1,646
Views
59
CrossRef citations to date
0
Altmetric
Articles

Applications of emerging imaging techniques for meat quality and safety detection and evaluation: A review

, , , &

References

  • Adedeji, A. A., Liu, L. and Ngadi, M. O. (2011). Microstructural evaluation of deep-fat fried chicken nugget batter coating using confocal laser scanning microscopy. J. Food Eng. 102(1):49–57.
  • Aursand, I. G., Erikson, U. and Veliyulin, E. (2010). Water properties and salt uptake in Atlantic salmon fillets as affected by ante-mortem stress, rigor mortis, and brine salting: A low-field 1H NMR and 1H 23Na MRI study. Food Chem. 120(2):482–489.
  • Aursand, I. G., Veliyulin, E., Böcker, U., Ofstad, R., Rustad, T. and Erikson, U. (2008). Water and salt distribution in Atlantic salmon (Salmo salar) studied by low-field 1H NMR, 1H and 23Na MRI and light microscopy: Effects of raw material quality and brine salting. J. Agric. Food Chem. 57(1):46–54.
  • Ayuso, D., González, A., Hernández, F., Corral, J. and Izquierdo, M. (2013). Prediction of carcass composition, ham and foreleg weights, and lean meat yields of Iberian pigs using ultrasound measurements in live animals. J. Anim. Sci. 91(4):1884–1892.
  • Aaslyng, M. D., Bejerholm, C., Ertbjerg, P., Bertram, H. C. and Andersen, H. J. (2003). Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Qual. Prefer. 14(4):277–288.
  • Ballerini, L., Hogberg, A., Borgefors, G., Bylund, A.-C., Lindgard, A., Lundstrom, K., Rakotonirainy, O. and Soussi, B. (2002). A segmentation technique to determine fat content in NMR images of beef meat. Nucl. Sci. IEEE Trans. 49(1):195–199.
  • Barbin, D. F., ElMasry, G., Sun, D.-W. and Allen, P. (2012a). Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging. Anal. Chim. Acta. 719:30–42.
  • Barbin, D., Elmasry, G., Sun, D.-W. and Allen, P. (2012b). Near-infrared hyperspectral imaging for grading and classification of pork. Meat Sci. 90(1):259–268.
  • Barbin, D. F., ElMasry, G., Sun, D.-W. and Allen, P. (2013a). Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. Food Chem. 138(2):1162–1171.
  • Barbin, D. F., Sun, D.-W. and Su, C. (2013b). NIR hyperspectral imaging as non-destructive evaluation tool for the recognition of fresh and frozen-thawed porcine longissimus dorsi muscles. Innov. Food Sci. Emerg. Technol. 18:226–236.
  • Barbin, D. F., Valous, N. A. and Sun, D.-W. (2013c). Tenderness prediction in porcine longissimus dori muscles using instrumental measuremnt along with NIR hyperpsectral imaging and computer vision imagery. Innov. Food Sci. Emerg. Technol. 20:335–342.
  • Barbin, D. F., ElMasry, G., Sun, D.-W., Allen, P. and Morsy, N. (2013d). Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging. Innov. Food Sci. Emerg. Technol. 17:180–191.
  • Berry, B. (2000). Use of infrared thermography to assess temperature variability in beef patties cooked from the frozen and thawed states. Foodserv. Res. Int. 12(4):255–262.
  • Bonny, J. M., Laurent, W., Labas, R., Taylor, R., Berge, P. and Renou, J. P. (2001a). Magnetic resonance imaging of connective tissue: A non-destructive method for characterising muscle structure. J. Sci. Food Agric. 81(3):337–341.
  • Bonny, J., Laurent, W. and Renou, J. (2001b). Characterisation of meat structure by NMR imaging at high field. Spec. Publ. R. Soc. Chem. 262:17–21.
  • Bouhrara, M., Clerjon, S., Damez, J.-L., Chevarin, C., Portanguen, S., Kondjoyan, A. and Bonny, J.-M. (2011). Dynamic MRI and thermal simulation to interpret deformation and water transfer in meat during heating. J. Agric. Food Chem. 59(4):1229–1235.
  • Bouhrara, M., Lehallier, B., Clerjon, S., Damez, J.-L. and Bonny, J.-M. (2012). Mapping of muscle deformation during heating: in situ dynamic MRI and nonlinear registration. Magn. Reson. Imaging. 30(3):422–430.
  • Brix, O., Apablaza, P., Baker, A., Taxt, T. and Grüner, R. (2009). Chemical shift-based MR imaging and gas chromatography for quantification and localization of fat in Atlantic mackerel. J. Exp. Mar. Biol. Ecol. 376(2):68–75.
  • Burfoot, D., Tinker, D., Thorn, R. and Howell, M. (2011). Use of fluorescence imaging as a hygiene indicator for beef and lamb carcasses in UK slaughterhouses. Biosyst. Eng. 109(3):175–185.
  • Cluff, K., Naganathan, G. K., Subbiah, J., Lu, R., Calkins, C. R. and Samal, A. (2008). Optical scattering in beef steak to predict tenderness using hyperspectral imaging in the VIS-NIR region. Sensing Inst. Food Qual. Saf. 2(3):189–196.
  • Cernadas, E., Carrión, P., Rodríguez, P. G., Muriel, E. and Antequera, T. (2005). Analyzing magnetic resonance images of Iberian pork loin to predict its sensorial characteristics. Comput. Vis. Image Understanding. 98(2):344–360.
  • Chao, K., Yang, C. C., Chen, Y. R., Kim, M. S. and Chan, D. E. (2007). Hyperspectral-multispectral line-scan imaging system for automated poultry carcass inspection applications for food safety. Poul. Sci. 86 (11):2450–2460.
