1,014
Views
15
CrossRef citations to date
0
Altmetric
Articles

Methodologies for producing amylose: A review

, , &

References

  • AAF. (2013). “The European starch market in figures.” Retrieved April 28, 2014, from http://www.aaf-eu.org/european-starch-industry/.
  • Adkins, G. K. and Greenwood, C. T. (1966). Studies on starches of high amylose-content. Part VI. Observations on the stability of aqueous dispersions of waxy maize, maize, and amylomaize starches; and the self-fractionation of amylomaize. Starch – Stärke. 18(8):240–243.
  • Adkins, G. K. and Greenwood, C. T. (1969). Studies on starches of high amylose-content: Part X. An improved method for the fractionation of maize and amylomaize starches by complex formation from aqueous dispersion after pretreatment with methyl sulphoxide. Carbohydrate Res. 11:217–224.
  • Andersson, L., Rydberg, U., Larsson, H., Andersson, R. and Aman, P. (2002). Preparation and characterisation of linear dextrins and their use as substrates in in vitro studies of starch branching enzymes. Carbohydrate Polym. 47:53–58.
  • Atichokudomchai, N., Jane, J.-L. and Hazlewood, G. (2006). Reaction pattern of a novel thermostable α-amylase. Carbohydrate Polym. 64(4):582–588.
  • Bala-Piasek, A. and Tomasik, P. (1999). Air oxidation of potato starch over vanadium (V) catalyst. Carbohydrate Polym. 38(1):41–45.
  • Banks, W. and Greenwood, C. T. (1967). The fractionation of laboratory-isolated cereal starches using dimethyl sulphoxide. Starch - Stärke. 19(12):394–398.
  • Biliaderis, C. G., Page, C. M. and Maurice, T. J. (1986). Nonequilibrium melting of amylose-V complexes. Carbohydrate Polym. 6:269–288.
  • Bird, A. R., Conlon, M. A., Christophersen, C. T. and Topping, D. L. (2010). Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Beneficial Microbes. 1(4):423–431.
  • Bird, A. R., Vuaran, M., Crittenden, R., Hayakawa, T., Playne, M. J., Brown, I. L. and Topping, D. L. (2009). Comparative effects of a high-amylose starch and a fructooligosaccharide on fecal bifidobacteria numbers and short-chain fatty acids in pigs fed. Bifidobacterium Animalis Dig. Dis. Sci. 54(5):947–954.
  • Buléon, A., Colonna, P., Planchot, V. and Ball, S. (1998). Starch granules: Structure and biosynthesis. Int. J. Biol. Macromol. 23:85–112.
  • Buléon, A., Delage, M. M., Brisson, J. and Chanzy, H. (1990). Single crystals of V amylose complexed with isopropanol and acetone. Int. J. Biol. Macromol. 12(1):25–33.
  • Cairns, P., Ya, T., Bogracheva, T. Y., Ring, S. G., Hedley, C. L. and Morris, V. J. (1997). Determination of the polymorphic composition of smooth pea starch. Carbohydrate Polym. 32:275–282.
  • Charoenkul, N., Uttapap, D., Pathipanawat, W. and Takeda, Y. (2006). Simultaneous determination of amylose content & unit chain distribution of amylopectins of cassava starches by fluorescent labeling/HPSEC. Carbohydrate Polym. 65(1):102–108.
  • Chung, H.-J., Liu, Q. and Hoover, R. (2009). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polym. 75(3):436–447.
  • Conde-Petit, B., Nuessli, J., Handschin, S. and Escher, F. (1998). Comparative characterisation of aqueous starch dispersions by light microscopy, rheometry and iodine binding behaviour. Starch - Stärke. 50(5):184–192.
  • Copeland, L., Blazek, J., Salman, H. and Tang, M. C. (2009). Form and functionality of starch. Food Hydrocolloids. 23(6):1527–1534.
  • Corcuera, V., Salmoral, E. M., Salerno, J. C. and Krisman, C. R. (2007). Starch molecular fractionation of bread wheat varieties. Agriscientia. 24(1):11–18.
