amino acid reaction products on the antioxidative activity of common antioxidants. J. Agric. Food Chem. 46:3768–3771.
  • Aidos, I., Jacobsen, C., Jensen, B., Luten, J. B., Padt, A. V. D. and Boom, R. M. (2002). Volatile oxidation products formed in crude herring oil under accelerated oxidative conditions. Eur. Food Res. Technol. 104:808–818.
  • Alaiz, M., Hidalgo, F. J. and Zamora, R. (1995a). Antioxidative activity of (E)-2-octenal/amino acids reaction products. J. Agric. Food Chem. 43:795–800.
  • Alaiz, M., Hidalgo, F. J. and Zamora, R. (1995b). Natural antioxidants produced in oxidized lipid/amino acid browning reactions. J. Am. Oil Chem. Soc. 72:1571–1575.
  • Anese, M. and Nicoli, M. C. (2003). Antioxidant properties of ready-to drink coffee brews. J. Agric. Food Chem. 51:942–946.
  • Applegate, K. R. and Glomset, J. A. (1986). Computer-Based Modeling of the Conformation and Packing Properties of Docosahexaenoic Acid. J. Lipid Res. 27:658–680.
  • Baek, H. H. and Cadwallader, K. R. C. (1996). Volatile compounds in flavour concentrates produced from crayfish processing by products with and without protease treatment. J. Agric. Food Chem. 44:3262–3267.
  • Bandarra, N. M., Campos, R. M., Batista, I., Nunes, M. L. and Empis, J. M. (1999). Antioxidant synergy of alpha-tocopherol and phospholipids. J. Am. Oil Chem. Soc. 76:905–913.
  • Belhaj, N., Arab-Tehrany, E. and Linder, M. (2010). Oxidative kinetics of salmon oil in bulk and in nanoemulsion´ stabilized by marine lecithin. Process Biochem. 45:187–195.
  • Boyd, L. C., Nwosu, V. C., Young, C. L. and MacMillian, L. (1998). Monitoring lipid oxidation and antioxidant effects of phospholipids by headspace gas chromatographic analyses of rancimat trapped volatiles. J. Food Lipids 5:269–282.
  • Budzinski, E., Bykowski, P. and Dutkiewicz, D. (1985). Possibilities of processing and marketing of products made from Antartic krill. In: FAO Fisheries Technical Paper (FAO), 268; pp. 1–146. FAO, Rome, Italy.
  • Cansell, M., Moussaoui, N. and Lefrancois, C. (2001). Stability of marine lipid based liposomes under acid conditions. Influence of xanthan gum. J. Liposome Res. 11:229–242.
  • Cercaci, L., Rodriguez-Estrada, M. T., Lercker, G. and Decker, E. A. (2007). Phytosterol oxidation in oil-in-water emulsions and bulk oil. Food Chem. 102:161–167.
  • Chee, C. P., Roberts, R. F. and Coupland, J. N. (2006). Effect of temperature, time, medium form and casein on lipid oxidation of polyunsaturated fatty acids in algae oil. Milchwissenschaft. 61:142–145.
  • Chen, H. M., Muramoto, K., Yamauchi, F. and Nokihara, K. (1996). Antioxidant activity of designed peptides base on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 44:2619–2623.
  • Cho, S. Y., Joo, D. S., Choi, H. G., Nara, E. and Miyashita, K. (2001). Oxidative stability of lipids from squid tissues. Fish. Sci. 67:738–743.
  • Chung, H. Y., Yung, I. K. S. and Kim, J. S. (2001). Comparison of volatile components in dried scallops (Chlamys farreri and Patinopecten yessoensis) prepared by boiling and steaming methods. J. Agric. Food Chem. 49:192–202.
  • Chung, H. Y., Yung, I. K. S., Ma, W. C. J. and Kim, J. S. (2002). Analysis of volatile components in frozen and dried scallops (Patinopecten yessoensis) by gas chromatography/mass spectrometry. Food Res. Int. 35:43–53.
  • Cros, S., Lignot, B., Bourseau, P., Jaouen, P. and Prost, C. (2005). Desalination of mussel cooking juices by electrodialysis: Effect on the aroma profile. J. Food Eng. 69:425–436.