  • Chao, K., Yang, C., Kim, M. and Chan, D. (2008). High throughput spectral imaging system for wholesomeness inspection of chicken. Appl. Eng. Agric. 24(4):475–485.
  • Chao, K. L., Yang, C. C. and Kim, M. S. (2010). Spectral line-scan imaging system for high-speed non-destructive wholesomeness inspection of broilers. Trend. Food Sci. Technol. 21(3):129–137.
  • Chen, Y.-R., Meyer, G. E. and Tu, S.-I. Optical Sensors and Sensing Systems for Natural Resources and Food Safety and Quality. 23 October, Boston, MA, USA.
  • Chen, Y.-R., Meyer, G. E. and Tu, S.-I. Optics for Natural Resources, Agriculture, and Foods. 1 October, Boston, MA, USA.
  • Cheng, J. H. and Sun, D. W. (2015). Rapid quantification analysis and visualization of Escherichia coli loads in grass carp fish flesh by hyperspectral imaging method. Food Bioproc. Technol. 8(5):951–959.
  • Cheng, J. H., Sun, D. W., Pu, H. and Zeng, X. A. (2014). Comparison of visible and long-wave near-infrared hyperspectral imaging for colour measurement of grass carp (Ctenopharyngodon idella). Food Bioproc. Technol. 7(11):3109–3120.
  • Cho, B., Kim, M. S., Chao, K., Lawrence, K., Park, B. and Kim, K. (2009). Detection of fecal residue on poultry carcasses by laser-induced fluorescence imaging. J. Food Sci. 74(3):E154–E159.
  • Cho, B. K. and Irudayaraj, J. (2003). Foreign object and internal disorder detection in food materials using noncontact ultrasound imaging. J. Food Sci. 68(3):967–974.
  • Clark, C. J. and MacFall, J. S. (2003). Quantitative magnetic resonance imaging of “Fuyu”persimmon fruit during development and ripening. Magn. Reson. Imaging. 21(6):679–685.
  • Collewet, G., Bogner, P., Allen, P., Busk, H., Dobrowolski, A., Olsen, E. and Davenel, A. (2005). Determination of the lean meat percentage of pig carcasses using magnetic resonance imaging. Meat Sci. 70(4):563–572.
  • Cordeiro, A. D. S., Nääs, I. D. A. and Neves, D. (2012). The use of thermal images for identifying stress condition in piglets. In: The Ninth International Livestock Environment Symposium (ILES IX). International Conference of Agricultural Engineering -- CIGR-AgEng 2012: Agriculture and Engineering for a Healthier Life, Valencia, Spain, 8–12 July 2012, p. C–0908; CIGR-EurAgEng.
  • Costa, C., D'Andrea, S., Russo, R., Antonucci, F., Pallottino, F. and Menesatti, P. (2011). Application of non-invasive techniques to differentiate sea bass (Dicentrarchus labrax, L. 1758) quality cultured under different conditions. Aquac. Int. 19(4):765–778.
  • Costa, L. N., Stelletta, C., Cannizzo, C., Gianesella, M., Fiego, D. L. and Morgante, M. (2010). The use of thermography on the slaughter-line for the assessment of pork and raw ham quality. Ital. J. Anim. Sci. 6(1s):704–706.
  • Cui, Z.-W., Sun, L.-J., Chen, W. and Sun, D.-W. (2008). Preparation of dry honey by microwave-vacuum drying. J. Food Engin. 84(4):582–590.
  • Dissing, B. S., Nielsen, M. E., Ersboll, B. K. and Frosch, S. (2011). Multispectral imaging for determination of astaxanthin concentration in salmonids. PLoS One. 6(5):e19032.
  • Du, Z., Jeong, M. K. and Kong, S. G. (2007). Band selection of hyperspectral images for automatic detection of poultry skin tumors. Autom. Sci. Eng. IEEE Tran. 4(3):332–339.
  • Dai, Q., Cheng, J.-H., Sun, D.-W. and Zeng, X.-A. (2014). Potential of hyperspectral imaging for non-invasive determination of mechanical properties of prawn (Metapenaeus ensis). J. Food Eng. 136:64–72.
  • Damez, J., Clerjon, S., Labas, R., Danon, J., Peyrin, F. and Bonny, J. (2012). Microstructure characterization of meat by quantitative MRI. In: 58th International Congress of Meat Science and Technology, pp. 25–28, 12–17 August 2012, Montreal, Canada.
  • Damez, J. L. and Clerjon, S. (2013). Quantifying and predicting meat and meat products quality attributes using electromagnetic waves: An overview. Meat Sci. 95(4):879–896.
  • Davenel, A., Bazin, C., Quellec, S., Challois, S., Gispert, M., Mercat, M. and Muller, N. (2012). High throughput determination of intramuscular fat content by magnetic resonance imaging. J. de la Recherche Porcine en France. 44:53–54.
  • Delgado, A, E. and Sun, D.-W. (2002). Desorption isotherms and glass transition temperature for chicken meat. J. Food Engin. 55(1):1–8. Article Number: PII S0206-8774(01)00222-9
  • Desmond, E. M., Kenny, T. A., Ward, P. and Sun, D.-W. (2000). Effect of rapid and conventional cooling methods on the quality of cooked ham joints. Meat Science 56(3):271–277.
  • do Prado Paim, T., Borges, B. O., Lima, P. D. M. T., Gomes, E. F., Dallago, B. S. L., Fadel, R., de Menezes, A. M., Louvandini, H., Canozzi, M. E. A. and Barcellos, J. O. J. (2013). Thermographic evaluation of climatic conditions on lambs from different genetic groups. Int. J. Biometeorol. 57(1):59–66.