  • Cori, G. T. and Cori, C. F. (1940). The kinetics of the enzymatic synthesis of glycogen from glucose-1-phosphate. J. Biol. Chem. 135:733–756.
  • Curá, J. A., Jansson, P. and Krisman, C. R. (1995). Amylose is not strictly linear. Starch - Stärke. 47(6):207–209.
  • Curá, J. A. and Krisman, C. R. (1990). Cereal grains: A study of their (α1,4)-(α1,6) glucopolysaccharides composition. Starch - Stärke. 42:171–175.
  • Delcour, J. A., Bruneel, C., Derde, L. J., Gomand, S. V., Pareyt, B., Putseys, J. A., Wilderjans, E. and Lamberts, L. (2010). Fate of starch in food processing: From raw materials to final food products. Annu. Rev. Food Sci. Technol. 1:87–111.
  • Delcour, J. A. and Hoseney, R. C. (2010). Starch. In: Principles of Cereal Science and Technology, pp. 23–52. Delcour, J. A. and Hoseney, R. C, Eds., AACC International Press, St. Paul, Minnesota.
  • Doublier, J. L. (1981). Rheological studies on starch — Flow behaviour of wheat starch pastes. Starch – Stärke. 33(12):415–420.
  • Doublier, J. L., Coté, I., Llamas, G. and Charlet, G. (1992). Effect of thermal history on amylose gelation. Prog. Colloid Polym. Sci. 90:61–65.
  • Doutch, J., Bason, M., Franceschini, F., James, K., Clowes, D. and Gilbert, E. P. (2012). Structural changes during starch pasting using simultaneous rapid visco analysis and small-angle neutron scattering. Carbohydrate Polym. 88(3):1061–1071.
  • Eerlingen, R. C., Deceuninck, M. and Delcour, J. A. (1993). Enzyme-resistant starch. II. Influence of amylose chain length on resistant starch formation. Cereal Chem. 70(3):345–350.
  • Eerlingen, R. C. and Delcour, J. A. (1995). Formation, analysis, structure and properties of type III enzyme resistant starch. J. Cereal Sci. 22:129–138.
  • Fishman, M. L., Cooke, P., White, B. and Damert, W. (1995). Size distributions of amylose and amylopectin solubilized from corn starch granules. Carbohydrate Polym. 26:245–253.
  • Fuentes-Zaragoza, E., Riquelme-Navarrete, M. J., Sánchez-Zapata, E. and Pérez-Álvarez, J. A. (2010). Resistant starch as functional ingredient: A review. Food Res. Int. 43(4):931–942.
  • Fujii, K., Takata, H., Yanase, M., Terada, Y., Ohdan, K., Takaha, T., Okada, S. and Kuriki, T. (2003). Bioengineering and application of novel glucose polymers. Biocatal. Biotransform. 21(4-5):167–172.
  • Gelders, G. G., Goesaert, H. and Delcour, J. A. (2005). Potato phosphorylase catalyzed synthesis of amylose-lipid complexes. Biomacromolecules. 6:2622–2629.
  • Gelders, G. G., Vanderstukken, T. C., Goesaert, H. and Delcour, J. A. (2004). Amylose–lipid complexation: A new fractionation method. Carbohydrate Polym. 56(4):447–458.
  • Gernat, C., Radosta, S., Anger, H. and Damaschun, G. (1993). Crystalline parts of three different conformations detected in native and enzymatically degraded starches. Starch – Stärke. 45(9):309–314.
  • Gernat, C., Radosta, S., Damaschun, G. and Schierbaum, F. (1990). Supramolecular structure of legume starches revealed by X-Ray scattering. Starch – Stärke. 42:175–178.
  • Gessler, K., Uson, I., Takaha, T., Krauss, N., Smith, S. M., Okada, S., Sheldrick, G. M. and Saenger, W. (1999). V-amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc. Nat. Acad. Sci. U. S. A. 96(8):4246–4251.
  • Ghiasi, K., Hoseney, R. C. and Varriano-Marston, E. (1982). Gelatinization of wheat starch. I. Excess-water systems. Cereal Chem. 59(2):81–85.