  • Dobarganes, M. C. and Marquez-Ruiz, G. (2007). Formation and analysis of oxidized monomeric, dimeric and higher oligomeric triglycerides. In: Deep Frying: Chemistry, Nutrition and Practical Applications, pp. 87–110. Erickson, M.D., Ed., AOCS Press, Champaign, IL.
  • Dunford, H. B. (1987). Free radicals in iron containing systems. Free Radic. Biol. Med. 3:405–421.
  • Farmer, L. J. and Mottram, D. S. (1990). Interaction of lipid in the Maillard reaction between cysteine and ribose: The effect of a triglyceride and three phospholipids on the volatile products. J. Sci. Food Agric. 53:505–525.
  • Finean, J. B. (1990). Interaction between cholesterol and phospholipid in hydrated bilayers. Chem. Phys. Lipids 54:147–156.
  • Fiorentini, D., Landi, L., Barzanti, V. and Cabrini, L. (1989). Buffers can modulate the effect of sonication on egg lecithin liposomes. Free Radic. Res. Com. 6:243–250.
  • Flores, M., Spanier, A. M. and Toldra, F. (1998). Flavour analysis of dry-cured ham. In: Flavour of Meat and Meat Products and Seafoods, pp. 320–341. Shahidi, F., Ed., Blackie Academic and Professional, London, UK.
  • Frankel, E. N. (2005). Lipid Oxidation. The Oily Press, Bridgwater, England.
  • Garcia, E., Gutierrez, S., Nolasco, H., Carreon, L. and Arjona, O. (2006). Lipid composition of shark liver oil: Effects of emulsifying and microencapsulation processes. Eur. Food Res. Technol. 222:697–701.
  • Giogios, I., Grigorakis, K., Nengas, I., Papasolomontos, S., Papaioannou, N. and Alexis, M. N. (2008). Fatty acid composition and volatile compounds of selected marine oils and meals. J. Sci. Food Agric. 89:88–100.
  • Gritt, M., Zuidam, N. J., Underberg, W. J. M. and Crommelin, D. J. A. (1993). Hydrolysis of partially saturated egg phosphatidylcholine in aqueous liposome dispersions and the effect of cholesterol incorporation in hydrolysis kinetics. J. Pharm. Pharmacol. 45:490–495.
  • Guo, H., Kouzuma, Y. and Yonekura, M. (2009). Structures and properties of antioxidative peptides derive from royal jelly protein. Food Chem. 113:238–245.
  • Halliwell, B. and Gutteridge, J. (1990). Role of free radicals and catalytic metal ions in human disease: An overview. Meth. Enzymol. 186:1–85.
  • Hartvigsen, K., Lund, P., Hansen, L. F. and Hølmer, G. (2000). Dynamic headspace gas chromatography/mass spectrometry characterization of volatiles produced in fish oil enriched mayonnaise during storage. J. Agric. Food Chem. 48:4858–4867.
  • Hidalgo, F. J., Mercedes leoan, M., Nogales, F. and Zamora, R. (2007). Effect of tocopherols in the antioxidative activity of oxidized lipid-amine reaction products. J. Agric. Food Chem. 55:4436–4442.
  • Hidalgo, F. J., Mercedes leoan, M. and Zamora, R. (2006). Antioxidative activity of amino phospholipids and phospholipid/amino acid mixtures in edible oils as determined by the Rancimat method. J. Agric. Food Chem. 54:5461–5467.
  • Hidalgo, F. J., Nogales, F. and Zamora, R. (2003). Effect of the pyrrole polymerization mechanism on the antioxidative activity of nonenzymatic browning reactions. J. Agric. Food Chem. 51:5703–5708.
  • Hidalgo, F. J., Nogales, F. and Zamora, R. (2005a). Nonenzymatic browning, fluorescence development, and formation of pyrrole derivatives in phosphatidylethanolamine/Ribose/Lysine model systems. J. Food Sci. 70:387–391.
  • Hidalgo, F. J., Nogales, F. and Zamora, R. (2005b). Changes produced in the antioxidative activity of phospholipids as a consequence of their oxidation. J. Agric. Food Chem. 53:659–662.
  • Hidalgo, F. J. and Zamora, R. (2004). Strecker–type degradation produced by the lipid oxidation products 4, 5-epoxy-2-alkenals. J. Agric. Food Chem. 52:7126–7131.