  • Du, C. J. and Sun, D.-W. (2004). Recent developments in the applications of image processing techniques for food quality evaluation. Trend. Food Sci. Technol. 15(5):230–249.
  • ElMasry, G., Barbin, D. F., Sun, D.-W. and Allen, P. (2012a). Meat quality evaluation by hyperspectral imaging technique: an overview. Crit. Rev. Food Sci. Nutr. 52(8):689–711.
  • ElMasry, G., Kamruzzaman, M., Sun, D.-W. and Allen, P. (2012). Principles and Applications of Hyperspectral Imaging in Quality Evaluation of Agro-Food Products: A Review. Critical Reviews in Food Science and Nutrition. 52:999–1023.
  • ElMasry, G., Sun, D.-W. and Allen, P. (2012b). Near-infrared hyperspectral imaging for predicting colour, pH, and tenderness of fresh beef. J. Food Eng. 110(1):127–140.
  • ElMasry, G., Sun, D.-W. and Allen, P. (2013). Chemical-free assessment and mapping of major constituents in beef using hyperspectral imaging. J. Food Eng. 117(2):235–246.
  • Erikson, U., Veliyulin, E., Singstad, T. and Aursand, M. (2004). Salting and desalting of fresh and frozen-thawed cod (Gadus morhua) fillets: A comparative study using 23Na NMR, 23Na MRI, low-field 1H NMR, and physicochemical analytical methods. J. Food Sci. 69(3):FEP107–FEP114.
  • Feng, Y.-Z., ElMasry, G., Sun, D.-W., Scappell, A. G. M., Walsh, D. and Morcy, N. (2013). Near-infrared hyperspectral imaging and partial least squares regression for rapid and reagentless determination of Enterobacteriaceae on chicken fillets. Food Chemistry. 138(2-3):1829–1836.
  • Feng, Y.-Z. and Sun, D.-W. (2012). Application of Hyperspectral Imaging in Food Safety Inspection and Control: A Review. Critical Reviews in Food Science and Nutrition. 52:1039–1058.
  • Feng, Y. Z. and Sun, D.-W. (2013a). Determination of total viable count (TVC) in chicken breast fillets by near-infrared hyperspectral imaging and spectroscopic transforms. Talanta. 105:244–249.
  • Feng, Y. Z. and Sun, D.-W. (2013b). Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of pseudomonas loads in chicken fillets. Talanta. 109:74–83.
  • Fletcher, J. and Kong, S. (2003). Principal component analysis for poultry tumor inspection using hyperspectral fluorescence imaging. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 149–153. IEEE, 20–24 July 2003, Washington, DC.
  • Font i Furnols, M., Teran, M. F. and Gispert, M. (2009). Estimation of lean meat content in pig carcasses using X-ray computed tomography and PLS regression. Chemometr. Intell. Lab. Sys. 98(1):31–37.
  • Fortin, A., Tong, A., Robertson, W., Zawadski, S., Landry, S., Robinson, D., Liu, T. and Mockford, R. (2003). A novel approach to grading pork carcasses: Computer vision and ultrasound. Meat Sci. 63(4):451–462.
  • Fukuda, O., Nabeoka, N. and Miyajima, T. (2013). Estimation of marbling score in live cattle based on ICA and a neural network. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2013, pp. 1622–1627; IEEE, Washington, DC.
  • Gowen, A. A., Taghizadeh, M. and O'Donnell, C. P. (2009). Identification of mushrooms subjected to freeze damage using hyperspectral imaging. J. Food Eng. 93(1):7–12.
  • Galed, G., Fernández-Valle, M., Martınez, A. and Heras, A. (2004). Application of MRI to monitor the process of ripening and decay in citrus treated with chitosan solutions. Magn. Reson. Imaging. 22(1):127–137.
  • GuÐjónsdóttir, M., Belton, P. and Webb, G. (2009). Sodium MRI as a tool for optimization of salting processes. Magnetic Resonance in Food Science : Challenges in a Changing World. 4:3–11.
  • Håseth, T., Høy, M., Kongsro, J., Kohler, A., Sørheim, O. and Egelandsdal, B. (2008). Determination of sodium chloride in pork meat by computed tomography at different voltages. J. Food Sci. 73(7), E333–E339.
  • Hansen, C. L., van der Berg, F., Ringgaard, S., Stødkilde-Jørgensen, H. and Karlsson, A. H. (2008). Diffusion of NaCl in meat studied by 1H and 23Na magnetic resonance imaging. Meat Sci. 80(3):851–856.
  • Harron, W. and Dony, R. (2009). Predicting quality measures in beef cattle using ultrasound imaging. In: IEEE Symposium on Computational Intelligence for Image Processing, 2009 (CIIP’09), pp. 96–103; IEEE, Washington, DC.
  • Hassen, A., Wilson, D., Amin, V., Rouse, G. and Hays, C. (2001). Predicting percentage of intramuscular fat using two types of real-time ultrasound equipment. J. Anim. Sci. 79(1):11–18.
  • He, H.-J., Wu, D. and Sun, D.-W. (2012). Application of hyperspectral imaging technique for non-destructive pH prediction in salmon fillets. Biosys. Eng. Res. Rev. 17:5.
  • He, H.-J., Wu, D. and Sun, D.-W. (2014). Potential of hyperspectral imaging combined with chemometric analysis for assessing and visualising tenderness distribution in raw farmed salmon fillets. J. Food Eng. 126:156–164.
  • Haralick, R. M., Shanmugam, K. and Dinstein, I. H. (1973). Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6:610–621.
  • Huang, X., Xin, J., & Zhao, J. (2011). A novel technique for rapid evaluation of fish freshness using colorimetric sensor array. J. Food Eng. 105(4):632–637.