  • Gibson, T. R., Solah, V. A. and McCleary, B. V. (1997). A procedure to measure amylose in cereal starches and flours with concanavalin A. J. Cereal Sci. 25:111–119.
  • Gidley, M. J. and Bulpin, P. V. (1987). Crystallization of maltooligosaccharides as models of the crystalline forms of starch: Minimum chain-length requirement for the formation of double helices. Carbohydrate Res. 161:291–300.
  • Gilbert, G. A. (1958). A survey of the action of air on aqueous solutions of starch. Starch – Stärke. 10(5):95–99.
  • Goesaert, H., Brijs, K., Veraverbeke, W. S., Courtin, C. M., Gebruers, K. and Delcour, J. A. (2005). Wheat flour constituents: How they impact bread quality, and how to impact their functionality. Trends Food Sci. Technol. 16(1-3):12–30.
  • Gomand, S. V., Lamberts, L., Derde, L. J., Goesaert, H., Vandeputte, G. E., Goderis, B., Visser, R. G. F. and Delcour, J. A. (2010). Structural properties and gelatinisation characteristics of potato and cassava starches and mutants thereof. Food Hydrocolloids. 24(4):307–317.
  • Gomand, S. V., Lamberts, L., Gommes, C. J., Visser, R. G. F., Delcour, J. A. and Goderis, B. (2012). Molecular and morphological aspects of annealing-induced stabilization of starch crystallites. Biomacromolecules. 13(5):1361–1370.
  • Grant, L. A., Ostenson, A. M. and Rayas-Duarte, P. (2002). Determination of amylose and amylopectin of wheat starch using high performance size-exclusion chromatography (HPSEC). Cereal Chem. 79(6):771–773.
  • Han, J.-A. and Lim, S.-T. (2004). Structural changes of corn starches by heating and stirring in DMSO measured by SEC-MALLS-RI system. Carbohydrate Polym. 55(3):265–272.
  • Helbert, W. and Chanzy, H. (1994). Single crystals of V amylose complexed with n-butanol or n-pentanol: Structural features and properties. Int. J. Biol. Macromol. 16(4):207–213.
  • Helbert, W., Chanzy, H., Planchot, V., Buléon, A. and Colonna, P. (1993). Morphological and structural features of amylose spherocrystals of A-type. Int. J. Biol. Macromol. 15(3):183–187.
  • Hermansson, A. and Svegmark, K. (1996). Developments in the understanding of starch functionality. Trends Food Sci Technol. 7(11):345–353.
  • Hirst, S. E., Manners, D. J. and Pennie, I. R. (1972). A-(1 +4)-D-Glucans. Part XXI. The molecular structure of starch-type polysaccharides from Haematococcus pluvialis and Tetraselmis carteriiformis. Carbohydrate Res. 22:5–11.
  • Hizukuri, S., Takeda, Y., Yasuda, M. and Suzuki, A. (1981). Multi-branched nature of amylose and the action of de-branching enzymes. Carbohydrate Res. 94:205–213.
  • Hsien-Chih, H. W. and Sarko, A. (1978a). The double-helical molecular structure of crystalline A-amylose. Carbohydrate Res. 61:27–40.
  • Hsien-Chih, H. W. and Sarko, A. (1978b). The double-helical molecular structure of crystalline B-amylose. Carbohydrate Res. 61:7–25.
  • Hu, X., Wei, B., Zhang, B., Li, H., Xu, X., Jin, Z. and Tian, Y. (2013). Interaction between amylose and 1-butanol during 1-butanol-hydrochloric acid hydrolysis of normal rice starch. Int. J. Biol. Macromol. 61:329–332.
  • Imberty, A., Buléon, A., Tran, V. and Pérez, S. (1991). Recent advances in knowledge of starch structure. Starch – Stärke. 43(10):375–384.
  • Imberty, A., Chanzy, H., Pérez, S., Buléon, A. and Tran, V. (1988). The double-helical nature of the crystalline part of A-starch. J. Mol. Biol. 201(2):365–378.
  • Imberty, A. and Perez, S. (1988). A revisit to the three-dimensional structure of B-type starch. Biopolymers. 27(8):1205–1221.