  • Hidalgo, F. J. and Zamora, R. (2005). Interplay between the Maillard reaction and lipid peroxidation in biochemical systems. Ann. N. Y. Acad. Sci. 1043:319–326.
  • Hwang, H. I., Hartman, T. G., Rosen, R. T. and Ho, C. T. (1993). Formation of pyrazine from maillard reaction of glucose and glutamine-amine-15N. J. Agric. Food Chem. 41:2112–2115.
  • Ierna, M., Kerr, A., Scales, H., Berge, K. and Griinari, M. (2010). Supplementation of diet with krill oil protects against experimental rheumatoid arthritis. BMC Musculoskelet. Dis. 11: 136–147.
  • Karahadian, C. and Lindsay, R. C. (1989). Evaluation of compounds contributing characterizing fishy flavours in fish oil. J. Am. Oil Chem. Soc. 66:953–960.
  • Kassis, N. M., Beamer, S. K., Matak, K. E., Tou, J. C. and Jaczynski, J. (2010). Nutritional composition of novel nutraceutical egg products developed with omega-3-rich oils. LWT- Food Sci. Technol. 43:1204–1212.
  • Kassis, N. M., Gigliotti, J. C., Beamer, S. K., Tou, J. C. and Jaczynski, J. (2011). Characterization of lipids and antioxidant capacity of novel nutraceutical egg products developed with omega-3-rich oils. J. Sci. Food Agric. 92:66–73.
  • Khayat, A. and Schwall, D. (1983). Lipid oxidation in seafood. Food Technol. 37:130–1400.
  • Kim, Y. S., Hartman, T. G. and Ho, C. T. (1996). Formation of 2-pentylpyridine from the thermal interaction of amino acids and 2, 4-decadienal. J. Agric. Food Chem. 44:3906–3908.
  • Kim, Y. S. and Ho, C. T. C. (1998). Formation of pentylpyridines in an oil medium. J. Agric. Food Chem. 46:644–647.
  • Kim, I. H., Kim, C. J. and Kim, D. H. (1999). Physicochemical properties of methyl linoleate oxidized at various temperatures. Korean J. Food Sci. Technol. 31:600–605.
  • King, M. F., Boyd, L. C. and Sheldon, B. W. (1992a). Effects of phospholipids on lipid oxidation of a salmon oil model system. J. Am. Oil Chem. Soc. 69:237–242.
  • King, M. F., Boyd, L. C. and Sheldon, B. W. (1992b). Antioxidant properties of individual phospholipids in a salmon oil model system. J. Am. Oil Chem. Soc. 69:545–551.
  • Kubota, K., Nakamoto, A., Moriguchi, M., Kobayashi, A. and Ishii, H. (1991). Formation of pyrrolidino[1, 2-e]-4H-2, 4-dimethy-1, 3, 5-dithiazine in the volatiles of boiled short necked clam, clam and corbicula. J. Agric. Food Chem. 39:1127–1130.
  • Le Grandois, J., Marchioni, E., Zhao, M. J., Giuffrida, F., Ennahar, S. and Bindler, F. (2009). Investigation of natural phosphatidylcholine sources: Separation and identification by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS2) of molecular species. J. Agric. Food Chem. 57:6014–6020.
  • Linder, M. and Ackman, R. G. (2002). Volatile compounds recovered by Solid Phase Microextraction from fresh adductor muscle and total lipids of sea scallop (Placopecten magellanicus) from Georges Bank (Nova Scotia). J. Food Sci. 67:2032–2037.
  • Loidl-Stahlhofen, A. and Spiteller, G. (1994). α-Hydroxyaldehydes, products of lipid peroxidation. Biochim. Biophys. Acta 1211:156–160.
  • Lu, F. S. H., Bruheim, I., Haugsgjerd, B. O. and Jacobsen, C. (2014). Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Food Chem. 157:398–407.
  • Lu, F. S. H., Nielsen, N. S., Baron, C. P. and Jacobsen, C. (2012a). Oxidative degradation and non-enzymatic browning due to the interaction between oxidized lipids and primary amine groups in different marine phospholipid emulsions. Food Chem. 135:2887–2896.