  • Ibarra, J. G., Tao, Y. and Xin, H. (2000). Combined IR imaging-neural network method for the estimation of internal temperature in cooked chicken meat. Opt. Eng. 39(11):3032–3038.
  • Ivorra, E., Girón, J., Sánchez, A. J., Verdú, S., Barat, J. M. and Grau, R. (2013). Detection of expired vacuum-packed smoked salmon based on PLS-DA method using hyperspectral images. J. Food Eng. 117(3):342–349
  • Jackman, P., Sun, D.-W. and Allen, P. (2009). Automatic segmentation of beef longissimus dorsi muscle and marbling by an adaptable algorithm. Meat Science. 83(2):187–194.
  • Jackman, P., Sun, D.-W., Du, C.-J, and Allen, P. (2009). Prediction of beef eating qualities from colour, marbling and wavelet surface texture features using homogenous carcass treatment. Pattern Recognition 42(5):751–763.
  • Jensen, T. H., Bottiger, A., Bech, M., Zanette, I., Weitkamp, T., Rutishauser, S., David, C., Reznikova, E., Mohr, J., Christensen, L. B., Olsen, E. V., Feidenhans'l, R. and Pfeiffer, F. (2011). X-ray phase-contrast tomography of porcine fat and rind. Meat Sci. 88(3):379–383.
  • Kamruzzaman, M., ElMasry, G., Sun, D.-W. and Allen, P. (2012a). Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innov. Food Sci. Emerg. Technol. 16:218–226.
  • Kamruzzaman, M., ElMasry, G., Sun, D.-W. and Allen, P. (2012b). Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis. Anal. Chim. Acta. 714:57–67.
  • Kamruzzaman, M., ElMasry, G., Sun, D.-W. and Allen, P. (2013). Non-destructive assessment of instrumental and sensory tenderness of lamb meat using NIR hyperspectral imaging. Food Chem. 141(1):389–396.
  • Karamichou, E., Richardson, R., Nute, G., McLean, K. and Bishop, S. (2006). Genetic analyses of carcass composition, as assessed by X-ray computer tomography, and meat quality traits in Scottish Blackface sheep. Anim. Sci. Glasg. 82(2):151.
  • Kandpal, L. M., Lee, H., Kim, M. S., Mo, C. and Cho, B. K. (2013). Hyperspectral reflectance imaging technique for visualization of moisture distribution in cooked chicken breast. Sensors. 13(10):13289–13300.
  • Kiani, H., Zhang, Z., Delgado, A. and Sun, Da-Wen. (2011). Ultrasound assisted nucleation of some liquid and solid model foods during freezing. Food Res. International 44(9): 2915–2921.
  • Kim, M. S., Tu, S.-I, Chao, K. Sensing for Agriculture and Food Quality and Safety. 13 April, Orlando, Florida, USA.
  • Kim, M. S., Tu, S.-I, Chao, K. Sensing for Agriculture and Food Quality and Safety II. 5 April, Orlando, Florida, USA.
  • Kim, M. S., Lefcourt, A. M. and Chen, Y.-R. (2003). Multispectral laser-induced fluorescence imaging system for large biological samples. Appl. Opt. 42(19):3927–3934.
  • Kim, I., Kim, M., Chen, Y. and Kong, S. (2004). Detection of skin tumors on chicken carcasses using hyperspectral fluorescence imaging.
  • Kobayashi, K.-I., Matsui, Y., Maebuchi, Y., Toyota, T. and Nakauchi, S. (2010). Near infrared spectroscopy and hyperspectral imaging for prediction and visualisation of fat and fatty acid content in intact raw beef cuts. J. Near Infrared Spec. 18(5):301–315.
  • Korver, D., Saunders-Blades, J. and Nadeau, K. (2004). Assessing bone mineral density in vivo: Quantitative computed tomography. Poul. Sci. 83(2):222–229.
  • Kong, S. G., Chen, Y.-R., Kim, I. and Kim, M. S. (2004). Analysis of hyperspectral fluorescence images for poultry skin tumor inspection. Appl. Opt. 43(4):824–833.
  • Kremer, P., Förster, M. and Scholz, A. (2013). Use of magnetic resonance imaging to predict the body composition of pigs in vivo. Animal. 7(06):879–884.
  • Li, Y., Shan, J., Peng, Y. and Gao, X (2011). Nondestructive assessment of beef-marbling grade using hyperspectral imaging technology. In: International Conference on New Technology of Agricultural Engineering (ICAE), 2011, pp 779–783. Zibo, China, 27-29 May, IEEE.
  • Liu, D., Ma, J., Sun, D. W., Pu, H., Gao, W., Qu, J., and Zeng, X. A. (2014). Prediction of color and pH of salted porcine meats using visible and near-infrared hyperspectral imaging. Food Bioproc. Technol. 7(11):3100–3108.
  • Liu, D., Qu, J., Sun, D.-W., Pu, H. and Zeng, X.-A. (2013). Non-destructive prediction of salt contents and water activity of porcine meat slices by hyperspectral imaging in a salting process. Innov. Food Sci. Emerg. Technol. 20:316–323.
  • Liu, D., Pu, H., Sun, D.-W., Wang, L. and Zeng, X.-A. (in press). Combination of spectra and texture data of hyperspectral imaging for prediction of pH in salted meat. Food Chem. 160:330–337.
  • Liu, D., Sun, D.-W. and Zeng, X.-A. (2014). Recent Advances in Wavelength Selection Techniques for Hyperspectral Image Processing in the Food Industry. Food and bioprocess Technology 7(2):307–323.