  • Jacobs, H. and Delcour, J. A. (1998). Hydrothermal modifications of granular starch, with retention of the granular structure: A review. J. Agric. Food Chem. 46(8):2895–2905.
  • Jacobs, H., Eerlingen, R. C., Clauwaert, W. and Delcour, J. A. (1995). Influence of annealing on the pasting properties of starches from varying botanical sources. Cereal Chem. 72(5):480–487.
  • Jane, J. (2009). Structural features of starch granules II. In: Starch Chemistry and Technology. J. BeMiller and Whistler, R., Eds., Oxford Academic Press, Oxford, UK.
  • Jane, J. and Robyt, J. F. (1984). Structure studies of amylose-V complexes and retrograded amylose by action of α-amylases, and a new method for preparing amylodextrins. Carbohydrate Res. 132:105–118.
  • Jane, J., Xu, A., Rodosovljivic, M. and Seib, P. A. (1992). Location of amylose in normal starch granules. I. Susceptibility of amylose and amylopectin to cross-linking reagents. Cereal Chem. 69:405–409.
  • Jéquier, E. (1994). Carbohydrates as a source of energy. Am. J. Clin. Nutr. 59:682S–685S.
  • Jouquand, C., Ducruet, V. and Le Bail, P. (2006). Formation of amylose complexes with C6-aroma compounds in starch dispersions and its impact on retention. Food Chem. 96(3):461–470.
  • Kadokawa, J.-I. and Kobayashi, S. (2010). Polymer synthesis by enzymatic catalysis. Curr. Opin. Chem. Biol. 14(2):145–153.
  • Kadokawa, J.-I., Nakaya, A., Kaneko, Y. and Tagaya, H. (2003). Preparation of inclusion complexes between amylose and ester-containing polymers by means of vine- twining polymerization. Macromol. Chem. Phys. 204(11):1451–1457.
  • Kalichevsky, M. T. and Ring, S. G. (1987). Incompatibility of amylose and amylopectin in aqueous solution. Carbohydrate Res. 162:323–328.
  • Kaneko, Y. and Kadokawa, J.-I. (2005). Vine-twining polymerization: A new preparation method for well-defined supramolecules composed of amylose and synthetic polymers. Chem Record. 5:36–46.
  • Kasemsuwan, T. and Jane, J. (1994). Location of amylose in normal starch granules. II. Locations of phosphodiester cross-linking revealed by phosphorus-31 nuclear magnetic resonance. Cereal Chem. 71:282–287.
  • Kawada, J. and Marchessault, R. H. (2004). Solid state NMR and X-ray studies on amylose complexes with small organic molecules. Starch - Stärke. 56(1):13–19.
  • Keenan, M. J., Janes, M., Robert, J., Martin, R. J., Raggio, A. M., McCutcheon, K. L., Pelkman, C., Tulley, R., Goita, M., Durham, H. A., Zhou, J. and Senevirathne, R. N. (2013). Resistant starch from high amylose maize (HAM-RS2) reduces body fat and increases gut bacteria in ovariectomized (OVX) rats. Obesity. 21(5):981–984.
  • Killion, P. J. and Foster, J. F. (1960). Isolation of high molecular weight amylose by dimethylsulfoxide dispersion. J. Polym. Sci. 46(147):65–73.
  • Kim, J.-Y., Yoon, J.-W. and Lim, S.-T. (2009). Formation and isolation of nanocrystal complexes between dextrins and n-butanol. Carbohydrate Polym. 78(3):626–632.
  • Klucinec, J. D. and Thompson, D. B. (1998). Fractionation of high-amylose maize starches by differential alcohol precipitation and chromatography of the fractions. Cereal Chem. 75(6):887–896.
  • Kuakpetoon, D. and Wang, Y. (2001). Characterization of different starches oxidized by hypochlorite. Starch - Stärke. 53:211–218.
  • Le Bail, P., Rondeau, C. and Buléon, A. (2005). Structural investigation of amylose complexes with small ligands: Helical conformation, crystalline structure and thermostability. Int J Biol Macromol. 35(1-2):1–7.