  • Lu, F. S. H., Nielsen, N. S., Baron, C. P., Diehl, B. W. K. and Jacobsen, C. (2012b). Oxidative stability of emulsions prepared from purified marine phospholipid and the role of α-tocopherol. J. Agric. Food Chem. 60:12388–12396.
  • Lu, F. S. H., Nielsen, N. S., Baron, C. P., Diehl, B. W. K. and Jacobsen, C. (2013a). Impact of primary amine group from aminophospholipids and amino acids on marine phospholipid stability: Non-enzymatic browning and lipid oxidation. Food Chem. 141:879–888.
  • Lu, F. S. H., Nielsen, N. S., Baron, C. P., Jensen, L. H. S. and Jacobsen, C. (2012c). Physico-chemical properties of marine phospholipid emulsions. J. Am. Oil Chem. Soc. 89:2011–2024.
  • Lu, F. S. H., Nielsen, N. S., Heinrich, M. T. and Jacobsen, C. (2011). Oxidative stability of marine phospholipids in the liposomal form and their applications: A review. Lipids 46:3–23.
  • Lu, F. S. H., Thomsen, B. R., Hyldig, G., Green-Petersen, D. M. B., Nielsen, N. S., Baron, C. P. and Jacobsen, C. (2013b). Oxidative stability and sensory attributes of fermented milk product fortified with a neat or pre-emulsified mixture of fish oil and marine phospholipids. J. Am. Oil Chem. Soc. 90:1673–1683.
  • McClements, D. J. and Decker, E. A. (2000). Lipid oxidation in oil-in water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. J. Food Sci. 65:1271–1282.
  • Mei, L. Y., Decker, E. A. and McClements, D. J. (1998a). Evidence of iron association with emulsion droplets and its impact on lipid oxidation. J. Agric. Food Chem. 46:5072–5077.
  • Mei, L. Y., McClements, D. J., Wu, J. and Decker, E. A. (1998b). Iron catalyzed lipid oxidation in emulsion as affected by surfactant, pH, NaCl. Food Chem. 61:307–312.
  • Methven, L., Tsoukka, M., Concha, M. J. O., Pakker, J. K. and Mottram, D. S. (2007). Influence of sulfur amino acids on the volatile and nonvolatile components of cooked salmon (Salmo salar). J. Agric. Food Chem. 55:1427–1436.
  • Minotti, G. and Aust, S. (1989). The role of iron in oxygen radical mediated lipid peroxidation. Chem.-Biol. Interact. 71:1–19.
  • Miyashita, K., Nara, E. and Ota, T. (1994). Comparative-study on the oxidative stability of phosphatidylcholines from salmon egg and soybean in an aqueous-solution. Biosci. Biotechnol. Biochem. 58:1772–1775.
  • Mlakar, A. and Spiteller, G. (1994). Reinvestigation of lipid peroxidation of linolenic acid. Biochim. Biophys. Acta 1214:270–280.
  • Morita, K., Kubota, K. and Aishima, T. (2001). Sensory characteristics and volatile components in aromas of boiled prawns prepared according to experimental designs. Food Res. Int. 34:473–481.
  • Moriya, H., Kuniminato, T., Hosokawa, M., Fukunaga, K., Nishiyama, T. and Miyashita, K. (2007). Oxidative stability of salmon and herring roe lipids and their dietary effect on plasma cholesterol levels of rats. Fish. Sci. 73:668–674.
  • Mozuraityte, R., Rustad, T. and Storro, I. (2006a). Pro-oxidant activity of Fe2+ in oxidation of cod phospholipids in liposomes. Eur. J. Lipid Sci. Technol. 108:218–226.
  • Mozuraityte, R., Rustad, T. and Storro, I. (2006b). Oxidation of cod phospholipids in liposomes: Effects of salts, pH and zeta potential. Eur. J. Lipid Sci. Technol. 108:944–950.
  • Mozuraityte, R., Rustad, T. and Storro, I. (2008). The role of iron in peroxidation of polyunsaturated fatty acids in liposomes. J. Agric. Food Chem. 56:537–543.
  • Nacka, F., Cansell, M., Gouygou, J. P., Gerbeaud, C., Meleard, P. and Entressangles, B. (2001b). Physical and chemical stability of marine lipid-based liposomes under acid conditions. Colloids Surf. B. 20:257–266.