  • Liu, D., Sun, D.-W., Qu, J., Zeng, X. A., Pu, H. and Ma, J. (2014b). Feasibility of using hyperspectral imaging to predict moisture content of porcine meat during salting process. Food Chem. 152:197–204.
  • Laurent, W., Bonny, J. and Renou, J. (2000). Muscle characterisation by NMR imaging and spectroscopic techniques. Food Chem. 69(4):419–426.
  • Lawrence, K., Windham, W., Smith, D., Park, B. and Feldner, P. (2006). Effect of broiler carcass washing on fecal contaminant imaging. Trans. Amer. Soc. Agric. Eng. 49(1):133.
  • Lawrence, T., Spire, M., Dikeman, M. E., Hunt, M. C., Hogge, S. and James, B. (2010). Utilizing Infrared Thermography to Predict Pork Quality. Report of Progress, Agricultural Experiment Station and Cooperative Extension Service, Kansas State University; 880.
  • Liang, H.-D., Noble, J. A. and Wells, P. N. T. (2011). Recent advances in biomedical ultrasonic imaging techniques. Interface Focus 1(4):475–476.
  • Lawrence, K. C., Windham, W. R., Park, B. and Buhr, R. J. (2003). A hyperspectral imaging system for identification of faecal and ingesta contamination on poultry carcasses. J. Near Infrared Spec. 11(4):269–281.
  • Macfarlane, J., Lewis, R., Emmans, G., Young, M. and Simm, G. (2006). Predicting carcass composition of terminal sire sheep using X-ray computed tomography. Anim. Sci. Glasg. 82(3):289.
  • MacMillan, B., Hickey, H., Newling, B., Ramesh, M. and Balcom, B. (2008). Magnetic resonance measurements of French fries to determine spatially resolved oil and water content. Food Res. Int. 41(6):676–681.
  • Marelli, S., Redaelli, V., Cozzi, M. and Luzi, F. (2012). Thermography: A non-invasive method to investigate thermoregulation as welfare indicator in naked neck broiler chickens. In: Quantitative InfraRed Thermography Conference, Gennaro Cardone. 11th International Conference on Quantitative InfraRed Thermography, 11–14 June 2012, Naples, Italy.
  • Mehl, P. M., Chen, Y.-R., Kim, M. S. and Chan, D. E. (2004). Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. J. Food Eng. 61(1):67–81.
  • Mery, D., Lillo, I., Loebel, H., Riffo, V., Soto, A., Cipriano, A. and Aguilera, J. M. (2011). Automated fish bone detection using X-ray imaging. J. Food Eng. 105(3):485–492.
  • Mohrmann, M., Roehe, R., Susenbeth, A., Baulain, U., Knap, P., Looft, H., Plastow, G. and Kalm, E. (2006). Association between body composition of growing pigs determined by magnetic resonance imaging, deuterium dilution technique, and chemical analysis. Meat Sci. 72(3):518–531.
  • Monziols, M., Collewet, G., Bonneau, M., Mariette, F., Davenel, A. and Kouba, M. (2006). Quantification of muscle, subcutaneous fat and intermuscular fat in pig carcasses and cuts by magnetic resonance imaging. Meat Sci. 72(1):146–154.
  • Naganathan, G. K., Grimes, L. M., Subbiah, J., Calkins, C. R., Samal, A. and Meyer, G. E. (2008a). Partial least squares analysis of near-infrared hyperspectral images for beef tenderness prediction. Sens. Instrum. Food Qual. Saf. 2(3):178–188.
  • Naganathan, G. K., Grimes, L. M., Subbiah, J., Calkins, C. R., Samal, A. and Meyer, G. E. (2008b). Visible/near-infrared hyperspectral imaging for beef tenderness prediction. Comput. Electron. Agric. 64(2):225–233.
  • Nakariyakul, S. and Casasent, D. P. (2009). Fast feature selection algorithm for poultry skin tumor detection in hyperspectral data. J. Food Eng. 94(3):358–365.
  • Navajas, E., Lambe, N., Fisher, A., Nute, G., Bünger, L. and Simm, G. (2008). Muscularity and eating quality of lambs: Effects of breed, sex and selection of sires using muscularity measurements by computed tomography. Meat Sci. 79(1):105–112.
  • Navajas, E., Lambe, N., McLean, K., Glasbey, C., Fisher, A., Charteris, A., Bünger, L. and Simm, G. (2007). Accuracy of in vivo muscularity indices measured by computed tomography and their association with carcass quality in lambs. Meat Sci. 75(3):533–542.
  • Newcom, D., Baas, T. and Lampe, J. (2002). Prediction of intramuscular fat percentage in live swine using real-time ultrasound. J. Anim. Sci. 80(12):3046–3052.
  • Pérez-Palacios, T., Antequera, T., Durán, M. L., Caro, A., Rodríguez, P. G. and Palacios, R. (2011). MRI-based analysis of feeding background effect on fresh Iberian ham. Food Chem. 126(3):1366–1372.
  • Park, B., Lawrence, K., Windham, W. and Buhr, R. J. (2002). Hyperspectral imaging for detecting fecal and ingesta contaminants on poultry carcasses. Trans. ASAE. 45(6):2017–2026.
  • Park, B., Lawrence, K. C., Windham, W. R. and Smith, D. P. (2006). Performance of hyperspectral imaging system for poultry surface fecal contaminant detection. J. Food Eng., 75(3):340–348.
  • Peng, Y., Zhang, J., Wu, J. and Hang, H. (2009). Hyperspectral scattering profiles for prediction of the microbial spoilage of beef. In: Proceedings of SPIE, Vol, pp. 73150Q–73150Q-1.