  • León, A., Durán, E. and Benedito de Barber, C. (1997). Firming of starch gels and amylopectin retrogradation as related to dextrin production by α-amylase. Eur. Food Res. Technol. 205:131–134.
  • Liu, Z. and Han, J. H. (2006). Film-forming characteristics of starches. J Food Sci. 70(1):E31–E36.
  • Lourdin, D., Valle, G. D. and Colonna, P. (1995). Influence of amylose content on starch films and foams. Carbohydrate Polym. 27:261–270.
  • Ma, U. V. L., Floros, J. D. and Ziegler, G. R. (2011). Effect of starch fractions on spherulite formation and microstructure. Carbohydrate Polym. 83(4):1757–1765.
  • Majzoobi, M., Rowe, A. J., Connock, M., Hill, S. E. and Harding, S. E. (2003). Partial fractionation of wheat starch amylose and amylopectin using zonal ultracentrifugation. Carbohydrate Polym. 52:269–274.
  • Martinez, I., Kim, J., Duffy, P. R., Schlegel, V. L. and Walter, J. (2010). Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PloS One. 5(11):e15046.
  • Matheson, N. K. and Welsh, L. A. (1988). Estimation and fractionation of the essentially un-branched (amylose) and branched (amylopectin) component of starches with concanavalin A. Carbohydrate Res. 180:301–313.
  • Miles, M. J., Morris, V. J., Orford, P. D. and Ring, S. G. (1985). The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate Res. 135:271–281.
  • Millard, M. M., Dintzis, F. R., Willet, J. L. and Klavons, J. A. (1997). Light scattering molecular weights and intrinsic viscosities of processed waxy maize starches in 90% dimethyl sulfoxide and H2O. Cereal Chem. 74:687–691.
  • Milojevic, S., Newton, J. M., Cummings, J. H., Gibson, G. R., Bothman, R. L., Ring, S. G., Allwood, M. C. and Stockham, M. (1995). Amylose, the new perspective in oral drug delivery to the human large intestine. S. T. P. Pharma Sci. 5(1):47–53.
  • Montesanti, N., Véronèse, G., Buléon, A., Escaller, P. C., Kitamura, S. and Putaux, J. L. (2010). A-Type crystals from dilute solutions of short amylose chains. Biomacromolecules. 11:3049–3058.
  • Morishita, H., Kitagawa, M., Sunako, M., Takahara, J., Takaha, T. and Yamane, H. (2005). Rheological properties of enzymatically synthesized amylose concentrated solutions. J. Soc. Rheol. Japan. 33(4):167–172.
  • Morishita, H., Yamane, H., Takaha, T., Sunako, M. and Takahara, J. (2005). Fiber formation of the enzymatically synthesized amylose. Fiber. 61(10):261–266.
  • Mua, J. P. and Jackson, D. S. (1997a). Fine structure of corn amylose and amylopectin fractions with various molecular weights. J. Agric. Food Chem. 45(10):3840–3847.
  • Mua, J. P. and Jackson, D. S. (1997b). Relationships between functional attributes and molecular structures of amylose and amylopectin fractions from corn starch. J. Agric. Food Chem. 45(10):3848–3854.
  • Mukerjea, R. and Robyt, J. F. (2010). Isolation, structure, and characterization of the putative soluble amyloses from potato, wheat, and rice starches. Carbohydrate Res. 345(3):449–451.
  • Naguleswaran, S., Vasanthan, T., Hoover, R. and Bressler, D. (2014). Amylolysis of amylopectin and amylose isolated from wheat, triticale, corn and barley starches. Food Hydrocolloids. 35:686–693.
  • Niemann, C., Saenger, W. and Pfannemüller, B. (1992). Enzymatic synthesis of low molecular weight amyloses with modified terminal groups. Carbohydrate Res. 226:119–130.
  • Nimz, O., Gessler, K., Uson, I., Sheldrick, G. M. and Saenger, W. (2004). Inclusion complexes of V-amylose with undecanoic acid and dodecanol at atomic resolution: X-ray structures with cycloamylose containing 26 d-glucoses (cyclohexaicosaose) as host. Carbohydrate Res. 339(8):1427–1437.