  • Nacka, F., Cansell, M., Meleard, P. and Combe, N. (2001a). Incorporation of alpha tocopherol in marine lipid-based liposomes: In vitro and in vivo studies. Lipids 36:1313–1320.
  • Nara, E., Miyashita, K. and Ota, T. (1997). Oxidative stability of liposomes prepared from soybean PC, chicken egg PC, and salmon egg PC. Biosci. Biotechnol. Biochem. 61:1736–1738.
  • Nara, E., Miyashita, K., Ota, T. and Nadachi, Y. (1998). The oxidative stabilities of polyunsaturated fatty acids in salmon egg phosphatidylcholine liposomes. Fish. Sci. 64:282–286.
  • Negroni, M., D'Agostina, A. and Arnoldi, A. (2001). Effects of olive, canola, and sunflower oils on the formation of volatiles from the Maillard reaction of lysine with xylose and glucose. J. Agric. Food Chem. 41:227–230.
  • Peng, J. L., Larondelle, Y., Pham, D., Ackman, R. G. and Rollin, X. (2003). Polyunsaturated fatty acid profiles of whole body phospholipids and triacylglycerols in anadromous and landlocked Atlantic salmon (Salmo salar L.) fry. Comp. Biochem. Phys. B. 134:335–348.
  • Pietrowski, B. N., Tahergorabi, R., Matak, K. E., Tou, J. C. and Jaczynski, J. (2011). Chemical properties of surimi seafood nutrified with ω-3 rich oils. Food Chem. 129:912–919.
  • Pokorny, J. and Sakurai, H. (2002). Role of oxidized lipids in nonenzymatic browning reactions. Int. Congr. Ser. 1245:373–374.
  • Reische, D. W., Lillard, D. A. and Eitenmiller, R. R. (2008). Antioxidants. In: Food lipids: Chemistry, Nutrition and Biotechnology. pp. 409–434. Akoh, C. C. and Min, D. B., Eds., CRC Press, Boca Raton, FL.
  • Rizzi, G. P. (2008). The Strecker degradation of amino acids: Newer avenues flavor formation. Food Rev. Int. 24:416–435.
  • Sedoski, H. D., Beamer, S. K., Jaczynski, J., Partington, S. and Matak, K. E. (2012). Sensory evaluation and quality indicators of nutritionally enhanced egg products with ω-3 rich oils. LWT- Food Sci. Technol. 47:459–464.
  • Shibamoto, T., Akiyama, T., Sakaguchi, M., Enomoto, Y. and Masuda, H. (1979). A study of pyrazine formation. J. Agric. Food Chem. 27:1027–1031.
  • Sørensen, A. D. M., Nielsen, N. S., Hyldig, G. and Jacobsen, C. (2010a). The influence of emulsifier type on lipid oxidation in fish oil enriched light mayonnaise. Eur. Food Res. Technol. 112:476–487.
  • Sørensen, A. D. M., Nielsen, N. S. and Jacobsen, C. (2010b). Oxidative stability of fish oil enriched mayonnaise based salads. Eur. Food Res. Technol. 112:476–487.
  • Tadolini, B. and Hakim, G. (1996). The mechanism of iron (III) stimulation of lipid peroxidation. Free Radical Res. 25:221–227.
  • Thanonkaew, A., Benjakul, S., and Visessanguan, W. (2006a). Chemical composition and thermal property of cuttlefish (Sepia pharaonis) muscle. J. Food Compos. Anal. 19:127–133.
  • Thanonkaew, A., Benjakul, S., Visessanguan, W. and Decker, E. A. (2005). Lipid oxidation in microsomal fraction of squid muscle (Loligo peali). J. Food Sci. 70:478–482.
  • Thanonkaew, A., Benjakul, S., Visessanguan, W. and Decker, E. A. (2006b). Development of yellow pigmentation in squid (Loligo peali) as a result of lipid oxidation. J. Agric. Food Chem. 54:956–962.
  • Thanonkaew, A., Benjakul, S., Visessanguan, W. and Decker, E. A. (2007). Yellow discoloration of the liposome system of cuttlefish (Sepia pharaonis) as influenced by lipid oxidation. Food Chem. 102:219–224.