  • Peng, Y., Tao, F., Li, Y., Wang, W., Chen, J., Wu, J. and Dhakal, S. (2010). Rapid detection of total viable count of chilled pork using hyperspectral scattering technique. In: Proceedings of SPIE, Defense, Security, and Sensing, 2010, pp 76760K–76760K-8; International Society for Optics and Photonics.
  • Peng, Y. K., Zhang, J., Wang, W., Li, Y. Y., Wu, J. H., Huang, H., Gao, X. D. and Jiang, W. K. (2011). Potential prediction of the microbial spoilage of beef using spatially resolved hyperspectral scattering profiles. J. Food Eng. 102(2):163–169.
  • Prieto, N., Navajas, E., Richardson, R., Ross, D., Hyslop, J., Simm, G. and Roehe, R. (2010). Predicting beef cuts composition, fatty acids and meat quality characteristics by spiral computed tomography. Meat Sci. 86(3):770–779.
  • Pallav, P., Hutchins, D. A. and Gan, T. (2009). Air-coupled ultrasonic evaluation of food materials. Ultrasonics. 49(2):244–253.
  • Picouet, P. A., Teran, F., Gispert, M. and Furnols, M. F. I. (2010). Lean content prediction in pig carcass, loin and ham by computed tomography (CT) using a density model. Meat Sci. 86(3):616–622.
  • Pu, H., Xie, A., Sun, D. W., Kamruzzaman, M. and Ma, J. (2015). Application of wavelet analysis to spectral data for categorization of lamb muscles. Food Bioproc. Technol. 8(1):1–16.
  • Pu, H., Sun, D. W., Ma, J., Liu, D. and Cheng, J. H. (2014). Using wavelet textural features of visible and near infrared hyperspectral image to differentiate between fresh and frozen–thawed pork. Food Bioproc. Technol. 7(11):3088–3099.
  • Qiao, J., Ngadi, M. O., Wang, N., Gariépy, C. and Prasher, S. O. (2007a). Pork quality and marbling level assessment using a hyperspectral imaging system. J. Food Eng. 83(1):10–16.
  • Qiao, J., Wang, N., Ngadi, M. O., Gunenc, A., Monroy, M., Gariépy, C. and Prasher, S. O. (2007b). Prediction of drip-loss, pH, and color for pork using a hyperspectral imaging technique. Meat Sci. 76(1):1–8.
  • Qiao, J., Wang, N., Ngadi, M. and Gunenc, A. (2005). Determination of pork quality attributes using hyperspectral imaging technique, In: Optics East, pp. 59960M–59960M-8; International Society for Optics and Photonics.
  • Qin, J., Burks, T. F., Ritenour, M. A. and Bonn, W. G. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. J. Food Eng. 93(2):183–191.
  • Ribeiro, F., Tedeschi, L., Stouffer, J. and Carstens, G. (2008). Technical note: A novel technique to assess internal body fat of cattle by using real-time ultrasound. J. Anim. Sci. 86(3):763–767.
  • Romvári, R., Dobrowolski, A., Repa, I., Allen, P., Olsen, E., Szabó, A. and Horn, P. (2006). Development of a computed tomographic calibration method for the determination of lean meat content in pig carcasses. Acta Vet. Hung. 54(1):1–10.
  • Ruiz-Cabrera, M., Gou, P., Foucat, L., Renou, J. and Daudin, J. (2004). Water transfer analysis in pork meat supported by NMR imaging. Meat Sci. 67(1):169–178.
  • Salinas, Y., Ros-Lis, J. V., Vivancos, J. L., Martínez-Máñez, R., Marcos, M. D., Aucejo, S. and Garcia, E. (2014). A novel colorimetric sensor array for monitoring fresh pork sausages spoilage. Food Control. 35(1):166–176.
  • Salinas, Y., Ros-Lis, J. V., Vivancos, J. L., Martínez-Máñez, R., Marcos, M. D., Aucejo, S., and Lorente, I. (2012). Monitoring of chicken meat freshness by means of a colorimetric sensor array. Analyst. 137(16):3635–3643.
  • Sivertsen, A. H., Heia, K., Stormo, S. K., Elvevoll, E. and Nilsen, H. (2011). Automatic nematode detection in cod fillets (Gadus morhua) by transillumination hyperspectral imaging. J. Food Sci. 76(1):S77–S83.
  • Sivertsen, A. H., Heia, K., Hindberg, K. and Godtliebsen, F. (2012). Automatic nematode detection in codfillets (Gadus morhua L.) by hyperspectral imaging. J. Food Eng. 111(4):675–681.
  • Schaefer, A., Cook, N., Bench, C., Chabot, J., Colyn, J., Liu, T., Okine, E., Stewart, M. and Webster, J. (2012). The non-invasive and automated detection of bovine respiratory disease onset in receiver calves using infrared thermography. Res. Vet. Sci. 93(2):928–935.
  • Schaefer, A., Cook, N., Tessaro, S., Deregt, D., Desroches, G., Dubeski, P., Tong, A. and Godson, D. (2004). Early detection and prediction of infection using infrared thermography. Can. J. Anim. Sci. 84(1):73–80.
  • Segtnan, V. H., Høy, M., Sørheim, O., Kohler, A., Lundby, F., Wold, J. P. and Ofstad, R. (2009). Noncontact salt and fat distributional analysis in salted and smoked salmon fillets using X-ray computed tomography and NIR interactance imaging. J. Agric. Food Chem. 57(5):1705–1710.
  • Shaarani, S. M., Cardenas-Blanco, A., Amin, M., Soon, N. G. and Hall, L. D. (2010). Monitoring development and ripeness of oil palm fruit (Elaeis guneensis) by MRI and bulk NMR. Int. J. Agric. Biol. 12(1):101–105.