  • Nuessli, J., Putaux, J. L., Bail, P. L. and Buléon, A. (2003). Crystal structure of amylose complexes with small ligands. Int. J. Biol. Macromol. 33(4-5):227–234.
  • Numata, M. and Shinkai, S. (2011). ‘Supramolecular wrapping chemistry’ by helix-forming polysaccharides: A powerful strategy for generating diverse polymeric nano-architectures. Chem. Commun. 47(7):1961.
  • Ong, M. H., Jumel, K., Tokarczuk, P. F., Blanshard, J. M. V. and Harding, S. E. (1994). Simultaneous determinations of the molecular weight distributions of amylsoes and the fine structures of amylopectines of native starches. Carbohydrate Res. 260:99–117.
  • Pareyt, B., Finnie, S. M., Putseys, J. A. and Delcour, J. A. (2011). Lipids in bread making: Sources, interactions, and impact on bread quality. J. Cereal Sci. 54:266–279.
  • Pfannemüller, B. (1987). Influence of chain length of short monodisperse amyloses on the formation of A- and B-type X-ray diffraction patterns. Int. J. Biol. Macromol. 9:105–108.
  • Popov, D., Buléon, A., Burghammer, M., Chanzy, H., Montesanti, N., Putaux, J. L., Potocki-Véronese, G. and Riekel, C. (2009). Crystal structure of A-amylose: A revisit from Synchrotron microdiffraction analysis of single crystals. Macromolecules. 42:1167–1174.
  • Praznik, W. and Ebermann, R. (1979). Die verwendung synthetischer amylosen als bezugssubstanzen bei der gelchromato-graphischen molekulargewichtsbestimmung von stärken. Starch – Stärke. 31(9):288–293.
  • Putseys, J. A., Derde, L. J., Lamberts, L., Goesaert, H. and Delcour, J. A. (2009). Production of tailor made short chain amylose–lipid complexes using varying reaction conditions. Carbohydrate Polym. 78:854–861.
  • Putseys, J. A., Derde, L. J., Lamberts, L., Ostman, E., Bjorck, I. M. and Delcour, J. A. (2010a). Functionality of short chain amylose-lipid complexes in starch-water systems and their impact on in vitro starch degradation. J. Agric. Food Chem. 58:1939–1945.
  • Putseys, J. A., Gommes, C. J., Van Puyvelde, P., Delcour, J. A. and Goderis, B. (2011). In situ SAXS under shear unveils the gelation of aqueous starch suspensions and the impact of added amylose–lipid complexes. Carbohydrate Polym. 84(3):1141–1150.
  • Putseys, J. A., Lamberts, L. and Delcour, J. A. (2010b). Amylose-inclusion complexes: Formation, identity and physico-chemical properties. J. Cereal Sci. 51(3):238–247.
  • Radosta, S., Kettlitz, B., Schierbaum, F. and Gernat, C. (1992). Studies on rye starch properties and modification. Part II. Swelling and solubility behavior of rye starch granules. Starch – Stärke. 44:8–14.
  • Rappenecker, G. and Zugenmaier, P. (1981). Detailed refinement of the crystal structure of Vh-amylose. Carbohydrate Res. 89(1):11–19.
  • Ratnayake, W. S. and Jackson, D. S. (2008). Starch gelatinization. Adv. Food Nut. Res. 55:221–268.
  • Rodríguez, P. and González de la Cruz, G. (2003). Photoacoustic measurements of thermal diffusivity of amylose, amylopectin and starch. J Food Eng. 58(3):205–209.
  • Roger, P., Axelos, M. A. V. and Colonna, P. (2000). SEC-MALLS and SANS studies applied to solutionbehavior of linear α-glucans. Macromolecules. 33:2446–2455.
  • Roger, P. and Colonna, P. (1996). Molecular weight distribution of amylose fractions obtained by aqueous leaching of corn starch. Int. J Biol. Macromol. 19:51–61.
  • Roger, P., Tran, V., Lesec, J. and Colonna, P. (1996). Isolation and characterisation of single chain amylose. J. Cereal Sci. 24:247–262.