  • Thomsen, B. R., Haugsgjerd, B. O., Griinari, M., Lu, H. F. S., Bruheim, I., Vogt, G., Oterhals, A. and Jacobsen, C. (2013). Investigation of oxidative degradation and non-enzymatic browning reactions in krill and fish oils. Eur. J. Lipid Sci. Technol. 115:1357–1366.
  • Tilseth, S. and Hostmark, O. (2009). Method for making krill meal. US Patent US20090061067 A1.
  • Tompkins, C. and Perkins, E. G. (2000). Frying performance of low linolenic acid soybean oil. J. Am. Oil Chem. Soc. 77:223–229.
  • Uematsu, T., Parkanyiova, L., Endo, T., Matsuyama, C., Yano, T., Mitsuyoshi, M., Sakurai, H. and Pokorny, J. (2002). Effect of the unsaturation degree on browning reactions of peanut oil and other edible oils with proteins under storage and frying conditions. Int. Congr. Ser. 1245:445–446.
  • Varlet, V. and Fernandez, X. (2010). Review: Sulfur containing volatile compounds in seafood: Occurrence, odorant properties and mechanisms of formation. Food Sci. Technol. Int. 16:463–503.
  • Venkateshwarlu, G., Let, M. B., Meyer, A. S. and Jacobsen, C. (2004). Chemical and olfactometric characterization of volatile flavour compounds in a fish oil enriched milk emulsion. J. Agric. Food Chem. 52:311–317.
  • Ventanas, S., Estevez, M. and Delgado, C. L. (2007). Phospholipid oxidation, non-enzymatic browning development and volatile compounds generation in model systems containing liposomes from porcine Longissimus dorsi and selected amino acids. Eur. Food Res. Technol. 225:665–675.
  • Waraho, T., McClement, D. J. and Decker, E. A. (2011). Mechanisms of lipid oxidation in food dispersions. Trends Food Sci. Tech. 22:3–13.
  • Weng, X. C. and Gordon, M. H. (1993). Antioxidant synergy between phosphatidyl ethanolamine and alpha-tocopherylquinone. Food Chem. 48:165–168.
  • Wijendran, V., Huang, M. C., Diau, G. Y., Boehm, G., Nathanielsz, P. W. and Brenna, J. T. (2002). Efficacy of dietary arachidonic acid provided as triglyceride or phospholipid as substrates for brain arachidonic acid accretion in baboon neonates. Pediatr. Res. 51:265–272.
  • Yu, H. Z. and Chen, S. S. (2010). Identification of characteristic aroma-active compounds in steamed mangrove crab (Scylla serrata). Food Res. Int. 43:2081–2086.
  • Zamora, R., Alaiz, M. and Hidalgo, F. J. (2000). Contribution of pyrrole formation and polymerization to the nonenzymatic browning produced by amino-carbonyl reactions. J. Agric. Food Chem. 48:3152–3158.
  • Zamora, R., Gallardo, E. and Hidalgo, F. J. (2007). Strecker degradation of phenylalanine initiated by 2, 4-decadienal or methyl 13-oxooctadeca-9, 11-dienoate in model systems. J. Agric. Food Chem. 55:1308–1314.
  • Zamora, R. and Hidalgo, F. J. (1994). Modification of lysine amino groups by the lipid peroxidation product 4, 5(E)-epoxy-2(E)-heptenal. Lipids 29:243–249.
  • Zamora, R. and Hidalgo, F. J. (1995). Linoleic acid oxidation in the presence of amino compounds produces pyrroles by carbonyl amine reactions. Biochim. Biophys. Acta. 1258:319–327.
  • Zamora, R. and Hidalgo, F. J. (2005). Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Crit. Rev. Food Sci. Nutr. 45:49–59.
  • Zamora, R. and Hidalgo, F. J. (2011). The Maillard reaction and lipid oxidation. Lipid Technol. 23:59–62.
  • Zamora, R., Nogales, F. and Hidalgo, F. J. (2005). Phospholipid oxidation and nonenzymatic browning development in phosphatidylethanolamine/ribose/lysine model systems. Eur. Food Res. Technol. 220:459–465.
  • Zamora, R., Olmo, C., Navarro, J. L. and Hidalgo, F. J. (2004). Contribution of phospholipid pyrrolization to the color reversion produced during deodorization of poorly degummed vegetable oils. J. Agric. Food Chem. 52:4166–4171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.