  • Shaarani, S. M., Nott, K. P. and Hall, L. D. (2006). Combination of NMR and MRI quantitation of moisture and structure changes for convection cooking of fresh chicken meat. Meat Sci. 72(3):398–403.
  • Skjervold, P., Taylor, R., Wold, J., Berge, P., Abouelkaram, S., Culioli, J. and Dufour, E. (2003). Development of intrinsic fluorescent multispectral imagery specific for fat, connective tissue, and myofibers in meat. J. Food Sci. 68(4):1161–1168.
  • Sone, I., Olsen, R. L., Sivertsen, A. H., Eilertsen, G. and Heia, K. (2012). Classification of fresh Atlantic salmon (Salmo salar L.) fillets stored under different atmospheres by hyperspectral imaging. J. Food Eng. 109(3):482–489.
  • Stewart, M. (2008). Non-invasive measurement of stress and pain in cattle using infrared thermography. Doctoral dissertation, Massey University, Palmerston North, New Zealand.
  • Singh, C., Jayas, D., Paliwal, J. and White, N. (2009). Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging. J. Stor. Prod. Res. 45(3):151–158.
  • Stevik, A. M., Duun, A. S., Rustad, T., O'Farrell, M., Schulerud, H. and Ottestad, S. (2010). Ice fraction assessment by near-infrared spectroscopy enhancing automated superchilling process lines. J. Food Eng. 100(1):169–177.
  • Sun, D.-W. and Wang, L. J. (2000). Heat transfer characteristics of cooked meats using different cooling methods. International Journal of Refrigeration-Revue Internationale due Froid 23(7):508–516.
  • Tao, F., Peng, Y., Li, Y., Chao, K. and Dhakal, S. (2012a). Simultaneous determination of tenderness and Escherichia coli contamination of pork using hyperspectral scattering technique. Meat Sci. 90(3):851–857.
  • Tao, F., Tang, X., Peng, Y. and Dhakal, S. (2012b). Classification of pork quality characteristics by hyperspectral scattering technique. American Society of Agricultural and Biological Engineers Annual International Meeting, July 29–August 1, 2012, Dallas, Texas, USA. Vol. 7, pp. 5842–5851
  • Tao, F. F., Wang, W., Li, Y. Y., Peng, Y. K., Wu, J. H., Shan, J. J. and Zhang, L. L. (2010). A rapid nondestructive measurement method for assessing the total plate count on chilled pork surface. Spectr. Spectr. Anal. 30(12):3405–3409.
  • Tao, Y., Chen, Z., Jing, H. and Walker, J. (2001). Internal inspection of deboned poultry using X-ray imaging and adaptive thresholding. Trans. ASAE. 44(4):1005–1009.
  • Tao, Y. and Ibarra, J. (2000). Thickness-compensated X-ray imaging detection of bone fragments in deboned poultry-model analysis. Trans. ASAE. 43(2):453–459.
  • Toussaint, C., Fauconneau, B., Médale, F., Collewet, G., Akoka, S., Haffray, P. and Davenel, A. (2005). Description of the heterogeneity of lipid distribution in the flesh of brown trout (Salmo trutta) by MR imaging. Aquaculture. 243(1):255–267.
  • Valous, N. A., Mendoza, F. and Sun, D.-W. (2010). Emerging non-contact imaging, spectroscopic and colorimetric technologies for quality evaluation and control of hams: a review. Trend. Food Sci. Technol. 21(1):26–43.
  • Veberg, A., Sørheim, O., Moan, J., Iani, V., Juzenas, P., Nilsen, A. and Wold, J. (2006). Measurement of lipid oxidation and porphyrins in high oxygen-modified atmosphere and vacuum-packed minced turkey and pork meat by fluorescence spectra and images. Meat Sci. 73(3):511–520.
  • Veliyulin, E. and Aursand, I. G. (2007). 1H and 23Na MRI studies of Atlantic salmon (Salmo salar) and Atlantic cod (Gadus morhua) fillet pieces salted in different brine concentrations. J. Sci. Food Agric. 87(14):2676–2683.
  • Vester-Christensen, M., Erbou, S. G. H., Hansen, M. F., Olsen, E. V., Christensen, L. B., Hviid, M., Ersboll, B. K. and Larsen, R. (2009). Virtual dissection of pig carcasses. Meat Sci. 81(4):699–704.
  • Veliyulin, E., Egelandsdal, B., Marica, F. and Balcom, B. J. (2009). Quantitative 23Na magnetic resonance imaging of model foods. J. Agric. Food Chem. 57(10):4091–4095.
  • Vestergaard, C., Risum, J. and Adler-Nissen, J. (2004). Quantification of salt concentrations in cured pork by computed tomography. Meat Sci. 68(1):107–113.
  • Vestergaard, C., Risum, J. and Adler-Nissen, J. (2005). 23Na-MRI quantification of sodium and water mobility in pork during brine curing. Meat Sci. 69(4):663–672.
  • Wang, W. and Zhang, L.-L. (2010a). A rapid nondestructive measurement method for assessing the total plate count on chilled pork surface. Spectrosc. Spect. Anal. 30(12):3405–3409.
  • Wang, L. J. and Sun, D.-W. (2004). Effect of operating conditions of a vacuum cooler on cooling performance for large cooked meat joints. J. Food Engin 61(2):231–240.
  • Wang, H. H., and Sun, D.-W. (2002). Melting characteristics of cheese: analysis of effect of cheese dimensions using computer vision techniques. J. Food Engin. 52(3):279–284. Article Number: PII S0260–8774(01)00116–9.
  • Wang, W. and Zhang, X.-L. (2010b). Study on modeling method of total viable count of fresh pork meat based on hyperspectral imaging system. Spectrosc. Spect. Anal. 30(2):411–415.