  • Rondeau-Mouro, C., Bail, P. L. and Buléon, A. (2004). Structural investigation of amylose complexes with small ligands: Inter- or intra-helical associations? Int. J. Biol. Macromol. 34(5):251–257.
  • Russo, M. A. L., Strounina, E., Waret, M., Nicholson, T., Truss, R. and Halley, P. J. (2007). A study of water diffusion into a high-amylose starch blend: The effect of moisture content and temperature. Biomacromolecules. 8:296–301.
  • Saibene, D. and Seetharaman, K. (2010). Amylose involvement in the amylopectin clusters of potato starch granules. Carbohydrate Polym. 82(2):376–383.
  • Sakonidou, E. P., Karapantsios, T. D. and Raphaelides, S. N. (2003). Mass transfer limitations during starch gelatinization. Carbohydrate Polym. 53:53–61.
  • Sarko, A. and Wu, H.-C. H. (1978). The crystal structures of A-, B- and C- polymorphs of amylose and starch. Starch - Stärke. 30(3):73–78.
  • Schoch, T. J. (1942). Fractionation of starch by selective precipitation with butanol. J. Am. Chem. Soc. 64(12):2957–2961.
  • Schwartz, D. and Whistler, R. L. (2009). History and future of starch. In: Starch: Chemistry and Technology, pp. 1–10. BeMiller, J. and Whistler, R., Eds., Academic Press: Oxford, UK.
  • Shi, Y. C., Seib, P. A. and Lu, S. P. (1991). Leaching of amylose from wheat and corn starch. Adv. Exp. Med. Biol. 302:667–686.
  • Shogren, R. (2007). Effect of orientation on the physical properties of potato amylose and high-amylose corn starch films. Biomacromolecules. 8:3641–3645.
  • Shogren, R., Fanta, G. F. and Felker, F. C. (2006). X-ray diffraction study of crystal transformations in spherulitic amylose/lipid complexes from jet-cooked starch. Carbohydrate Polym. 64:444–451.
  • Singh, J., Dartois, A. and Kaur, L. (2010a). Starch digestibility in food matrix: A review. Trends Food Sci. Technol. 21(4):168–180.
  • Singh, J., Lelane, C., Stewart, R. B. and Singh, H. (2010b). Formation of starch spherulites: Role of amylose content and thermal events. Food Chem. 121(4):980–989.
  • Singh, N., Singh, J., Kaur, L., Singh Sodhi, N. and Singh Gill, B. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 81(2):219–231.
  • Stepanenko, B. N. and Avakian, E. V. (1973). Fractionation of starch into amylose and amylopectin using octalone. Prikl Biokhim Mikrobiol. 9(4):608–613.
  • Sumner, J. B., Gralén, N. and Eriksson-Quensel, I. (1938). The molecular weights of canavalin, concanavalin A, and concanavalin B. J. Biol. Chem. 125:45–48.
  • Takeda, Y., Hizukuri, S. and Juliano, B. O. (1986). Purification and structure of amylose from rice starch. Carbohydrate Res. 148:299–308.
  • Takeda, Y., Hizukuri, S., Takeda, C. and Suzuki, A. (1987). Structures of branched molecules of amyloses of various origins, and molar fractions of branched and unbranched molecules. Carbohydrate Res. 165:139–145.
  • Takeda, Y., Maruta, N. and Hizukuri, S. (1992). Structures of amylose subfractions with different molecular sizes. Carbohydrate Res. 226(2):279–285.
  • Takeda, Y., Shitaozono, T. and Hizukuri, S. (1990). Structures of sub-fractions of corn amylose. Carbohydrate Res. 199(2):207–214.
  • Takeda, Y. and Susumu, H. (1987). Structures of rice amylopectins with low and high affinities for iodine. Carbohydrate Res. 168:79–88.
  • Tester, R. F. and Debon, S. J. J. (2000). Annealing of starch - a review. Int. J. Biol. Macromol. 27:1–12.
  • Tester, R. F., Karkalas, J. and Qi, X. (2004). Starch—composition, fine structure and architecture. J. Cereal Sci. 39(2):151–165.
  • Tester, R. F. and Morrison, W. R. (1990). Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 67(6):551–557.