  • Wang, W., Peng, Y., Huang, H. and Wu, J. (2011). Application of hyper-spectral imaging technique for the detection of total viable bacteria count in pork. Sensor Lett. 9(3):1024–1030.
  • Weschenfelder, A. V., Maldague, X., Rocha, L. M., Schaefer, A. L., Saucier, L. and Faucitano, L. (2013). The use of infrared thermography for pork quality prediction. Meat Sci. 96:120–125.
  • Windham, W., Smith, D. P., Park, B., Lawrence, K. and Feldner, P. W. (2003). Algorithm development with visible/near-infrared spectra for detection of poultry feces and ingesta. Trans. ASAE. 46(6):1733–1738.
  • Windham, W., Smith, D., Berrang, M., Lawrence, K. and Feldner, P. (2005). Effectiveness of hyperspectral imaging system for detecting cecal contaminated broiler carcasses. Int. J. Poul. Sci. 4(9):657–662.
  • Wold, J. P. and Kvaal, K. (2000). Mapping lipid oxidation in chicken meat by multispectral imaging of autofluorescence. Appl. Spectros. 54(6):900–909.
  • Wold, J. P., Johansen, I.-R., Haugholt, K. H., Tschudi, J., Thielemann, J., Segtnan, V. H., Narum, B. and Wold, E. (2006). Non-contact transflectance near infrared imaging for representative on-line sampling of dried salted coalfish (bacalao). J. Near Infr. Spectrosc. 14(1):59–66.
  • Wu, D. and Sun, D.-W. (2013). Colour measurements by computer vision for food quality control - A review. Trends in Food Sci. and Tech. 29(1):5–20.
  • Wu, J., Peng, Y., Chen, J., Wang, W., Gao, X. and Huang, H. (2010). Study of spatially resolved hyperspectral scattering images for assessing beef quality characteristics. Spectrosc. Spect. Anal. 30(7):1815–1819.
  • Wu, D., Shi, H., Wang, S. J., He, Y., Bao, Y. D. and Liu, K. S. (2012a). Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system. Anal. Chim. Acta. 726:57–66.
  • Wu, D., Sun, D.-W. and He, Y. (2012b). Application of long-wave near infrared hyperspectral imaging for measurement of color distribution in salmon fillet. Innov. Food Sci. Emerg. Technol. 16:361–372.
  • Wu, J., Peng, Y., Li, Y., Wang, W., Chen, J. and Dhakal, S. (2012c) Prediction of beef quality attributes using VIS/NIR hyperspectral scattering imaging technique. J. Food Eng. 109(2):267–273.
  • Wu, D. and Sun, D.-W. (2013a). Application of visible and near infrared hyperspectral imaging for non-invasively measuring distribution of water-holding capacity in salmon flesh. Talanta. 116:266–276.
  • Wu, D. and Sun, D.-W. (2013b). Potential of time series-hyperspectral imaging (TS-HSI) for non-invasive determination of microbial spoilage of salmon flesh. Talanta. 111:39–46.
  • Wu, D., Sun, D. -W. and He, Y. (2014). Novel non-invasive distribution measurement of texture profile analysis (TPA) in salmon fillet by using visible and near infrared hyperspectral imaging. Food Chem. 145:417–426.
  • Xiong, Z., Xie, A., Sun, D.-W., Zeng, X.-a. and Liu, D. (accepted). Applications of hyperspectral imaging in chicken meat safety and quality detection and evaluation: A review. Crit. Rev. Food Sci. Nutr. 55(9):1287–1301.
  • Xiong, Z., Sun, D.-W., Zeng, X.-A. and Xie, A. (2014b). Recent developments of hyperspectral imaging systems and their applications in detecting quality attributes of red meats: A review. J. Food Eng. 132:1–13.
  • Xiong, Z., Sun, D.-W., Dai, Q., Han, Z., Zeng, X. -A. and Wang, L. (2014c). Application of visible hyperspectral imaging for prediction of springiness of fresh chicken meat. Food Anal. Methods 8(2):380–391.
  • Yang, C. C., Chao, K., Kim, M. S., Chan, D. E., Early, H. L. and Bell, M. (2010). Machine vision system for on-line wholesomeness inspection of poultry carcasses. Poul. Sci. 89(6):1252–1264.
  • Youssao, A., Verleyen, V. and Leroy, P. (2002). Prediction of carcass lean content by real-time ultrasound in Pietrain and negative stress Pietrain. Anim. Sci. 75(1):25–32.
  • Yoon, S. C., Lawrence, K. C., Smith, D. P., Park, B. and Windham, W. R. (2006). Bone fragment detection in chicken breast fillets using diffuse scattering patterns of back-illuminated structured light. In: Optics East, pp. 63810G-63810G-10; International Society for Optics and Photonics. Optics for Natural Resources, Agriculture, and Foods. Yud-Ren Chen, George E. Meyer, and Shu-I Tu. 01, October, Boston, MA, USA.
  • Yoon, S. C., Lawrence, K. C., Smith, D. P., Park, B. and Windham, W. R. (2008). Embedded bone fragment detection in chicken fillets using transmittance image enhancement and hyperspectral reflectance imaging. Sensor Instrum. Food Qual. Saf. 2(3):197–207.
  • Zheng, L. Y. and Sun, D-W. (2004). Vacuum cooling for the food industry - a review of recent research advances. Trends in Food Sci. and Tech. 15(12):555–568.
  • Zhu, F., Zhang, D., He, Y., Liu, F. and Sun, D.-W. (2013). Application of visible and near infrared hyperspectral imaging to differentiate between fresh and frozen–thawed fish fillets. Food Bioproc. Technol. 6(10):2931–2937.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.