  • Topping, D. L., Fukushima, M. and Bird, A. R. (2003). Resistant starch as a prebiotic and synbiotic: State of the art. Proc. Nutr. Soc. 62:171–176.
  • van de Velde, F., van Riel, J. and Tromp, R. H. (2002). Visualisation of starch granule morphologies using confocal scanning laser microscopy (CSLM). J. Sci. Food Agric. 82(13):1528–1536.
  • Vermeylen, R., Derycke, V., Delcour, J. A., Goderis, B., Reynaers, H. and Koch, M. H. J. (2006). Gelatinization of starch in excess water beyond the melting of lamellar crystallites. A combined wide- and small-angle X-ray scattering study. Biomacromolecules. 7:2624–2630.
  • Vorwerg, W., Radosta, S. and Leibnitz, E. (2002). Study of a preparative-scale process for the production of amylose. Carbohydrate Polym. 47:181–189.
  • Waigh, T. A., Gidley, M. J., Komanshek, B. U. and Donald, A. M. (2000). The phase transformations in starch during gelatinisation: A liquid crystalline approach. Carbohydrate Res. 328:165–176.
  • Waldmann, H., Gygax, D., Bednarski, M. D., Shangraw, W. R. and Whitesides, G. M. (1986). The enzymic utilization of sucrose in the synthesis of amylose and derivatives of amylose, using phosphorylases. Carbohydrate Res. 157:c4–c7.
  • Wang, T. L., Bogracheva, T. Y. and Hedley, C. L. (1998). Starch: As simple as A, B, C? J. Exp. Botany. 49(320):481–502.
  • Wang, W. T. and Zopf, D. (1989). Liquid ion-exchange chromatography under pressure of milk oligosaccharides using a pulsed amperometric detector. Carbohydrate Res. 189:1–11.
  • Waterschoot, J., Gomand, S. V., Fierens, E. and Delcour, J. A. (2015). Starch blends and their physicochemical properties. Starch - Stärke. 67(1-2):1–13.
  • Welland, E. L. and Donald, A. M. (1991). Single crystals of V amylose. Int. J. Biol. Macromol. 13:69–72.
  • Whittam, M. A., Noel, T. R. and Ring, S. G. (1990). Melting behavior of A- and B-type crystalline starch. Int. J. Biol. Macromol. 12:359–362.
  • Whittam, M. A., Orford, P. D., Ring, S. G., Clark, S. A., Parker, M. L., Cairns, P. and Miles, M. J. (1989). Aqueous dissolution of crystalline and amorphous amylose alcohol complexes. Int. J. Biol. Macromol. 11:339–344.
  • Williamson, G., Belshaw, N. J., Self, D. J., Noel, T. R., Ring, S. G., Cairns, P., Morris, V. J., Clark, A. and Parker, M. L. (1992). Hydrolisis of A- and B-type crystalline polymorhs of starch by α-amylase, β-amylase and glucoamylase 1. Carbohydrate Polym. 18:179–187.
  • Wulff, G., Avgenaki, G. and Guzmann, M. S. P. (2005). Molecular encapsulation of flavours as helical inclusion complexes of amylose. J. Cereal Sci. 41:239–249.
  • Wulff, G. and Kubik, S. (1992). Helical amylose complexes with organic complexands, 1. Microcalorimetric and circular dichroitic investigations. Macromol. Chem. Phys. 193(5):1071–1080.
  • You, S. G. and Lim, S. T. (2000). Molecular characterization of corn starch using an aqueous HPSEC-MALLS-RI system under various dissolution and analytical conditions. Cereal Chem. 77(3):303–308.
  • Yun, S. and Matheson, N. K. (1990). Estimation of amylose content of starches after precipitation of amylopectin by concanavalin-A. Starch - Stärke 42(8):302–305.
  • Zavareze, E. d. R. and Dias, A. R. G. (2011). Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polym. 83(2):317–328.
  • Zobel, H. F., French, A. D. and Hinkle, M. E. (1967). X-Ray diffraction of oriented amylose fibers. II. Structure of V amyloses. Biopolymers. 5(9):837–845.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.